Advertisement

Abbildung von Kristallgitter-Perioden

  • J. W. Menter
  • H. Hashimoto
  • T. Naiki
  • M. Mannami
  • Shiro Ogawa
  • Denjiro Watanabe
  • Hiroshi Watanabe
  • Tsutomu Komoda
  • A. B. Glossop
  • D. W. Pashley
  • Yoshihiro Kamiya
  • Minoru Nonoyama
  • Hiroshi Tochigi
  • Ryozi Uyeda
  • I. M. Dawson
  • D. H. Watson
  • P. Schiske
  • H. Boersch
  • K. Klatt
  • R. W. G. Wyckoff
  • L. W. Labaw

Zusammenfassung

Some striking advances have occurred in the use of high resolution electron microscopes in the field of solid state physics since the International Meeting of 1954. These have been concerned with the direct study by transmission of thin crystalline specimens in two distinct ways. In the first the aperture of the microscope is chosen so that some diffracted beams from the specimen pass through to the image and are recombined to form a periodic pattern, the form and spacing of which is closely related to the relative dispositions and spacings of the lattice planes in the crystal. Using this method, the basic periodicity of net planes of the lattice may be directly imaged and departures from perfect periodicity in the form of distortions and discontinuities arising from lattice imperfections such as dislocations may be studied. In the second method the aperture of the microscope objective is chosen so that all diffracted beams from the specimen are intercepted and contrast arises from changes in thickness and orientation and from lattice distortion of the crystal. In particular, the lattice disturbance associated with a dislocation line is sufficient to cause a large local change in the electron intensity scattered outside the objective aperture in the vicinity of the line, thereby making the line visible in the image. Both of these methods have required a complementary study of the diffraction pattern by the selected area technique. For this, the three stage design has been invaluable and the microscope has come into its own as an integrated research tool for the study of crystals and their imperfections. With the addition of a hot stage and means for applying stress to the specimen in situ very wide fields of investigation in physics, chemistry and metallurgy have been opened up.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Farrant, J. L., and A. J. Hodge: Proc. Third Int. Conference on electron microscopy. London 1954, p. 118 (1956).Google Scholar
  2. 2.
    Menter, J. W.: Proc. roy. Soc. A 236, 119 (1956).ADSCrossRefGoogle Scholar
  3. 3.
    Robertson, J. M., and I. Woodward: J. chem. Soc, London 1940, 36.Google Scholar
  4. 4.
    Neider, R.: Proc. of Stockholm Conference, 1956, p. 93 (1957).Google Scholar
  5. 5.
    Labaw, L. W., and R. W. G. Wyckoff: Proc. kon. Ned. Akad. Wet. 59B, 451 (1956).Google Scholar
  6. 6.
    Suito, E., and N. Uyeda: Proc. Imp. Acad. Japan 33, 398 (1957).Google Scholar
  7. 7.
    Robertson, J. M.: J. chem. Soc. London 1934, 615.Google Scholar
  8. 8.
    Niehrs, H.: Z. Physik 138, 570 (1954).ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Niehrs, H.: Optik 13, 399 (1956).Google Scholar
  10. 10.
    Niehrs, H.: Proc. of Stockholm Conference 1956, p. 86 (1957).Google Scholar
  11. 11.
    Menter, J. W.: Proceedings of Stockholm Conference 1957, p. 88.Google Scholar
  12. 12.
    Labaw, L. W., and R. W. G. Wyckoff: Proc. nat. Acad. sci. (Wash.) 43, 1032 (1957).ADSCrossRefGoogle Scholar
  13. 13.
    Bassett, G. A., and J. W. Menter: Philosophical Mag. 2, 1482 (1957).ADSCrossRefGoogle Scholar
  14. 14.
    Mitsuishi, T., H. Nagasaki and R. Uyeda: Proc. Imp. Acad. Japan 27, 86 (1951).Google Scholar
  15. 15.
    Seki, Y.: J. Phys. Soc. Japan 6, 543 (1951).ADSGoogle Scholar
  16. 16.
    Seki, Y.: J. Phys. Soc. Japan 8, 149 (1953).ADSCrossRefGoogle Scholar
  17. 17.
    Rang, O.: Z. Physik 136, 465 (1953).ADSCrossRefGoogle Scholar
  18. 18.
    Gard, J. A., R. M. Barrer and Baynham: J. chem. Soc, London 1955, 2480.Google Scholar
  19. 19.
    Bernard, R., and E. Pernoux: C. R. Acad. sci. (Paris) 236, 187 (1953).Google Scholar
  20. 20.
    Hillier, J.: Nat. Bur. Stand. Circ. No. 527, Electron Physics 413 (1954).Google Scholar
  21. 21.
    Dowell, W. C. T., J. L. Farrant and A. L. G. Rees: Proc. Third Int. Conference on electron microscopy London 1954, p. 279, 1956.Google Scholar
  22. 22.
    Bassett, G. A., J. W. Menter and D. W. Pashley: Nature (Lond.) 179, 752 (1957).ADSCrossRefGoogle Scholar
  23. 23.
    Dowell, W. C. T., J. L. Farrant and A. L. G. Rees: First Regional Conference in Asia and Oceania. Tokyo 1956, p. 320, 1957.Google Scholar
  24. 24.
    Bassett, G. A., J. W. Menter and D. W. Pashley: Proc. roy. Soc. A 246, 345 (1958).ADSCrossRefGoogle Scholar
  25. 25.
    Hashimoto, H., and R. Uyeda: Acta crystallogr. (Lond.) 10, 143 (1957).CrossRefGoogle Scholar
  26. 26.
    Rang, O., and H. Poppa: Naturwissenschaften 10, 239 (1958).ADSCrossRefGoogle Scholar
  27. 27.
    Brindley, G. W., J. J. Comer, R. Uyeda and J. Zussman: Acta crystallogr. (Lond.) 11, 44 (1958).Google Scholar
  28. 28.
    Glossop, A., and D. W. Pashley: Proc. roy. Soc. A 250, 132 (1959).ADSCrossRefGoogle Scholar
  29. 29.
    Goodman, J. F.: Nature (Lond.) 180, 425 (1957).ADSCrossRefGoogle Scholar
  30. 30.
    Uyeda, R., T. Masuda, H. Tochigi, K. Ito and H. Yotsumoto: J. Phys. Soc. Japan 13, 461 (1958).ADSCrossRefGoogle Scholar
  31. 1.
    Menter, J. W.: Proc. roy. Soc. A 236, 119 (1956).ADSCrossRefGoogle Scholar
  32. 2.
    Uyeda, R.: J. Phys. Soc. Japan 10, 256 (1955).ADSCrossRefGoogle Scholar
  33. 3.
    Niehrs, H.: Z. Physik 138, 570 (1954).ADSCrossRefzbMATHGoogle Scholar
  34. 4.
    Uyeda, R., and Y. Kamiya: Symposium of Electronmicroscopy. Kyoto 1957.Google Scholar
  35. 5.
    Cowley, J. M.: Acta crystallogr. (Lond.) (in press).Google Scholar
  36. 6.
    Bethe, H. A.: Ann. Physik 87, 55 (1928).Google Scholar
  37. 7.
    Hashimoto, H.: J. Phys. Soc. Japan 13, 534 (1958).ADSCrossRefGoogle Scholar
  38. 1.
    Ogawa, S., and D. Watanabe: J. Phys. Soc. Japan 9, 475 (1954).ADSCrossRefGoogle Scholar
  39. 2.
    Watanabe, D.: Read at the spring meeting of Phys. Soc. Japan in 1955. Electron diffraction study on the ordered alloy Cu3Pt.Google Scholar
  40. 3.
    Fujiwara, K., M. Hirabayashi, D. Watanabe and S. Ogawa: J. Phys. Soc. Japan 13, 167 (1958).ADSCrossRefGoogle Scholar
  41. 4.
    Watanabe, D., and S. Ogawa: J. Phys. Soc. Japan 11, 226 (1956).ADSCrossRefGoogle Scholar
  42. 5.
    Watanabe, D., and S. Ogawa: J. Phys. Soc. Japan 13, 535 (1958).ADSCrossRefGoogle Scholar
  43. 6.
    Fujiwara, K., D. Watanabe and S. Ogawa: Read at the annual meeting of Phys. Soc. Japan in 1957. Electron diffraction study on the alloys of gold-zinc system.Google Scholar
  44. 7.
    Fujiwara, K., D. Watanabe and S. Ogawa: J. Phys. Soc. Japan 12, 7 (1957).ADSCrossRefGoogle Scholar
  45. 1.
    Johansson, C. H., and J. O. Linde: Ann. Physik 25, 1 (1936).ADSCrossRefGoogle Scholar
  46. 2.
    Ogawa, S., and D. Watanabe: J. Phys. Soc. Japan 9, 475 (1954).ADSCrossRefGoogle Scholar
  47. 3.
    Glossop, A. B., and D. W. Pashley: Proc. roy. Soc. A 250, 132 (1959).ADSCrossRefGoogle Scholar
  48. 1.
    Menter, J. W.: Proc. roy. Soc. A 236, 119 (1956).ADSCrossRefGoogle Scholar
  49. 2.
    Brikdley, G. W., J. J. Comer, R. Uyeda and J. Zussman: Acta crystallogr. (Copenh.) 11, 99 (1958).CrossRefGoogle Scholar
  50. 3.
    Cowley, J. M., and A. F. Moodie: Proc. physic. Soc. B 70, 486 (1957).MathSciNetADSCrossRefGoogle Scholar
  51. Komoda, T.: Electron Microscopy (in Japanese) 6, 137 (1958).Google Scholar
  52. 4.
    Hashimoto, H., T. Naiki and M. Mannai: Read before the annual meeting. Soc. Electron Microscopy, Japan, at Kyoto, May 1958. Theoretical interpretation and light optical experiment on the electron microscopic image of crystal lattice.Google Scholar
  53. 5.
    Uyeda, R., T. Masuda, H. Tochigi, K. Ito and H. Yotsumoto: J. Phys. Soc. Japan 13, 461 (1958).ADSCrossRefGoogle Scholar
  54. 6.
    Brindley, G. W.: Private communication.Google Scholar
  55. 7.
    Hashimoto, H., and T. Naiki: J. Phys. Soc. Japan 13, 764 (1958).ADSCrossRefGoogle Scholar
  56. 8.
    Cowley, J. M.: Acta crystallog. (Copenh.) 12, 367 (1959).CrossRefGoogle Scholar
  57. 1.
    Carlisle, C. H., and H. Scouloudi: Proc. roy. Soc. A 207, 496 (1951).ADSCrossRefGoogle Scholar
  58. 2.
    Carlisle, C. H., H. Scouloudiand M. Spier: Proc. roy. Soc. B 141, 85 (1953).ADSCrossRefGoogle Scholar
  59. 3..
    Dawson, I. M.: Nature (Lond.) 168, 241 (1951).ADSCrossRefGoogle Scholar
  60. 4..
    Hall, C. E.: J. biol. Chem. 185, 45 (1950).Google Scholar
  61. 5..
    Magdoff, B. S., and F. H. C. Crick: Acta crystallogr. (Copenh.) 8, 461 (1955).CrossRefGoogle Scholar
  62. 6..
    Magdoff, B. S., F. H. C. Crickand V. Luzzati: Acta crystallogr. (Copenh.) 9, 156 (1956).CrossRefGoogle Scholar
  63. 7..
    Wyckoff, R. W. G.: Electron Microscopy, p. 72. New York: Interscience Publ. 1949.Google Scholar
  64. 1..
    Menter, J. W.: Proc. roy. Soc. A 236, 119 (1956).ADSCrossRefGoogle Scholar
  65. 2..
    Labaw, L. W., and R. W. G. Wyckoff: Proc. nat. Acad. sci. (Wash.) 43, 1038 (1957). Zum Einfluß von Bildfehlern und Beleuchtung auf die Abbildung von KristallstrukturenADSCrossRefGoogle Scholar
  66. 1..
    Haine, M. E., and T. Mulvey: J. sci. Instrum. 81, 326 (1954).ADSCrossRefGoogle Scholar
  67. 2..
    Zernike, F.: Physica 5, 785 (1938).ADSCrossRefGoogle Scholar
  68. 3..
    Menter, J. W.: Proc. roy. Soc. 236, 119 (1956).ADSCrossRefGoogle Scholar
  69. 4..
    Glaser, W.: Grundlagen der Elektronenoptik. S. 408. Wien: Springer 1952.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1960

Authors and Affiliations

  • J. W. Menter
    • 1
  • H. Hashimoto
    • 2
    • 3
  • T. Naiki
    • 2
    • 3
  • M. Mannami
    • 2
    • 3
  • Shiro Ogawa
    • 4
    • 5
  • Denjiro Watanabe
    • 4
    • 5
  • Hiroshi Watanabe
    • 4
    • 5
  • Tsutomu Komoda
    • 4
    • 5
  • A. B. Glossop
    • 6
  • D. W. Pashley
    • 6
  • Yoshihiro Kamiya
    • 7
    • 8
  • Minoru Nonoyama
    • 7
    • 8
  • Hiroshi Tochigi
    • 7
    • 8
  • Ryozi Uyeda
    • 7
    • 8
  • I. M. Dawson
    • 9
  • D. H. Watson
    • 9
  • P. Schiske
    • 10
  • H. Boersch
    • 11
  • K. Klatt
    • 11
  • R. W. G. Wyckoff
    • 12
  • L. W. Labaw
    • 12
  1. 1.Tube Investments Research LaboratoriesCambridgeEngland
  2. 2.Kyoto Technical UniversityJapan
  3. 3.Kyoto UniversityJapan
  4. 4.The Research Institute for Iron, Steel and Other MetalsTohoku UniversitySendaiJapan
  5. 5.Hitachi Central Research LaboratoryKokubunji, TokyoJapan
  6. 6.Tube Investments Research LaboratoriesHinxton HallCambridgeEngland
  7. 7.Physical InstituteNagoya UniversityNagoyaJapan
  8. 8.Akashi Seisakusho Ltd.Marunouchi, TokyoJapan
  9. 9.Department of ChemistryThe UniversityGlasgow W. 2.Scotland
  10. 10.Institut für Elektronenmikroskopie am Fritz-Haber-Institut der Max-Planck-GesellschaftBerlin-DahlemDeutschland
  11. 11.I. Physikalisches InstitutTechnischen Universität BerlinDeutschland
  12. 12.Laboratory of Physical Biology, NIAMDNational Institutes of HealthBethesdaUSA

Personalised recommendations