Skip to main content

Abstract

The sodium theory of nervous conduction, first proposed by Hodgkin, Huxley and Katz (1), and later eleborated in detail by Hodgkin and Huxley, see (2–5) has made it possible to describe the electric events in the active giant nerve fibre in terms of a sequence of changes in permeability to sodium and potassium. This treatment is formally very satisfactory indeed. When supplemented with the concept of active sodium extrusion (possibly coupled with active potassium uptake) during recovery, a process for which there is now ample evidence (6–9), we have obtained a self-consistent picture of ionic shifts and electric phenomena in the giant fibre, and it seems that its main features can be found in many other excitable tissues as well (10).

This short review is an introduction to an extensive article to be published in the next volume of „Ergebnisse der Physiologie“.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hodgkin, A. L., A. F. Huxley and B. Katz: Ionic currents underlying activity in the giant axon of the squid. Arch. Sci. physiol. 3, 129–150 (1949).

    CAS  Google Scholar 

  2. Hodgkin, A. L., A. F. Huxley and B. Katz: Currents carried by sodium and potassium ions through the membrane of the giant axons of Loligo J. Physiol. (Lond.) 116, 449–472 (1952).

    CAS  Google Scholar 

  3. Hodgkin, A. L., A. F. Huxley and B. Katz: The components of membrane conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116, 473–496 (1952).

    CAS  Google Scholar 

  4. .Hodgkin, A. L., A. F. Huxley and B. Katz: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116, 497–506 (1952).

    CAS  Google Scholar 

  5. Hodgkin, A. L., A. F. Huxley and B. Katz: A quantitative description of membrane current and its application to conduction and exitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952).

    CAS  Google Scholar 

  6. Hodgkin, A. L., and R. D. Keynes: Movement of cations during recovery in nerve. Symp. Soc. exp. Biol. 8, 423–437 (1954).

    CAS  Google Scholar 

  7. Caldwell, P. C., and R. D. Keynes: The utilization of phosphate bond energy for sodium extrusion from giant axons. J. Physiol. (Lond.) 137, 12P–13P (1957).

    Google Scholar 

  8. Hodgkin, A. L., and R. D. Keynes: Active transport of cations in giant axons from Sepia and Loligo. J. Physiol. (Lond.) 128, 28–60 (1955).

    CAS  Google Scholar 

  9. Shanes, A. M., and M. D. Berman: Kinetics of ion movement in the squid giant nerve. J. gen. Physiol. 39, 279–300 (1955).

    Article  PubMed  CAS  Google Scholar 

  10. Hodgkin, A. L.: The ionic basis of electrical activity in nerve and muscle. Biol. Rev. 26, 339–409 (1951).

    Article  CAS  Google Scholar 

  11. Ling, G. N.: The role of phosphorous in the maintenance of the resting potential and selective ionic accumulation in frog muscle cells. In: Phosphorous Metabolism, vol. II, edit. by W. D. McElroy and B. Glass, p. 748–795. Baltimore: Johns Hopkins Press 1952.

    Google Scholar 

  12. Ussing, H. H.: Some aspects of the application of tracers in permeability studies. Avanc. Enzymol. 13, 21–65 (1952).

    CAS  Google Scholar 

  13. Blinks, L. R.: Protoplasmic potentials in Halicystis. J. gen. Physiol. 18, 409 (1935).

    Article  PubMed  CAS  Google Scholar 

  14. Ussing, H. H., and K. Zerahn: Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta physiol. scand. 23, 110–127 (1951).

    Article  PubMed  CAS  Google Scholar 

  15. MacRobbie, E. A. C., and J. Dainty: Ion transport in Nitellopsis obtusa. J. gen. Physiol. 42, 335–358 (1958).

    Article  PubMed  CAS  Google Scholar 

  16. Ussing, H. H., and B. Andersen: The relation between solvent drag and active transport of ions. Proc. third Internat. Congr. Biochem., Brussels, 1955-New York: Academic Press 1956.

    Google Scholar 

  17. Leaf, A.: Ion transport by the isolated bladder of the toad. Res. Comm. 3. Internat. Congr. Biochem., Brussels, 1955. New York: Academic Press 1956.

    Google Scholar 

  18. Chalfin, D., I. L. Cooperstein and C. A. M. Hogben: Ionic transfer across the isolated bullfrog large intestine. Fed. Proc. 16, 24 (1957) .

    Google Scholar 

  19. Dobson, A.: The forces moving sodium ions through rumen epithelium. J. Physiol. (Lond.) 128, 39P–40P (1955).

    Google Scholar 

  20. Dobson, A.: , and A. T. Phillipson : The movements of ions across the reticulo-rumen sack Abstr. Comm. XXth Internat. Physiol. Congr., Brussels, 1956.

    Google Scholar 

  21. Ussing, H. H.: Active transport of inorganic ions. Symp. Soc. exp. Biol. 8, 407 to 422 (1954).

    CAS  Google Scholar 

  22. Ussing, H. H.: General principles and theories of membrane transport. In: Metabolic aspects of transport across cell membranes. Edit. by Q. R. Murphy. Madison: University of Wisconsin Press 1957.

    Google Scholar 

  23. Koefoed-Johnsen, V., H. H. Ussing and K. Zerahn: The origin of the shortcircuit current in the adrenaline stimulated frog skin. Acta physiol. scand. 27, 38–48 (1952).

    Article  PubMed  CAS  Google Scholar 

  24. Zerahn, K.: Oxygen consumption and active sodium transport in the isolated and short-circuited frog skin. Acta physiol. scand. 36, 300–318 (1956).

    Article  PubMed  CAS  Google Scholar 

  25. Leaf, A., and A. Renshaw: Ion transport and respiration of isolated frog skin. Biochem. J. 65, 82–90 (1957).

    PubMed  CAS  Google Scholar 

  26. Lundegårdh, H.: Untersuchungen über die Anionenatmung. Biochem. Z. 290, 104–124 (1937).

    Google Scholar 

  27. Chance, B., and G. R. Williams: The respiratory chain and Oxidative metabolism. Advanc. Enzymol. 17, 65–134 (1956).

    CAS  Google Scholar 

  28. Koefoed-Johnsen, V., and H. H. Ussing: The nature of the frog skin potential. Acta physiol. scand. 42, 298–308 (1958).

    Article  PubMed  CAS  Google Scholar 

  29. Hogben, C. A. M.: Active transport of chloride by isolated frog gastric epithelium. Origin of the gastric mucosal potential. Amer. J. Physiol. 180, 641–649 (1955).

    PubMed  CAS  Google Scholar 

  30. Glynn, I. M.: The ionic permeability of the red cell membrane. Progr. Biophysics. 8, 241–307 (1957).

    CAS  Google Scholar 

  31. Harris, E. J.: Linkage of sodium-and potassium active transport in human erythrocytes. Symp. Soc. exp. Biol. 8, 228–241 (1954).

    CAS  Google Scholar 

  32. Keynes, R. D.: The ionic fluxes in frog muscle. Proc. roy. Soc. B 142, 359–382 (1954).

    Article  CAS  Google Scholar 

  33. Linderholm, H.: Active transport of ions through frog skin with special reference to the action of certain diuretics. Acta physiol. scand. Suppl. 97, 1–144 (1952).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1959 Springer-Verlag OHG/Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Ussing, H.H. (1959). Ionic Movements in Cell Membranes in Relation to the Activity of the Nervous System. In: Krayer, O., Lehnartz, E., v. Muralt, A., Weber, H.H. (eds) Ergebnisse der Physiologie Biologischen Chemie und Experimentellen Pharmakologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49773-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49773-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49488-8

  • Online ISBN: 978-3-642-49773-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics