Skip to main content

Anwendung von radioaktiven Isotopen in der Enzymforschung

  • Chapter
  • 88 Accesses

Zusammenfassung

Die Methode der Markierung von Verbindungen, welche bei der Aufklärung von Stoffwechselwegen im komplexen System lebender Zellen so große Fortschritte gebracht hat, kann auch sinngemäß auf einzelne Enzymreaktionen angewendet werden, indem man das Substrat an bestimmten Atomen radioaktiv markiert und im Reaktionsprodukt Umfang und Ort der Markierung bestimmt. In vielen Fällen stellt diese Methode nur eine Variation einer Bestimmungsmethode dar, die vor einer anderen quantitativen Bestimmung bei Vorhandensein geeigneter Apparate Vorteile hinsichtlich der Schnelligkeit, Spezifität und Empfindlichkeit aufweisen kann. Eine Markierung des Phosphors in einem organischen Phosphorsäureester kann z. B. benutzt werden, um eine Spaltung durch Phosphatase auch in Gegenwart größerer Mengen von Fremdphosphor verschiedener Bindungsweise quantitativ zu untersuchen. Auch die vielen Nachweise und Bestimmungsmethoden bei der Überführung von Phosphor in eine andere Bindungsweise sind hier zu nennen. Man bedient sich hierbei vorzugsweise der Papierchromatographie, Papierelektrophorese oder Ionenaustauschchromatographie zur Trennung der vorliegenden Gemische. Die phosphorhaltigen Reaktionsprodukte lassen sich dann durch Radioautographie leicht sichtbar machen.

Zur Zeit Medicinska Nobelinstitutet, Biokemiska avdelningen, Stockholm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abrams, R., and M. Bentley: Biosynthesis of nucleic acid purines. III. Guanosine 5′-phosphate formation from xanthosine 5′-phosphate and L-glutamine. Arch. Biochem Biophys. 79, 91 (1959).

    Article  CAS  Google Scholar 

  • Aebi, H., W. Buser u. C. Lüthi: Über Isotopieeffekte bei der Oxydation von Formiat mit Permanganat. Helv. chim. Acta 39, 944 (1956).

    Article  CAS  Google Scholar 

  • Aebi, H., E. Frei u. M. Schwendimann : Isotopieeffekte bei der Formiatoxydation durch Formico-dehydrogenase aus Phaseolus. Helv. chim. Acta 39, 1765 (1956).

    Article  CAS  Google Scholar 

  • Agranoff, B. W., H. Eggerer, U. Henning and F. Lynen: Isopentenol pyrophosphate isomerase. J. Amer. chem. Soc. 81, 1254 (1959).

    Article  CAS  Google Scholar 

  • Ågren, G., and L. Engström: Isolation of 32P-labeled phosphoserine from a yeast hexokinase preparation, incubated with labeled ATP or glucose-6-phosphate. Acta chem. scand 10 489 (1956).

    Article  Google Scholar 

  • Alivisatos, S. G. A. : Mechanism of action of diphosphopyridine nucleotidases. Nature (Lond) 183, 1034 (1959).

    Article  CAS  Google Scholar 

  • Anderson, L., and G. R. Jollès: A study of the linkage of phosphorus to protein in phosphoglucomutase. Arch. Biochem. Biophys. 70, 121 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Anderson, L., A. M. Landel and D. F. Diedrich: The galactose-glucose conversion in isotopic water. Biochim. biophys. Acta 22, 573 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Bachhawat, B. K., and M. J. Coon: The rôle of adenosine triphosphate in the enzymatic activation of carbon dioxide. J. Amer. chem. Soc. 79, 1505 (1957).

    Article  CAS  Google Scholar 

  • Bachhawat, B. K., and M. J. Coon: Enzymatic activation of carbon dioxide. I. Crystalline carbon dioxide-activating enzyme. J. biol. Chem. 231, 625 (1958).

    PubMed  CAS  Google Scholar 

  • Bachhawat, B. K., F. P. Kupiecki and M. J. Coon: Role of hydroxylamine in the carbon dioxide-activating enzyme system. Fed. Proc. 16, 148 (1957).

    Google Scholar 

  • Bachhawat, B. K., W. G. Robinson and M. J. Coon: Enzymatic carboxylation of jft-hydroxyisovaleryl coenzyme A. J. biol. Chem. 219, 539 (1956).

    PubMed  CAS  Google Scholar 

  • Baddiley, J., and F. C. Neuhaus: The enzymic activation of D-alanine in Lactobacillus arabinosus 17–5. Biochim. biophys. Acta 33, 277 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Bandurski, R. S., L. G. Wilson and C. L. Squires: The mechanism of “active sulfate” formation. J. Amer. chem. Soc. 78, 6408 (1956).

    Article  CAS  Google Scholar 

  • Barnard, E. A., and W. D. Stein: The roles of imidazole in biological systems. Advanc. in Enzymol. 20, 51 (1958).

    Google Scholar 

  • Beck, W. S., M. Flavin and S. Ochoa: Metabolism of propionic acid in animal tissues. III. Formation of succinate. J. biol. Chem. 229, 997 (1957).

    PubMed  CAS  Google Scholar 

  • Beck, W. S., and S. Ochoa: Metabolism of propionic acid in animal tissues. IV. Further studies on the enzymatic isomerization of methylmalonyl coenzyme A. J. biol. Chem. 232, 931 (1958).

    PubMed  CAS  Google Scholar 

  • Bender, M. L. : Oxygen exchange as evidence for the existence of an intermediate in ester hydrolysis. J. Amer. chem. Soc. 73, 1626 (1951).

    Article  CAS  Google Scholar 

  • Bender, M. L., R. D. Ginger and K. C. Kemp: Oxygen exchange during the acidic and basic hydrolysis of amides and the enzymatic hydrolysis of esters. J. Amer. chem. Soc. 76, 3350 (1954).

    Article  CAS  Google Scholar 

  • Bentley, R. : The mechanism of hydrolysis of acetyl dihydrogen phosphate. J. Amer. chem. Soc. 71, 2765 (1949).

    Article  CAS  Google Scholar 

  • Bentley, R., and D. Rittenberg: Enzyme-catalyzed exchange of oxygen atoms between water and carboxylate ion. J. Amer. chem. Soc. 76, 4883 (1954).

    Article  CAS  Google Scholar 

  • Berg, P.: Participation of adenyl-acetate in the acetate-activating system. J. Amer. chem. Soc. 77, 3163 (1955).

    Article  CAS  Google Scholar 

  • Berg, P., Acyl adenylates: An enzymatic mechanism of acetate activation. J. biol. Chem. 222, 991 (1956a).

    PubMed  CAS  Google Scholar 

  • Berg, P., Acyl adenylates: The interaction of adenosine triphosphate and L-methionine. J. biol. Chem. 222, 1025 (1956b).

    PubMed  CAS  Google Scholar 

  • Berg, P., and W. K. Joklik: Enzymatic phosphorylation of nucleoside diphosphates. J. biol. Chem. 210, 657 (1954).

    PubMed  CAS  Google Scholar 

  • Bessman, M. J., I. R. Lehman, E. S. Simms and A. Kornberg: Enzymatic synthesis of deoxyribonucleic acid. II. General properties of the reaction. J. biol. Chem. 233, 171 (1958).

    PubMed  CAS  Google Scholar 

  • Bloom, B., and Y. J. Topper: Mechanism of action of aldolase and phosphotriose isomerase. Science 124, 982 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Borkenhagen, L. F., and E. P. Kennedy: The enzymatic synthesis of cytidine diphosphate choline. J. biol. Chem. 227, 951 (1957).

    PubMed  CAS  Google Scholar 

  • Borkenhagen, L. F., and E. P. Kennedy: The enzymic equilibration of L-serine with O-phospho-L-serine. Biochim. biophys. Acta 28, 222 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Borkenhagen, L. F., and E. P. Kennedy: The enzymatic exchange of L-serine with O-phospho-L-serine catalyzed by a specific phosphatase. J. biol. Chem. 234, 849 (1959).

    PubMed  CAS  Google Scholar 

  • Boser, H. : Bausteinanalysen von Phosphorylase, Phosphoglucomutase und Hexokinase. Hoppe-Seylers Z. physiol. Chem. 300, 1 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Boyer, P. D., and W. H. Harrison : On the mechanism of enzymic transfer of phosphate and other groups. The Mechanism of Enzyme Action, ed. by W. D. McElroy u. B. Glass, S. 658. Baltimore: Johns Hopkins Press 1954.

    Google Scholar 

  • Boyer, P. D., O. J. Koeppe and W. W. Luchsinger: Direct oxygen transfer in enzymic syntheses coupled to adenosine triphosphate degradation. J. Amer. chem. Soc. 78, 356 (1956).

    Article  CAS  Google Scholar 

  • Breslow, R. : On the mechanism of thiamine action. IV. Evidence from studies on model systems. J. Amer. chem. Soc. 80, 3719 (1958).

    Article  CAS  Google Scholar 

  • Brummond, D. O., M. Staehelin and S. Ochoa: Enzymatic synthesis of polynucleotides. II. Distribution of polynucleotide Phosphorylase. J. biol. Chem. 225, 835 (1957).

    PubMed  CAS  Google Scholar 

  • Cantoni, G. L. : S-Adenosylmethionine; a new intermediate formed enzymatically from L-methionine and adenosinetriphosphate. J. biol. Chem. 204, 403 (1953).

    CAS  Google Scholar 

  • Cantoni, G. L., and J. Durell: Activation of methionine for transmethylation. II. The methionine-activating enzyme: Studies on the mechanism of the reaction. J. biol. Chem. 225, 1033 (1957).

    PubMed  CAS  Google Scholar 

  • Cohen, J. A., R. A. Oosterbaan, M. G. P. J. Warringa and H. S. Jansz: The chemical structure of the reactive group of esterases. Disc. Faraday Soc. 20, 114 (1955).

    Article  Google Scholar 

  • Cohn, Melvin: Contributions of studies on the β-galactosidase of Escherichia coli to our understanding of enzyme synthesis. Bact. Rev. 21, 140 (1957).

    PubMed  CAS  Google Scholar 

  • Cohn, Mildred: Mechanisms of cleavage of glucose-1-phosphate. J. biol. Chem. 180, 771 (1949).

    PubMed  CAS  Google Scholar 

  • Cohn, Mildred: Some mechanisms of cleavage of adenosine triphosphate and 1,3-diphosphoglyceric acid. Biochim. biophys. Acta 20, 92 (1956)

    Article  PubMed  CAS  Google Scholar 

  • Cohn, Mildred and G. T. Cori: On the mechanism of action of muscle and potato Phosphorylase. J. biol. Chem. 175, 89 (1948).

    PubMed  CAS  Google Scholar 

  • Cohn, Mildred and G. A. Meek : The mechanism of hydrolysis of adenosine di- and triphosphate catalysed by potato apyrase. Biochem. J. 66, 128 (1957).

    PubMed  CAS  Google Scholar 

  • Coon, M. J.: Enzymatic synthesis of branched chain acids from amino acids. Fed. Proc. 14, 762 (1955).

    PubMed  CAS  Google Scholar 

  • Coon, M. J., F. P. Kupiecki, E. E. Dekker, M. J. Schlesinger and A. del Campillo: The enzymic synthesis of branched-chain acids. Ciba Foundation Symposium on the Biosynthesis of Terpenes and Sterols, ed. by G. E. W. Wolstenholme und M. O’Connor, S. 62. London: J. & A. Churchill Ltd. 1959.

    Chapter  Google Scholar 

  • Cormier, M. J., and G. D. Novelli: The carboxyl activation of glycine in extracts of Photobacterium fischeri. Biochim. biophys. Acta 30, 135 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Cowdrey, W. A., E. D. Hughes, C. K. Ingold, S. Masterman and A. D. Scott: Reaction kinetics and the Waiden inversion. Part VI. Relation of steric orientation to mechanism in substitutions involving halogen atoms and simple or substituted hydroxyl groups. J. chem. Soc. 1937, 1252.

    Google Scholar 

  • Cram, D. J.: Studies in stereochemistry. XVI. Ionic intermediates in the decomposition of certain alkyl chlorosulfites. J. Amer. chem. Soc. 75, 332 (1953).

    Article  CAS  Google Scholar 

  • Cunnigham, L. W. : Proposed mechanism of action of hydrolytic enzymes. Science 125, 1145 (1957).

    Article  Google Scholar 

  • Davie, E. W., V. V. Koningsberger and F. Lipmann: The isolation of a tryptophan-activating enzyme from pancreas. Arch. Biochem. Biophys. 65, 21 (1956).

    Article  PubMed  CAS  Google Scholar 

  • DeMoss, J. A., and G. D. Novelli: An amino acid dependent exchange between 32P labeled inorganic pyrophosphate and ATP in microbial extracts. Biochim. biophys. Acta 22, 49 (1956).

    CAS  Google Scholar 

  • DeTar, D. F., and F. H. Westheimer: The role of thiamin in carboxylase. J. Amer. chem. Soc. 81, 175 (1959).

    Article  CAS  Google Scholar 

  • Dixon, G. H., S. Go and H. Neurath: Peptides combined with 14C-diisopropyl phosphoryl following degradation of 14C-DIP-trypsin with a-Chymotrypsin. Biochim. biophys. Acta 19, 193 (1956).

    CAS  Google Scholar 

  • Dixon, G. H., D. L. Kauffman and H. Neurath: Amino acid sequence in the region of diisopropyl phosphoryl binding in DIP-trypsin. J. Amer. chem. Soc. 80, 1260 (1958a).

    Article  CAS  Google Scholar 

  • Dixon, G. H., D. L. Kauffman and H. Neurath: Amino acid sequence in the region of diisopropylphosphoryl binding in diisopropyl-phosphoryl-trypsin. J. biol. Chem. 233, 1373 (1958b).

    PubMed  CAS  Google Scholar 

  • Dixon, G. H., and H. Neurath : The reaction of DFP with trypsin. Biochim. biophys. Acta 20, 572 (1956).

    CAS  Google Scholar 

  • Doherty, D. G., and F. Vaslow: Thermodynamic study of an enzyme-substrate complex of chymotrypsin. J. Amer. chem. Soc. 74, 931 (1952).

    Article  CAS  Google Scholar 

  • Doudoroff, M., H. A. Barker and W. Z. Hassid: Studies with bacterial sucrose Phosphorylase. I. The mechanism of action of sucrose Phosphorylase as a glucose-transferring enzyme (transglucosidase). J. biol. Chem. 168, 725 (1947).

    PubMed  CAS  Google Scholar 

  • Drysdale, G. R., and Mildred Cohn: The stereospecificity of enzymic interaction of diphosphopyridine nucleotide with water. Biochim. biophys. Acta 21, 397 (1956).

    CAS  Google Scholar 

  • Eisenberg, F. Jun.: Mechanism of action of β-glucuronidase. IV. Internationaler Kongreß für Biochemie, Wien 1958. Zusammenfassungen S. 44.

    Google Scholar 

  • Eisenberg, M. A. : The acetate-activating mechanism in Rhodospirillum rubrum. Biochim. biophys. Acta 23, 327 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Engström, L., and G. Ågren : On the phosphorus linkage in a muscle Phosphorylase preparation. Acta chem. scand. 10, 877 (1956).

    Google Scholar 

  • Fischer, E. H., D. J. Graves, E. R. S. Crittenden and E. G. Krebs: Structure of the site phosphorylated in the Phosphorylase b to a reaction. J. biol. Chem. 234, 1698 (1959).

    PubMed  CAS  Google Scholar 

  • Fisher, H. F., E. E. Conn, B. Vennesland and F. H. Westheimer: The enzymatic transfer of hydrogen. I. The reaction catalyzed by alcohol dehydrogenase. J. biol. Chem. 202, 687 (1953).

    PubMed  CAS  Google Scholar 

  • Fitting, C, and M. Doudoroff: Phosphorolysis of maltose by enzyme preparations from Neisseria meningitides. J. biol. Chem. 199, 153 (1952).

    PubMed  CAS  Google Scholar 

  • Flavin, M., H. Castro-Mendoza and S. Ochoa: Bicarbonate-dependent enzymic phosphorylation of fluoride by adenosine triphosphate. Biochim. biophys. Acta 20, 591 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Flavin, M., H. Castro-Mendoza and S. Ochoa: Metabolism of propionic acid in animal tissues. II. Propionyl coenzyme A carboxylation system. J. biol. Chem. 229, 981 (1957).

    PubMed  CAS  Google Scholar 

  • Flavin, M., and S. Ochoa: Metabolism of propionic acid in animal tissues. I. Enzymatic conversion of propionate to succinate. J. biol. Chem. 229, 965 (1957).

    PubMed  CAS  Google Scholar 

  • Formica, J. V., and R. O. Brady: The enzymatic carboxylation of acetyl coenzyme A. J. Amer. chem. Soc. 81, 752 (1959).

    Article  CAS  Google Scholar 

  • Franzen, V. : Basische Thiole als Katalysatoren der intramolekularen Cannizzaro-Reaktion. Ber. dtsch. chem. Ges. 88, 1361 (1955).

    CAS  Google Scholar 

  • Franzen, V. : Wirkungsmechanismus der Glyoxalase I. Ber. dtsch. chem. Ges. 89, 1020 (1956).

    CAS  Google Scholar 

  • Fredenhagen, H., u. K. F. Bonhoeffer: Untersuchungen über die Cannizzarosche Reaktion in schwerem Wasser. Z. physik. Chem., Abt. A, 181, 379 (1938).

    Google Scholar 

  • Frei, E., u. H. Aebi: Isotopie-Efïekte bei der peroxydatischen Formiatoxydation durch Leberkatalase. Helv. chim. Acta 41, 241 (1958).

    Article  CAS  Google Scholar 

  • Friedberg, F., J. Adler and H. A. Lardy: The carboxylation of propionic acid by liver mitochondria. J. biol. Chem. 219, 943 (1956).

    PubMed  CAS  Google Scholar 

  • Frieden, C. : Kinetic studies on the diphosphopyridine nucleotide cytochrome c reductase from heart. Biochim. biophys. Acta 24, 241 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Friedkin, M., and DeWayne Roberts: The enzymatic synthesis of nucleosides. I. Thymidine Phosphorylase in mammalian tissues. J. biol. Chem. 207, 245 (1954).

    PubMed  CAS  Google Scholar 

  • Fry, K., L. L. Ingraham and F. H. Westheimer: The thiamin-pyruvate reaction. J. Amer. chem. Soc. 79, 5225 (1957).

    Article  CAS  Google Scholar 

  • Gibson, D. M., E. B. Titchener und S. J. Wakil: Studies on the mechanism of fatty acid synthesis. V. Bicarbonate requirement for the synthesis of long-chain fatty acids. Biochim. biophys. Acta 30, 376 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Gibson, K. D. : The mechanism of enzyme action studied with isotopes. Ann. Rep. Chem. Soc. London 54, 306 (1957).

    Google Scholar 

  • Gladner, J. A., and K. Laki : The active site of thrombin. J. Amer. chem. Soc. 80, 1263 (1958).

    Article  CAS  Google Scholar 

  • Glaser, L., and D. H. Brown: The enzymatic synthesis in vitro of hyaluronic acid chains. Proc. Nat. Acad. Sci. (Wash.) 41, 253 (1955).

    Article  CAS  Google Scholar 

  • Green, A. L., and J. D. Nicholls: The reactivation of phosphorylated chymotrypsin. Biochem. J. 72, 70 (1959).

    PubMed  CAS  Google Scholar 

  • Grossman, L., and N. O. Kaplan: Nicotinamide riboside Phosphorylase from human erythrocytes. II. Nicotinamide sensitivity. J. biol. Chem. 231, 727 (1958).

    PubMed  CAS  Google Scholar 

  • Grunberg-Manago, M., P. J. Ortiz and S. Ochoa: Enzymic synthesis of polynucleotides. I. Polynucleotide Phosphorylase of Azotobacter vinelandii. Biochim. biophys. Acta 20, 269 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Gutfreund, H., and J. M. Sturtevant: The mechanism of the reaction of chymotrypsin with p-nitrophenyl acetate. Biochem. J. 63, 656 (1956).

    PubMed  CAS  Google Scholar 

  • Gutfreund, H., and J. M. Sturtevant: The mechanism of chymotrypsin-catalyzed reactions. Proc. Nat. Acad. Sci. (Wash.) 42, 719 (1956).

    Article  CAS  Google Scholar 

  • Harrison, W. H., P. D. Boyer and A. B. Falcone: The mechanism of enzymic phosphate transfer reactions. J. biol. Chem. 215, 303 (1955).

    PubMed  CAS  Google Scholar 

  • Harting, J., and S. Velick: Reaktions of acetyl phosphate catalyzed by 3-phosphoglycer-aldehyde dehydrogenase. Fed. Proc. 11, 226 (1952).

    Google Scholar 

  • Hartley, B. S., M. A. Naughton and F. Sanger: The amino acid sequence around the reactive serine of elastase. Biochim. biophys. Acta 34, 243 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Hass, L. F., and W. L. Byrne: Mechanism of glucose-6-phosphatase. IV. Internationaler Kongreß für Biochemie, Wien 1958. Zusammenfassungen S. 39.

    Google Scholar 

  • Hilz, H., J. Knappe, E. Ringelmann u. F. Lynen: Methylglutaconase, eine neue Hydratase, die am Stoffwechsel verzweigter Carbonsäuren beteiligt ist. Biochem. Z. 329, 476 (1958).

    PubMed  CAS  Google Scholar 

  • Hilz, H., and F. Lipmann: The enzymatic activation of sulfate. Proc. Nat. Acad. Sci. (Wash.) 41, 880 (1955).

    Article  CAS  Google Scholar 

  • Hine, J.: Physical Organic Chemistry. S. 252ff. New York-Toronto-London: McGraw-Hill Book Comp. 1956.

    Google Scholar 

  • Hoagland, M. B. : Enzymatic reactions between amino acids and ribonucleic acids as intermediate steps in protein synthesis. IV. Internationaler Kongreß für Biochemie, Wien 1958. Symposium VIII: Proteins, ed. by H. Neurath u. H. Tuppy, S. 199. London- New York-Paris-Los Angeles : Pergamon Press 1960.

    Google Scholar 

  • Hoagland, M. B., E. B. Keller and P. C. Zamecnik: Enzymatic carboxyl activation of amino acids. J. biol. Chem. 218, 345 (1956).

    PubMed  CAS  Google Scholar 

  • Hoagland, M. B., P. C. Zamecnik, N. Sharon, F. Lipmann, M. P. Stulberg and P. D. Boyer : Oxygen transfer to AMP in the enzymic synthesis of the hydroxamate of tryptophan. Biochim. biophys. Acta 26, 215 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Holzer, H., u. K. Beaucamp: Nachweis und Charakterisierung von Zwischenprodukten der Decarboxylierung und Oxydation von Pyruvat: ,,aktiviertes Pyruvat“ und ,,aktivierter Acetaldehyd“. Angew. Chemie 71, 776 (1959).

    Article  CAS  Google Scholar 

  • Hughes, T. R., and I. M. Klotz: Analysis of metal-protein complexes in Methods of Biochemical Analysis, ed. by D. Glick, Vol. III, S. 265. New York-London: Interscience Publ. 1956.

    Chapter  Google Scholar 

  • Ingold, C. K. : Structure and Mechanism in Organic Chemistry. London : G. Bell and Sons, Ltd. 1953.

    Google Scholar 

  • Jaenicke, L: Über den Mechanismus der Tetrahydrofolat-Formylase. IV. Internationaler Kongreß für Biochemie, Wien 1958. Zusammenfassungen S. 47.

    Google Scholar 

  • Jagannathan, V., and J. M. Luck: Phosphoglucomutase. IL Mechanism of action. J. biol. Chem. 179, 569 (1949).

    PubMed  CAS  Google Scholar 

  • Jandorf, B. J., H. O. Michel, N. K. Schaffer, R. Egan and W. H. Summerson: The mechanism of reaction between esterases and phosphorus-containing anti-esterases. Disc. Faraday Soc. 20, 134 (1955).

    Article  Google Scholar 

  • Jansz, H. S., D. Brons and M. G. P. J. Warringa: Chemical nature of the DFP-binding site of pseudoCholinesterase. Biochim. biophys. Acta 34, 573 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Jansz, H. S., C. H. Posthumus and J. A. Cohen: On the active site of horse-liver ali esterase. II. Amino acid sequence in the DFP-binding site of the enzyme. Biochim. biophys. Acta 33, 396 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Jencks, W. P., and F. Lipmann: Studies on the initial step of fatty acid activation. J. biol. Chem. 225, 207 (1957).

    PubMed  CAS  Google Scholar 

  • Johnston, R. B., M. J. Mycek and J. S. Fruton: Catalysis of transamidation reactions by proteolytic enzymes. J. biol. Chem. 185, 629 (1950a).

    PubMed  CAS  Google Scholar 

  • Johnston, R. B., M. J. Mycek and J. S. Fruton: Catalysis of transpeptidation reactions by chymotrypsin. J. biol. Chem. 187, 205 (1950b).

    PubMed  CAS  Google Scholar 

  • Kalckar, H. M. : The role of phosphoglycosyl compounds in the biosynthesis of nucleosides and nucleotides. Biochim. biophys. Acta 12, 250 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Kalckar, H. M. : Uridinediphospho galactose: Metabolism, enzymology and biology. Advanc. in Enzymol. 20, 111 (1958).

    Google Scholar 

  • Kalckar, H. M., and E. S. Maxwell: Some considerations concerning the nature of the enzymic galactose-glucose conversion. Biochim. biophys. Acta 22, 588 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, N. O., S. P. Colowick, L. J. Zatman and M. M. Ciotti: Pyridine nucleotide transhydrogenase. V. Exchange reactions studied with C14. J. biol. Chem. 205, 31 (1953).

    PubMed  CAS  Google Scholar 

  • Kaufman, S. : Studies on the mechanism of the reaction catalyzed by the phosphorylating enzyme. J. biol. Chem. 216, 153 (1955).

    PubMed  CAS  Google Scholar 

  • Kaufman, S., C. Gilvarg, O. Cori and S. Ochoa: Enzymatic oxidation of α-ketoglutarate and coupled phosphorylation. J. biol. Chem. 203, 869 (1953).

    PubMed  CAS  Google Scholar 

  • Kennedy, E. P., and D.E. Koshland: Properties of the phosphorylated active site of phosphoglucomutase. J. biol. Chem. 228, 419 (1957).

    PubMed  CAS  Google Scholar 

  • Kennedy, E. P., and S. B. Weiss: The function of cytidine coenzymes in the biosynthesis of phospholipides. J. biol. Chem. 222, 193 (1956).

    PubMed  CAS  Google Scholar 

  • Kent, A. B., E. G. Krebs and E. H. Fischer: Properties of crystalline Phosphorylase b. J. biol. Chem. 232, 549 (1958).

    PubMed  CAS  Google Scholar 

  • Knappe, J., u. F. Lynen: Enzymatische Carboxylierung von β-Methyl-crotonyl-Coenzym A. IV. Internationaler Kongreß für Biochemie, Wien 1958. Zusammenfassungen S. 49.

    Google Scholar 

  • Kornberg, A. : Pyrophosphorylases and phosphorylases in biosynthetic reactions Advanc in Enzymol. 18, 191 (1957).

    CAS  Google Scholar 

  • Kornberg, A., I. Lieberman and E. S. Simms: Enzymatic synthesis and properties of 5-phosphoribosylpyrophosphate. J. biol. Chem. 215, 389 (1955).

    PubMed  CAS  Google Scholar 

  • Kornberg, A., and W. E. Pricer : Enzymatic cleavage of diphosphopyridine nucleotide with radioactive pyrophosphate. J. biol. Chem. 191, 535 (1951).

    PubMed  CAS  Google Scholar 

  • Koshland, D. E. : Group transfer as an enzymatic substitution mechanism. The Mechanism of Enzyme Action, ed. by W. D. McElroy u. B. Glass, S. 608. Baltimore: The Johns Hopkins Press 1954.

    Google Scholar 

  • Kornberg, A. : Isotopic exchange criteria for enzyme mechanisms. Disc. Faraday Soc. 20, 142 (1955 a).

    Article  Google Scholar 

  • Kornberg, A. : Kinetics of isotopic exchange reactions. Fed. Proc. 14, 239 (1955 b).

    Google Scholar 

  • Kornberg, A. : Molecular geometry in enzyme action, J. cell. comp. Physiol. 47, Suppl. 1, 217 (1956).

    Google Scholar 

  • Koshland, D. E., Z. Budenstein and A. Kowalsky: Mechanism of hydrolysis of adenosintriphosphate catalyzed by purified muscle proteins. J. biol. Chem. 211, 279 (1954).

    PubMed  CAS  Google Scholar 

  • Koshland, D. E., and M. J. Erwin: Enzyme catalysis and enzyme specificity-combination of amino acids at the active site of phosphoglucomutase. J. Amer. chem. Soc. 79, 2657 (1957).

    Article  CAS  Google Scholar 

  • Koshland, D. E., and E. B. Herr: The role of water in enzymatic hydrolysis: General method and its application to myosin. J. biol. Chem. 228, 1021 (1957).

    PubMed  CAS  Google Scholar 

  • Koshland, D. E., and S. S. Springhorn: Mechanism of action of 5′-nucleotidase. J. biol. Chem. 221, 469 (1956).

    PubMed  CAS  Google Scholar 

  • Koshland, D. E., and S. S. Stein : Correlation of bond breaking with enzyme specificity. Cleavage point of invertase. J. biol. Chem. 208, 139 (1954).

    PubMed  CAS  Google Scholar 

  • Kowalsky, A., and D. E. Koshland : The mechanism on the galactose-glucose interconversion in Lactobacillus bulgaricus. Biochem. biophys. Acta 22, 575 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Kowalsky, A., C. Wyttenbach, L. Langer and D. E. Koshland : Transfer of oxygen in the glutamine synthetase reaction. J. biol. Chem. 219, 719 (1956).

    PubMed  CAS  Google Scholar 

  • Krebs, E. G., A. B. Kent and E. H. Fischer: The muscle Phosphorylase b kinase reaction. J. biol. Chem. 231, 73 (1958).

    PubMed  CAS  Google Scholar 

  • Krimsky, I. : Isolation of an acyl-enzyme complex from a mixture of acetyl phosphate and glyceraldehyde-3-phosphate dehydrogenase. Fed. Proc. 14, 239 (1955).

    Google Scholar 

  • Kupiecki, F. P., and M. J. Coon: Bicarbonate- and hydroxylamine-dependent degradation of adenosine triphosphate. J. biol. Chem. 234, 2428 (1959).

    PubMed  CAS  Google Scholar 

  • Lardy, H. A., and J. Adler: Synthesis of succinate from propionate and bicarbonate by soluble enzymes from liver mitochondria. J. biol. Chem. 219, 933 (1956).

    PubMed  CAS  Google Scholar 

  • Lehman, I. R., M. J. Bessman, E. S. Simms and A. Kornberg: Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J. biol. Chem. 233, 163 (1958).

    PubMed  CAS  Google Scholar 

  • Leloir, L. F. : The metabolism of hexosephosphates. Phosphorus Metabolism, Vol. I, S. 67, ed. by W. D. McElroy u. B. Glass. Baltimore: Johns Hopkins Press 1951.

    Google Scholar 

  • Leloir, L. F., R. E. Trucco, C. E. Cardini, A. Paladini and R. Caputto : The coenzyme of phosphoglucomutase. Arch. Biochem. 19, 339 (1948).

    PubMed  CAS  Google Scholar 

  • Levy, H. R., and B. Vennesland: The stereospecificity of enzymatic hydrogen transfer from diphosphopyridine nucleotide. J. biol. Chem. 228, 85 (1957).

    PubMed  CAS  Google Scholar 

  • Lewis, E. S., and C. E. Boozer: The kinetics and stereochemistry of the decomposition of secondary alkyl chlorosulfites. J. Amer. chem. Soc. 74, 308 (1952).

    Article  CAS  Google Scholar 

  • Lieberman, I. : Inorganic triphosphate synthesis by muscle adenylate kinase. J. biol. Chem. 219, 307.(1956).

    PubMed  CAS  Google Scholar 

  • Littauer, U. Z., and A. Kornberg: Reversible synthesis of polyribonucleotides with an enzyme from Escherichia coli. J. biol. Chem. 226, 1077 (1957).

    PubMed  CAS  Google Scholar 

  • Lynen, F. : Verzweigte Carbonsäuren als Baustoffe der Polyisoprenoide. Proc. Int. Symp. Enzyme Chemistry, Tokyo und Kyoto 1957, I. U. B. Symposium Series, Vol. 2, S. 57. Tokyo: Maruzen 1958.

    Google Scholar 

  • Lynen, F. : Persönliche Mitteilung (1959).

    Google Scholar 

  • Lynen, F., B. W. Agranoff, H. Eggerer, U. Henning u. E. M. Möslein: γ, γ-Dimethyl-allyl-pyrophosphat und Geranyl-pyröphosphat, biologische Vorstufen des Squalens. Zur Biosynthese der Terpene, VI: Angew. Chem. 71, 657 (1959).

    Article  CAS  Google Scholar 

  • Lynen, F., H. Eggerer, U. Henning u. I. Kessel: Farnesyl-pyrophosphat und 3-Methyl-Δ3-butenyl-1-pyrophosphat, die biologischen Vorstufen des Squalens. Zur Biosynthese der Terpene, III: Angew. Chem. 70, 738 (1958).

    Article  CAS  Google Scholar 

  • Lynen, F., H. Eggerer, U. Henning u., J. Knappe, I. Kessel u. E. Ringelmann: New aspects of acetate incorporation into isoprenoid precursors. Ciba Foundation Symposium on the Biosynthesis of Terpenes and Sterols, ed. by G. E. W. Wolstenholme u. M. O’Connor, S. 95. London: J. & A. Churchill Ltd. 1959.

    Chapter  Google Scholar 

  • Lynen, F., J. Knappe, E. Lorch, G. Jutting u. E. Ringelmann: Die biochemische Funktion des Biotins. Angew. Chem. 71, 481 (1959).

    Article  CAS  Google Scholar 

  • Madsen, N. B., and C. F. Cori: The inhibition of muscle Phosphorylase by p-chloromercuribenzoate. Biochim. biophys. Acta 18, 156 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Madsen, N. B., and C. F. Cori: The interaction of muscle Phosphorylase with p-chloromercuribenzoate. I. Inhibition of activity and effect on the molecular weight. J. biol. Chem. 223, 1055 (1956).

    PubMed  CAS  Google Scholar 

  • Mahler, H. R., and J. Douglas: Mechanisms of enzyme-catalyzed oxidation-reduction reactions. I. An investigation of the yeast alcohol dehydrogenase reaction by means of the isotope rate effect. J. Amer. chem. Soc. 79, 1159 (1957).

    Article  CAS  Google Scholar 

  • Marcus, A., B. Vennesland and J. R. Stern: The enzymatic transfer of hydrogen, VII. The reaction catalyzed by β-hydroxybutyryl dehydrogenase. J. biol. Chem. 233, 722 (1958).

    PubMed  CAS  Google Scholar 

  • Martius, C., u. G. Schorre: Der enzymatische Abbau der isomeren α,α-Di-deuterocitronensäuren. Liebigs Ann. Chem. 570, 143 (1950).

    Article  CAS  Google Scholar 

  • Maxwell, E. S. : Diphosphopyridine nucleotide, a cofactor for galacto-waldenase. J. Amer. chem. Soc. 78, 1074 (1956).

    Article  CAS  Google Scholar 

  • Maxwell, E. S. : The enzymic interconversion of uridine diphosphogalactose and uridine diphosphoglucose. J. biol. Chem. 229, 139 (1957).

    PubMed  CAS  Google Scholar 

  • Maxwell, E. S., H. de Robichon-Szulmajster and H. M. Kalckar: Yeast uridine diphosphogalactose-4-epimerase, correlation between activity and fluorescence. Arch. Biochem. Biophys. 78, 407 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Mayer, F. C., and J. Larner: Substrate cleavage point of the α- and β-amylases. J. Amer. chem. Soc. 81, 188 (1959).

    Article  CAS  Google Scholar 

  • Meio, R. H. De, and M. Wizerkaniuk: On the “active sulfate” intermediate. Biochim. biophys. Acta 20, 428 (1956).

    Article  Google Scholar 

  • Metzger, J.: Über metallorganische Verbindungen des Thiazol-Kerles. Angew. Chem. 71, 248 (1959).

    Article  Google Scholar 

  • Meyerhof, O. : Aldolase and Isomerase in The Enzymes, ed. by J. B. Sumner u. K. Myrbäck. Vol. II, Part 1, S. 162. New York: Academic Press 1951.

    Google Scholar 

  • Meyerhof, O., P. Ohlmeyer, W. Gentner u. H. Maier-Leibnitz : Studium der Zwischenreaktionen der Glykolyse mit Hilfe von radioaktivem Phosphor. Biochem. Z. 298, 396 (1938).

    CAS  Google Scholar 

  • Mizuhara, S., and P. Handler: Mechanism of thiamine-catalyzed reactions. J. Amer. chem. Soc. 76, 571 (1954).

    Article  CAS  Google Scholar 

  • Monod, J. : An outline of enzyme induction. Rec. Trav. chim. Pays-Bas 77, 569 (1958).

    Article  CAS  Google Scholar 

  • Müller, E.: Neuere Anschauungen der organischen Chemie. 2. Aufl., S. 222ff. Berlin-Göttingen-Heidelberg : Springer-Verlag 1957.

    Book  Google Scholar 

  • Munch-Petersen, A. : Enzymatic synthesis and pyrophosphorolysis of guanosine diphosphate mannose. Arch. Biochem. Biophys. 55, 592 (1955 a).

    Article  CAS  Google Scholar 

  • Munch-Petersen, A. : Investigations of the properties and mechanism of the UDPG pyrophosphorylase reaction. Acta chem. scand. 9, 1523 (1955b).

    Article  CAS  Google Scholar 

  • Munch-Petersen, A. : Reversible enzymatic synthesis of guanosine diphosphate mannose from guanosine triphosphate and mannose-1-phosphate. Acta chem. scand. 10, 928 (1956).

    Article  CAS  Google Scholar 

  • Munch-Petersen, A., H. M. Kalckar, E. Cutulo and E. E. B. Smith : Uridyl transferases and the formation of uridine triphosphate. Nature (Lond.) 172, 1036 (1953).

    Article  CAS  Google Scholar 

  • Najjar, V. A.: Mechanism of Enzyme Action, ed. by W. D. McElroy u. B. Glass, S. 731. Baltimore: Johns Hopkins Press 1954.

    Google Scholar 

  • Najjar, V. A., and M. E. Pullman: The occurrence of a group transfer involving enzyme (phosphoglucomutase) and substrate. Science 119, 631 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Neufeld, E. F., V. Ginsburg, E. W. Putman, D. Fanshier and W. Z. Hassid: Formation and interconversion of sugar nucleotides by plant extracts. Arch. Biochem. Biophys. 69, 602 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus, F. C., and W. L. Byrne: Metabolism of phosphoserine. I. Exchange of L-serine with phosphoserine. J. biol. Chem. 234, 109 (1959a).

    PubMed  CAS  Google Scholar 

  • Neuhaus, F. C., and W. L. Byrne: Metabolism of phosphoserine. II. Purification and properties of O-phosphoserine phosphatase. J. biol. Chem. 234, 113 (1959b).

    PubMed  CAS  Google Scholar 

  • Neuhaus, F. C., and W. L. Byrne: 0-Phosphoserine phosphatase. Biochim. biophys. Acta 28, 223 (1958).

    CAS  Google Scholar 

  • Neurath, H., G. H. Dixon and J. F. Pechère: Certain aspects of the structure and active sites of α-chymotrypsin and trypsin. IV. Internationaler Kongreß für Biochemie. Wien 1958. Symposium VIII : Proteins, ed. by H. Neurath u. H. Tuppy, S. 63. London- New York-Paris-Los Angeles : Pergamon Press 1960.

    Google Scholar 

  • Nismann, B., F. H. Bergmann and P. Berg: Observations on amino acid-dependent exchanges of inorganic pyrophosphate and ATP. Biochim. biophys. Acta 26, 639 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Oesper, P. : The mechanism of action of glyceraldehyde-3-phosphate dehydrogenase. J. biol. Chem. 207, 421 (1954).

    PubMed  CAS  Google Scholar 

  • Ogston, A. G. : Interpretation of experiments on metabolic processes, using isotopic tracer elements. Nature (Lond.) 162, 963 (1948).

    Article  CAS  Google Scholar 

  • Oosterbaan, R. A., and M. E. van Adrichem: Isolation of acetyl peptides from acetylchymotrypsin. Biochim. biophys. Acta 27, 423 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Oosterbaan, R. A., H. S. Jansz and J. A. Cohen: The chemical structure of the reactive group of esterases. Biochim. biophys. Acta 20, 402 (1956).

    Article  PubMed  Google Scholar 

  • Oosterbaan, R. A., P. Kunst, J. van Rotterdam and J. A. Cohen: The reaction of chymotrypsin and diisopropylphosphorofluoridate. I. Isolation and analysis of diisopropylphosphoryl-peptides. Biochim. biophys. Acta 27, 549 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Oosterbaan, R. A., M. G. P. J. Warringa, H. S. Jansz, F. Berends and J. A. Cohen: The reaction of pseudoCholinesterase with diisopropyl-phosphoro-fluoridate (DFP). IV. Internationaler Kongreß für Biochemie, Wien 1958. Zusammenfassungen S. 38.

    Google Scholar 

  • Pechère, J. F., G. H. Dixon, R. H. Maybury and H. Neurath: Cleavage of disulfide bonds in trypsinogen and a-chymotrypsinogen. J. biol. Chem. 233, 1364 (1958).

    PubMed  Google Scholar 

  • Porter, G. R., H. N. Rydon and J. A. Schofield: Nature of the reactive serine residue in enzymes inhibited by organo-phosphorus compounds. Nature (Lond.) 182, 927 (1958).

    Article  CAS  Google Scholar 

  • Racker, E.: The mechanism of action of glyoxalase. J. biol. Chem. 190, 685 (1951).

    PubMed  CAS  Google Scholar 

  • Racker, E.: Formation of acyl and carbonyl complexes associated with electron-transport and grouptransfer reactions. The Mechanism of Enzyme Action, ed. by W. D. McElroy u. B. Glass, S. 464. Baltimore: Johns Hopkins Press 1954.

    Google Scholar 

  • Racker, E.: and I. Krimsky: The mechanism of oxidation of aldehydes by glyceraldehyde-3-phosphate dehydrogenase. J. biol. Chem. 198, 731 (1952).

    PubMed  CAS  Google Scholar 

  • Racker, E. and E. A. R. Schroeder: The reductive pentose phosphate cycle. II. Specific C-l phosphatases for fructose 1,6-diphosphate and sedoheptulose 1,7-diphosphate. Arch. Biochem. Biophys. 74, 326 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Racusen, D.W., and S. Aronoff: The origin of asymmetrically labeled molecules from symmetrical precursors. Arch. Biochem. Biophys. 34, 218 (1951).

    Article  PubMed  CAS  Google Scholar 

  • Rall, T. W., E. W. Sutherland and W. D. Wosilait: The relationship of epinephrine and glucagon to liver Phosphorylase. III. Reactivation of liver Phosphorylase in slices and in extracts. J. biol. Chem. 218, 483 (1956).

    PubMed  CAS  Google Scholar 

  • Ratner, S., and O. Rochovansky: Biosynthesis of guanidinoacetic acid. II. Mechanism of amidine group transfer. Arch. Biochem. Biophys. 63, 296 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Reichard, P. : The enzymic synthesis of pyrimidines. Advanc. in Enzymol. 21, 263 (1959).

    Google Scholar 

  • Reichard, P. : Some aspects of pyrimidine biosynthesis. IV. Int. Kongress f. Biochemie, Wien 1958, Vol. XIII: Colloquia, ed. by H. Chantrenne, O. Hayaishi, E. E. Snell, G. Toennies, K. S. Dodgson, H. A. Krebs, P. K. Stumpf u. O. F. Schwarz, S. 119. London-New York-Paris-Los Angeles: Pergamon Press 1959.

    Google Scholar 

  • Reichard, P., and G. Hanshoff: Aspartate carbamyl transferase from Escherichia coli. Acta chem. scand. 10, 548 (1956).

    Article  CAS  Google Scholar 

  • Rieder, S. V., and I. A. Rose: The mechanism of the triosephosphate isomerase reaction. J. biol. Chem. 234, 1007 (1959).

    PubMed  CAS  Google Scholar 

  • Robbins, P. W., and F. Lipmann: Isolation and identification of active sulfate. J. biol. Chem. 229, 837 (1957).

    PubMed  CAS  Google Scholar 

  • Robbins, P. W., and F. Lipmann: Separation of the two enzymatic phases in active sulfate synthesis. J. biol. Chem. 233, 681 (1958).

    PubMed  CAS  Google Scholar 

  • Rose, I. A.: Mechanism of the action of glyoxalase I. Biochim. biophys. Acta 25, 214 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Rose, I. A.: The mechanism of action of aldolase and the asymmetric labeling of hexose. Proc. Nat. Acad. Sci. (Wash.) 44, 10 (1958).

    Article  CAS  Google Scholar 

  • Rose, I. A., M. Grunberg-Manago, S. R. Korey and S. Ochoa: Enzymatic phosphorylation of acetate. J. biol. Chem. 211, 737 (1954).

    PubMed  CAS  Google Scholar 

  • Rose, I. A., and S. V. Rieder: The mechanism of action of muscle aldolase. J. Amer. chem. Soc. 77, 5764 (1955).

    Article  CAS  Google Scholar 

  • Rose, I. A., and S. V. Rieder: Studies on the mechanism of the aldolase reaction. Isotope exchange reactions of muscle and yeast aldolase. J. biol. Chem. 231, 315 (1958).

    PubMed  CAS  Google Scholar 

  • Rutter, W. J., and K. H. Ling: The mechanism of action of fructose diphosphate aldolase. Biochim. biophys. Acta 30, 71 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Rydon, H. N. : A possible mechanism of action of esterases inhibitable by organo-phosphorus compounds. Nature (Lond.) 182, 928 (1958).

    Article  CAS  Google Scholar 

  • Sanadi, D. R., M. Langley and F. White: α-Ketoglutaric dehydrogenase. VII. The role of thioctic acid. J. biol. Chem. 234, 183 (1959).

    PubMed  CAS  Google Scholar 

  • San Pietro, A., N. O. Kaplan and S. P. Colowick: Pyridine nucleotide transhydrogenase. VI. Mechanism andstereospecificityof the reaction in Pseudomonas fluorescens. J. biol. Chem. 212, 941 (1955).

    PubMed  CAS  Google Scholar 

  • Schaffer, N. K., R. P. Lang, L. Simet and R. W. Drisko: Phosphopeptides from acidhydrolyzed P32-labeled isopropyl methylphosphononuoridate-inactivated trypsin. J. biol. Chem. 230, 185 (1958).

    PubMed  CAS  Google Scholar 

  • Schaffer, N. K., S. C. May and W. H. Summerson: Serine phosphoric acid from diisopro-pylphosphoryl derivative of eel Cholinesterase. J. biol. Chem. 206, 201 (1954).

    PubMed  CAS  Google Scholar 

  • Schaffer, N. K., L. Simet, S. Harshman, R. R. Engle and R. W. Drisko: Phosphopeptides from acid-hydrolyzed P32-labeled diisopropylphosphoryl chymotrypsin. J. biol. Chem. 225, 197 (1957).

    PubMed  CAS  Google Scholar 

  • Schlamowitz, M., and D. M. Greenberg: On the mechanism of enzymatic conversion of glucose-1-phosphate to glucose-6-phosphate. J. biol. Chem. 171, 293 (1947).

    CAS  Google Scholar 

  • Schweet, R. S., and E. H. Allen: Purification and properties of tyrosine-activating enzyme of hog pancreas. J. biol. Chem. 233, 1104 (1958).

    PubMed  CAS  Google Scholar 

  • Smith, E. E. B., and G. T. Mills: Uridine nucleotide compounds of liver. Biochim. biophys. Acta 13, 386 (1954).

    CAS  Google Scholar 

  • Snoke, J. E.: On the mechanism of the enzymatic synthesis of glutathione. J. Amer. chem. Soc. 75, 4872 (1953).

    Article  CAS  Google Scholar 

  • Snoke, J. E., and K. Bloch: Studies on the mechanism of action of glutathione synthetase. J. biol. Chem. 213, 825 (1955).

    PubMed  CAS  Google Scholar 

  • Spencer, T., and J. M. Sturtevant: The mechanism of chymotrypsin-catalyzed reactions. III. J. Amer. chem. Soc. 81, 1874 (1959).

    Article  CAS  Google Scholar 

  • Sprinson, D. B. and D. Rittenberg : Nature of the activation process in enzymatic reactions. Nature (Lond.) 167, 484 (1951).

    Article  CAS  Google Scholar 

  • Stein, S. S., and D. E. Koshland: Mechanism of action of alkaline phosphatase. Arch. Biochem. Biophys. 39, 229 (1952).

    Article  CAS  Google Scholar 

  • Stein, S. S., and D. E. Koshland: Mechanism of hydrolysis of acetylcholine catalyzed by acetylcholinesterase and by hydroxide ion. Arch. Biochem. Biophys. 45, 467 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Stern, J. R., B. Shapiro, E. R. Stadtman and S. Ochoa: Enzymatic synthesis of citric acid. III. Reversibility and mechanism. J. biol. Chem. 193, 703 (1951).

    PubMed  CAS  Google Scholar 

  • Strecker, H. J., and S. Ochoa: Pyruvate oxidation system and acetoin formation. J. biol. Chem. 209, 313 (1954).

    PubMed  CAS  Google Scholar 

  • Sutherland, E. W., T. Z. Posternak and C. F. Cori: The mechanism of action of phospho-glucomutase and phosphoglyceric acid mutase. J. biol. Chem. 179, 501 (1949).

    PubMed  CAS  Google Scholar 

  • Sutherland, E. W., T. Z. Posternak and C. F. Cori: Mechanism of the phosphoglyceric mutase reaction. J. biol. Chem. 181, 153 (1949).

    PubMed  CAS  Google Scholar 

  • Swan, J. M. : Thiols, disulphides and thiosulphates : Some new reactions and possibilities in peptide and protein chemistry. Nature (Lond.) 180; 643 (1957).

    Article  CAS  Google Scholar 

  • Tietz, A., and S. Ochoa: “Fluorokinase” and pyruvic kinase. Arch. Biochem. Biophys. 78, 477 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Tietz, A., and S. Ochoa: Metabolism of propionic acid in animal tissues. V. Purification and properties of propionyl carboxylase. J. biol. Chem. 234, 1394 (1959).

    PubMed  CAS  Google Scholar 

  • Topper, Y. J. : On the mechanism of action of phosphoglucose isomerase and phosphomannose isomerase. J. biol. Chem. 225, 419 (1957).

    PubMed  CAS  Google Scholar 

  • Turba, F., u. G. Gundlach : Aminosäure-Sequenz in der Umgebung des reaktiven Serinrestes im Chymotrypsin-Molekül. Biochem. Z. 327, 186 (1955).

    PubMed  CAS  Google Scholar 

  • Turnbull, J. H., and W. Lee: Inhibition of chymotrypsin by diphenyl phosphorochloridate: Some structural’implications. IV. Internationaler Kongreß für Biochemie, Wien 1958. Zusammenfassungen S. 43.

    Google Scholar 

  • Utter, M. F., and K. Kurahashi: Purification of oxalacetic carboxylase from chicken liver J. biol. Chem. 207, 787 (1954a)

    PubMed  CAS  Google Scholar 

  • Utter, M. F., and K. Kurahashi: Mechanism of action of oxalacetic carboxylase. J. biol. Chem. 207, 821 (1954b).

    PubMed  CAS  Google Scholar 

  • Utter, M. F., and K. Kurahashi, and I. A. Rose: Some properties of oxalacetic carboxylase. J. biol. Chem. 207, 803 (1954).

    PubMed  CAS  Google Scholar 

  • Velick, S. F., and J. E. Hayes: Phosphate binding and the glyceraldehyde-3-phosphate dehydrogenase reaction. J. biol. Chem. 203, 545 (1953).

    PubMed  CAS  Google Scholar 

  • Velick, S. F., and J. E. Hayes, and J. Harting: The binding of diphosphopyridine nucleotide by glyceraldehyde-3-phosphate dehydrogenase. J. biol. Chem. 203, 527 (1953).

    PubMed  CAS  Google Scholar 

  • Ven, A. M. van de, V. V. Koningsberger and J. T. G. Overbeek: Isolation of a tyrosine-activating enzyme from baker’s yeast. Biochim. biophys. Acta 28, 134 (1958).

    Article  Google Scholar 

  • Vennesland, B., and F. H. Westheimer: Hydrogen transport and steric specificity in reactions catalyzed by pyridine nucleotide dehydrogenases. The Mechanism of Enzyme Action, ed. by W. D. McElroy u. B. Glass, S. 357. Baltimore: Johns Hopkins Press 1954.

    Google Scholar 

  • Wakil, S. J.: A malonic acid derivative as an intermediate in fatty acid synthesis. J. Amer. chem. Soc. 80, 6465 (1958).

    Article  CAS  Google Scholar 

  • Wakil, S. J., E. B. Titchener and D. M. Gibson: Evidence for the participation of biotin in the enzymic synthesis of fatty acids. Biochim. biophys. Acta 29, 225 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Walker, J. B. : Studies on the mechanism of action of kidney transamidinase. J. biol. Chem. 224, 57 (1957).

    PubMed  CAS  Google Scholar 

  • Walker, J. B. : Further studies on the mechanism of transamidinase action : Transamidination in Streptomyces griseus. J. biol. Chem. 231, 1 (1958).

    PubMed  CAS  Google Scholar 

  • Wallenfels, K. : The mechanism of hydrogen transfer with pyridine nucleotides in Steric Course of Microbiological Reactions. Ciba Foundation Study Group No. 2, ed. by G. E. W. Wolstenholme u. C. M. O’Connor, S. 10. London : J. & A. Churchill, Ltd. 1959.

    Google Scholar 

  • Wolstenholme u. C. M., u.M. Gellrich : Über den Mechanismus der Wasserstoffübertragung mit Pyridinnucleotiden XVII. Modelluntersuchungen zur chemischen Natur des „Aktivierten Wasserstoffs”. Ber. dtsch. chem. Ges. 92, 1406 (1959).

    Google Scholar 

  • Wolstenholme u. C. M., u. H. Sund: Über den Mechanismus der Wasserstorfübertragung mit Pyridinnucleotiden. V. Das DPN+-Bindungsvermögen von ADH und Zink-ADH. Biochem. Z. 329, 59 (1957).

    Google Scholar 

  • Westheimer, F. H. : Hypothesis for the mechanism of action of chymotrypsin. Proc. Nat. Acad. Sci. (Wash.) 43, 969 (1957).

    Article  CAS  Google Scholar 

  • Westheimer, F. H., H. F. Fisher, E. E. Conn and B. Vennesland: The enzymatic transfer of hydrogen from alcohol to DPN. J. Amer. chem. Soc. 73, 2403 (1951).

    Article  CAS  Google Scholar 

  • Westheimer, F. H., and N. Nicolaides : The kinetics of the oxidation of 2-deuteropropanol-2 by chromic acid. J. Amer. chem. Soc. 71, 25 (1949).

    Article  CAS  Google Scholar 

  • Wiberg, K. B. : The deuterium isotope effect. Chem. Rev. 55, 713 (1955).

    Article  CAS  Google Scholar 

  • Wieland, T., u. G. Pfleiderer: Aktivierung von Aminosäuren. Advanc. in Enzymol. 19, 235 (1957).

    Google Scholar 

  • Wieland, T., u. G. Pfleiderer, u. B. Sandmann: Zum Wirkungsmechanismus der Glutamin-Synthetase aus Erbsen. Biochem. Z. 330, 198 (1958).

    PubMed  CAS  Google Scholar 

  • Woessner, J. F., B. K. Bachhawat and M. J. Coon: Enzymatic activation of carbon dioxide II. Role of biotin in the carboxylation of β-hydroxyisovaleryl coenzyme A. J. biol. Chem. 233, 520 (1958).

    PubMed  CAS  Google Scholar 

  • Wolochow, H., E. W. Putnam, M. Doudoroff, W. Z. Hassid and H. A. Barker: Preparation of sucrose labeled with C14 in the glucose or fructose component. J. biol. Chem. 180, 1237 (1949).

    PubMed  CAS  Google Scholar 

  • Zachau, H. G., G. Acs and F. Lipmann: Isolation of adenosine amino acid esters from a ribonuclease digest of soluble liver ribonucleic acid. Proc. Nat. Acad. Sci. (Wash.) 44, 885 (1958).

    Article  CAS  Google Scholar 

  • Zatman, L. J., N. O. Kaplan and S. P. Colowick: Inhibition of spleen diphosphopyridine nucleotidase by nicotinamide, an exchange reaction. J. biol. Chem. 200, 197 (1953).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1961 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wallenfels, K., Sund, H. (1961). Anwendung von radioaktiven Isotopen in der Enzymforschung. In: Aisenberg, A.C., et al. Radioactive Isotopes in Physiology Diagnostics and Therapy / Künstliche Radioaktive Isotope in Physiologie Diagnostik und Therapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49761-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49761-2_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49477-2

  • Online ISBN: 978-3-642-49761-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics