Skip to main content
  • 88 Accesses

Zusammenfassung

Der Citronensäurecyclus (Abb. 1) als Prozeß des oxydativen Abbaues der Nahrungsstoffe in der lebenden Zelle wurde bereits vor der Einführung der Isotopentechnik in das Studium des Intermediärstoffwechsels formuliert (Krebs und Johnson, 1937; neuere zusammenfassende Darstellungen: Martius und Lynen, 1950; Krebs, 1954; Martius, 1954; Ochoa, 1954). Anwendungen hat die Isotopentechnik später bei der Bestätigung der Reaktionssequenz des Cyclus, bei der Analyse der Einzelreaktionen und beim Nachweis des Cyclus in den verschiedensten Zellen und Geweben gefunden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abelson, P. H., and H. J. Vogel: Amino acid biosynthesis in Torulopsis utilis and Neurospora crassa. J. biol. Chem. 213, 355–364 (1955).

    PubMed  CAS  Google Scholar 

  • Annau, E., I. Banga, A. Blazso, V. Bruckner, K. Laki, F. B. Straub u. A. Szent-Györgyi: Über die Bedeutung der Fumarsäure für die tierische Gewebsatmung. III. Z. physiol. Chem. 244, 105–152 (1936).

    Article  CAS  Google Scholar 

  • Ajl, S. J.: Terminal respiratory patterns in microorganisms. Bact. Rev. 15, 211–244 (1951).

    PubMed  CAS  Google Scholar 

  • Ajl, S. J.: Studies on the mechanism of acetate oxidation by bacteria. V. Evidence for the participation of fumarate, malate and oxalacetate in the oxidation of acetic acid by Escherichia coli. J. gen. Physiol. 34, 785–794 (1951a).

    Article  PubMed  CAS  Google Scholar 

  • Ajl, S. J. and M. D. Kamen: Studies on mechanism of acetate oxidation by bacteria. Fed. Proc. 9, 143–144 (1950).

    Google Scholar 

  • Aronoff, S.: Techniques of radiobiochemistry. Ames, Iowa: Iowa State College Press, 1956.

    Google Scholar 

  • Baddiley, J., G. Ehrensvärd, R. Johansson, L. Reio, E. Saluste and R. Stjernholm: Acetic acid metabolism in Torulopsis utilis. I. The cultivation of Torulopsis yeast on C13H3C14OOH as the single carbon source. J. biol. Chem. 183, 771–776 (1950).

    CAS  Google Scholar 

  • Baddiley, J., G. Ehrensvärd, E. Klein, L. Reio and E. Saluste: Acetic acid metabolism in Torulopsis utilis. II. Metabolic connection between acetic acid and tyrosine and a method of degradation of the phenolic ring structure in tyrosine. J. biol. Chem. 183, 777–788 (1950).

    CAS  Google Scholar 

  • Bandurski, R. S.: Further studies on the enzymatic synthesis of oxalacetate from phos-phorylenolpyruvate and carbon dioxide. J. biol. Chem. 217, 137–150 (1955).

    PubMed  CAS  Google Scholar 

  • Bandurski, R. S., and C. M. Greiner: The enzymatic synthesis of oxalacetate from phosphoryl-enolpyruvate and carbon dioxide. J. biol. Chem. 204, 781–786 (1953).

    PubMed  CAS  Google Scholar 

  • Barker, H. A., and M. D. Kamen: Carbon dioxide utilization in the synthesis of acetic acid by Clostridium thermoaceticum. Proc. nat. Acad. Sci. (Wash.) 31, 219–225 (1945).

    Article  CAS  Google Scholar 

  • Barker, H. A., and M. D. Kamen, and B. T. Bornstein: The synthesis of butyric and caproic acids from ethanol and acetic acid by Clostridium kluyveri. Proc. nat. Acad. Sci. (Wash.) 31, 373–381 (1945).

    Article  CAS  Google Scholar 

  • Barker, H. A., and M. D. Kamen, and V. Haas: Carbon dioxide utilization in the synthesis of acetic and butyric acids by Butyribacterium rettgeri. Proc. nat. Acad. Sci. (Wash.) 31, 355–360 (1945).

    Article  CAS  Google Scholar 

  • Barron, E. S. G., and F. Ghiretti: The pathways of acetate oxidation. Biochim. biophys. Acta 12, 239–249 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Beevers, H.: Incorporation of acetate-carbon into sucrose in castor bean tissues. Biochem. J. 66, 23–24 P (1957).

    Google Scholar 

  • Berg, P., and W. K. Joklik: Transphosphorylation between nucleoside polyphosphates. Nature (London) 172, 1008–1009 (1953).

    Article  CAS  Google Scholar 

  • Bloch, K.: The metabolism of acetic acid in animal tissues. Physiol. Rev. 27, 574–620 (1947).

    PubMed  CAS  Google Scholar 

  • Bové, J., R. O. Martin, L. L. Ingraham and P. K. Stumpf: Studies of the mechanism of action of the condensing enzyme. J. biol. Chem. 234, 999–1003 (1959).

    PubMed  Google Scholar 

  • Breslow, R.: On the mechanism of thiamine action. IV. Evidence from studies on model systems. J. Amer. chem. Soc. 80, 3719–3726 (1958).

    Article  CAS  Google Scholar 

  • Buchanan, J. M., and A. B. Hastings: The use of isotopically marked carbon in the study of intermediary metabolism. Physiol. Rev. 26, 120–155 (1946).

    PubMed  CAS  Google Scholar 

  • Buchanan, J. M., W. Sakami, S. Gurin and D. W. Wilson: A study of the intermediates of acetate and acetoacetate oxidation with isotopic carbon. J. biol. Chem. 159, 695–709 (1945).

    CAS  Google Scholar 

  • Callely, A. G., and S. Dagley: Metabolism of glycine by a pseudomonad. Nature (London) 183, 1793–1794 (1959).

    Article  CAS  Google Scholar 

  • Carson, S. F., and S. Ruben: Carbon dioxide assimilation by propionic acid bacteria studied by the use of radioactive carbon. Proc. nat. Acad. Sci. (Wash.) 26, 422–426 (1940).

    Article  CAS  Google Scholar 

  • Ceithaml, J., and B. Vennesland: Synthesis of tricarboxylic acids by carbon dioxide fixation in parsley root preparations. J. biol. Chem. 178, 133–143 (1949).

    PubMed  CAS  Google Scholar 

  • Chain, E. B.: Biosynthetic mechanisms of the formation of organic acids in moulds. Proc. Of the third Intern. Congr. of Biochemistry, Brussels 1955, pp. 523–539. New York: Academic Press Inc. 1956.

    Google Scholar 

  • Claisen, L., and E. Hori: Über eine Synthese der Aconitsäure. Ber. 24, 120–127 (1891).

    Google Scholar 

  • Conant, J. B., R. D. Cramer, A. B. Hastings, F. W. Klemperer, A. K. Solomon and B. Vennesland: Metabolism of lactic acid containing radioactive carboxyl carbon. J. biol. Chem. 137, 557–566 (1941).

    CAS  Google Scholar 

  • Cori, B. F.: Mammalian carbohydrate metabolism. Physiol. Rev. 11, 143–275 (1931).

    CAS  Google Scholar 

  • Dagley, S., and M. D. Patel: Production of keto acids from acetate by a vibrio. Biochem. J. 55, 36P (1953).

    Google Scholar 

  • Davies, D. D.: The oxidation of D-isocitrate by pea-seedling mitochondria. J. exp. Bot. 6, 212–221 (1955).

    Article  CAS  Google Scholar 

  • Davies, D. D.: Synthesis of succinate from acetate by an enzyme system of pig heart muscle. Nature (London) 181, 339–340 (1958).

    Article  CAS  Google Scholar 

  • Decker, K.: Die aktivierte Essigsäure. Stuttgart: Ferdinand Enke 1959.

    Google Scholar 

  • Dixon, H. H., and W. R. G. Atkins: Extraction of zymase by means of liquid air. Proc. Dublin Soc. 14, 1–8 (1913).

    Google Scholar 

  • Englard, S.: Studies on the mechanism of the citrate condensing enzyme reaction. J. biol. Chem. 234, 1004–1006 (1959).

    PubMed  CAS  Google Scholar 

  • Evans, E. A., jr.: Metabolic cycles and carboxylation. In “A Symposium on Respiratory Enzymes” (O. Meyerhof, Ed.), pp. 197–209. Madison: University of Wisconsin Press 1942.

    Google Scholar 

  • Evans, E. A. Jr., and L. Slotin: The utilization of carbon dioxide in the synthesis of a-ketoglutaric acid. J. biol. Chem. 136, 301–302 (1940).

    CAS  Google Scholar 

  • Evans, E. A. Jr., and L. Slotin: Carbon dioxide utilization by pigeon liver. J. biol. Chem. 141, 439–450 (1941).

    CAS  Google Scholar 

  • Evans, E. A. Jr., B. Vennesland, and L. Slotin: Mechanism of carbon dioxide fixation in cell-free extracts of pigeon liver. J. biol. Chem. 147, 771–784 (1943).

    CAS  Google Scholar 

  • Foster, J. W., S. F. Carson, S. Ruben and M. D. Kamen: Radioactive carbon as an indicator of carbon dioxide utilization. VII. The assimilation of carbon dioxide by molds. Proc. nat. Acad. Sci. (Wash.) 27, 590–596 (1941).

    Article  CAS  Google Scholar 

  • Foster, J. W., S. F. Carson, D. S. Anthony, J. B. Davis, W. E. Jefferson and M. V. Long: Aerobic formation of fumaric acid in the mold Rhizopus nigricans: synthesis by direct C2 condensation. Proc. nat. Acad. Sci. (Wash.) 35, 663–672 (1949).

    Article  CAS  Google Scholar 

  • Foster, J. W., S. F. Carson, Metabolic exchange of carbon dioxide with carboxyls and oxidative synthesis of C4 dicarboxylic acids. Proc. nat. Acad. Sci. (Wash.) 36, 219–229 (1950).

    Article  CAS  Google Scholar 

  • Friedrich-Freksa, H., and C. Martius: Zur Kinetik der enzymatischen Umwandlung von Citronensäure in cis-Aconitsäure und iso-Citronensäure. Z. Naturforsch. 6 b, 296–304 (1951).

    Google Scholar 

  • Gergely, J., P. Hele, and C. V. Ramakrishnan: Succinyl and acetyl coenzyme A deacylases. J. biol. Chem. 198, 323–334 (1952).

    CAS  Google Scholar 

  • Glasky, A. J., and M. E. Rafelson Jr.: The utilization of acetate-C14 by Escherichia coli grown on acetate as the sole carbon source. J. biol. Chem. 234, 2118–2122 (1959).

    PubMed  CAS  Google Scholar 

  • Goldberg, M., and D. R. Sanadi: Incorporation of labeled carbon dioxide into pyruvate and α-ketoglutarate. J. Amer. chem. Soc. 74, 4972–4973 (1952).

    Article  CAS  Google Scholar 

  • Grafflin, A. L., and S. Ochoa: Partial purification of isocitric dehydrogenase and oxalosuccinic carboxylase. Biochim. biophys. Acta 4, 205–210 (1950).

    Article  PubMed  CAS  Google Scholar 

  • Green, D. E., D. S. Goldman, S. Mii and H. Beinert: The acetoacetate activation and cleavage enzyme system. J. biol. Chem. 202, 137–150 (1953).

    PubMed  CAS  Google Scholar 

  • Grisolia, S., and B. Vennesland: Carbon dioxide fixation in isocitric acid. J. biol. Chem. 170, 461–465 (1947).

    CAS  Google Scholar 

  • Gunsalus, I. C., and R. A. Smith: Oxidation and energy coupling in keto acid metabolism. In “Proc. Intern. Symp. Enz. Chem. Tokyo and Kyoto 1957” pp. 77–86. Tokyo: Maruzen 1958.

    Google Scholar 

  • Hallman, N.: Untersuchungen über die Bildung und den Abbau der Citronensäure im tierischen Gewebe. Acta physiol. scand. 2 Suppl. IV., 136 S. (1940).

    Google Scholar 

  • Hallman, N., and P. E. Simola: Mechanism of the biological citric acid synthesis. Science 90, 594–595 (1939).

    Article  PubMed  CAS  Google Scholar 

  • Harary, I., S. R. Korey, and S. Ochoa: Biosynthesis of dicarboxylic acids by carbon dioxide fixation. VII. Equilibrium of “Malic” enzyme reaction. J. biol. Chem. 203, 595–604 (1953).

    PubMed  CAS  Google Scholar 

  • Hiatt, H. H., M. Goldstein, J. Lareau and B. L. Horecker:The pathway of hexose synthesis from pyruvate in muscle. J. biol. Chem. 231, 303–307 (1958).

    PubMed  CAS  Google Scholar 

  • Hölzer, H., u. K. Beaucamp: Nachweis und Charakterisierung von Zwischenprodukten der Decarboxylierung und Oxydation von Pyruvat:,,aktiviertes Pyruvat“ und,,aktivierter Acetaldehyd“. Angew. Chemie 71, 776 (1959).

    Article  Google Scholar 

  • James, W. O.: Reaction paths in the respiration of the higher plants. Advanc. Enzymol. 18, 281–318 (1957).

    CAS  Google Scholar 

  • Kalnitsky, G., and C. H. Werkman: Enzymatic decarboxylation of oxalacetate and carboxylation of pyruvate. Arch. Biochem. 4, 25–40 (1944).

    CAS  Google Scholar 

  • Kaltenbach, J. P., and G. Kalnitsky:The Enzymatic formation of oxalacetate from pyruvate and carbon dioxide, I. und II. J. biol. Chem. 192, 629–639, and 641–649 (1951).

    CAS  Google Scholar 

  • Kaufman, S.: Studies on the mechanism of the reaction catalyzed by the phosphorylating enzyme. J. biol. Chem. 216, 153–164 (1955).

    PubMed  CAS  Google Scholar 

  • Kaufman, S., and S. G. A. Alivisatos: Purification and properties of the phosphorylating enzyme from spinach. J. biol. Chem. 216, 141–152 (1955).

    PubMed  CAS  Google Scholar 

  • Kaufman, S., C. Gilvarg, O. Cori and S. Ochoa: Enzymatic oxidation of oc-ketoglutarate and coupled phosphorylation. J. biol. Chem. 203, 869–888 (1953).

    PubMed  CAS  Google Scholar 

  • Knoop, F.: Wie werden unsere Hauptnährstoife im Organismus verbrannt und wechselseitig ineinander übergeführt? Klin. Wschr. 2, 60–63 (1923).

    Article  CAS  Google Scholar 

  • Korkes, S., A. del Campillo and S. Ochoa: Biosynthesis of dicarboxylic acids by carbon dioxide fixation. IV. Isolation and properties of an adaptive “Malic” enzyme from Lactobacillus arabinosus. J. biol. Chem. 187, 891–905 (1950).

    PubMed  CAS  Google Scholar 

  • Kornberg, A., and W. E. Pricer Jr.: Di- and triphosphopyridine nucleotideisocitric dehydrogenases in yeast. J. biol. Chem. 189, 123–136 (1951).

    PubMed  CAS  Google Scholar 

  • Kornberg, H. L.: Acetate metabolism in acetate-grown Pseudomonas. Biochem. J. 66, 13 P (1957).

    Google Scholar 

  • Kornberg, H. L.: The metabolism of C2 compounds in microorganisms. I. The incorporation of [2-14C] acetate by Pseudomonas fluorescens, and by a Corynebacterium, grown on ammonium acetate. Bioc em. J. 68, 535–542 (1958).

    CAS  Google Scholar 

  • Kornberg, H. L.: Aspects of terminal respiration in microorganisms. Ann. Rev. Microbiol. 13, 49–78 (1959).

    Article  Google Scholar 

  • Kornberg, H. L., and H. Beevers: A mechanism of conversion of fat to carbohydrate in castor beans. Nature (London) 180, 35–36 (1957).

    Article  CAS  Google Scholar 

  • Kornberg, H. L., and H. Beevers: The glyoxylate cycle as a stage in the conversion of fat to carbohydrate in castor beans. Biochim. biophys. Acta 26, 531–537 (1957a).

    Article  PubMed  CAS  Google Scholar 

  • Kornberg, H. L., and A. M. Gotto: Biosynthesis of cell constituents from C2-compounds. Formation of malate from glycollate by Pseudomonas ovalis Chester. Nature (London) 183, 1791–1793 (1959).

    Article  CAS  Google Scholar 

  • Kornberg, H. L., and H.A. Krebs: Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature (London) 179, 988–991 (1957).

    Article  CAS  Google Scholar 

  • Kornberg, H. L., and N. B. Madsen: Formation of C4-dicarboxylic acids from acetate by Pseudomonas KB 1. Biochem. J. 66, 13–14 P (1957).

    Google Scholar 

  • Kornberg, H. L., and N. B. Madsen: Synthesis of C4-dicarboxylic acids from acetate by a “glyoxylate bypass” of the tricarboxylic acid cycle. Biochim. biophys. Acta 24, 651–653 (1957 a).

    Article  PubMed  CAS  Google Scholar 

  • Kornberg, H. L., and N. B. Madsen: The metabolism of C2 compounds in micro-organisms. III. Synthesis of malate from acetate via the glyoxylate cycle. Biochem. J. 68, 549–557 (1958).

    PubMed  CAS  Google Scholar 

  • Kornberg, H. L., P. J. R. Phizackerley, and J. R. Sadler: Synthesis of cell constituents from acetate by Escherichia coli. Biochem. J. 72, 32–33 P (1959).

    Google Scholar 

  • Krampitz, L. O., and G. Greull: An active acetaldehyde-thiamine intermediate. J. Amer. chem. Soc. 80, 5893–5894 (1958).

    Article  CAS  Google Scholar 

  • Krampitz, L. O., and B H. Werkman: The enzymic decarboxylation of oxaloacetate. Biochem. J. 35, 595–602 (1941).

    PubMed  CAS  Google Scholar 

  • Krampitz, L. O., H. G. Wood and B H. Werkman: Enzymic fixation of carbon dioxide in oxalacetate. J. biol. Chem. 147, 243–253 (1943).

    CAS  Google Scholar 

  • Krebs, H. A.: The rôle of fumarate in the respiration of Bacterium coli commune. Biochem. J. 31, 2095–2124 (1937).

    PubMed  CAS  Google Scholar 

  • Krebs, H. A.: Modified citric acid cycle. Biochem. J. 36, 9 P (1942).

    Google Scholar 

  • Krebs, H. A.: Carbon dioxide assimilation in heterotrophic organisms. Ann. Rev. Biochem. 12, 529–550 (1943).

    Article  CAS  Google Scholar 

  • Krebs, H. A.: The intermediary stages in the biological oxidation of carbohydrate. Ad vane. Enzymol. 3, 191–252 (1943a).

    CAS  Google Scholar 

  • Krebs, H. A.: The place of the tricarboxylic acid cycle in cell metabolism. IL Congrès International de Biochimie 1952; Symp. Cycle Tricarboxylique pp. 42–54, Société d’Edition d’Enseignement sup. Paris 1952.

    Google Scholar 

  • Krebs, H. A.: The tricarboxylic acid cycle. In “Chemical pathways of metabolism” Vol. I, 109–171 (D. M. Greenberg, Ed.). New York: Academic Press Inc. 1954.

    Google Scholar 

  • Krebs, H. A.: Considerations concerning the pathways of syntheses in living matter. Bull. Johns Hopk. Hosp. 95, 19–33 (1954a).

    CAS  Google Scholar 

  • Krebs, H. A., S. Gurin and L. V. Eggleston: The pathway of oxidation of acetate in baker’s yeast. Biochem. J. 51, 614–628 (1952).

    CAS  Google Scholar 

  • Krebs, H. A., and R. Hems: Some reactions of adenosine and inosine phosphates in animal tissues. Biochim. biophys. Acta 12, 172–180 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Krebs, H. A., and W. A. Johnson: The rôle of citric acid in intermediate metabolism in animal tissues. Enzymologia 4, 148–156 (1937).

    CAS  Google Scholar 

  • Kurahashi, K., R. J. Pennington and M. F. Utter: Nucleotide specificity of oxalacetic carboxylase. J. biol. Chem. 226, 1059–1075 (1957).

    PubMed  CAS  Google Scholar 

  • Landau, B. R., A. B. Hastings and F. B. Nesbett: Origin of glucose and glycogen carbons formed from C14-labeled pyruvate by livers of normal and diabetic rats. J. biol. Chem. 214, 525–535 (1955).

    PubMed  CAS  Google Scholar 

  • Langenbeck, W.: Die organischen Katalysatoren und ihre Beziehungen zu den Fermenten. Berlin-Göttingen-Heidelberg: Springer 1949.

    Google Scholar 

  • Lardy, H. A., and J. A. Ziegler: Enzymic synthesis of phosphopyruvate from pyruvate. J. biol. Chem. 159, 343–351 (1945).

    CAS  Google Scholar 

  • Leach, F. R., K. Yasunobu and L. J. Reed: Lipoic acid activation of the α-ketobutyrate oxidation system in cell-free extracts of Streptococcus faecalis. Biochim. biophys. Acta 18, 297–298 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. S., and N. Lifson: Recovery of isotopic succinate from urine of rats administered isotopic acetate. Proc. Soc. exp. Biol. (N. Y.) 70, 728–730 (1949).

    Article  CAS  Google Scholar 

  • Lewis, K. F., and S. Weinhouse: Studies on the mechanism of citric acid production in Aspergillus niger. J. Amer. chem. Soc. 73, 2500–2503 (1951).

    Article  CAS  Google Scholar 

  • Lorber, V.N. Lifson, H. G. Wood, W. Sakami, and W. W. Shreeve: Conversion of lactate to liver glycogen in the intact rat, studied with isotopic lactate. J. biol. Chem. 183, 517–529 (1950).

    CAS  Google Scholar 

  • Lorber, V., M. F. Utter, H. Rudney, and M. Cook: The enzymatic formation of citric acid studied with C14-labeled oxalacetate. J. biol. Chem. 185, 689–699 (1950).

    PubMed  CAS  Google Scholar 

  • Lynen, F.: Über den Stoffwechsel der Hefe nach dem Einfrieren in flüssiger Luft. Liebigs Ann. Chem 539, 1–39 (1939).

    Article  CAS  Google Scholar 

  • Lynen, F., and E. Reichert: Zur chemischen Struktur der „aktivierten Essigsäure“. Angew. Chem.63, 47–48 (1951).

    Article  CAS  Google Scholar 

  • Lynen, F., and E. Reichert, u. L. Rueff: Zum biologischen Abbau der Essigsäure. VI. „Aktivierte Essigsäure“, ihre Isolierung aus Hefe und ihre chemische Natur. Liebigs Ann. Chem. 574, 1–32 (1951).

    Article  CAS  Google Scholar 

  • Lynen, F., u. H. Scherer: Die Darstellung der Oxalbernsteinsäure und das Fermentsystem ihrer Decarboxylierung. V. Zum biologischen Abbau der Essigsäure. Liebigs Ann. Chem. 560, 163–190 (1948).

    Article  Google Scholar 

  • Madsen, N. B.: Test for isocitritase and malate synthetase in animal tissues. Biochim. biophys. Acta 27, 199–201 (1958).

    Article  PubMed  CAS  Google Scholar 

  • McManus, I. R.: A study of carbon dioxide fixation by Micrococcus lysodeikticus. J. biol. Chem. 188, 729–740 (1951).

    PubMed  CAS  Google Scholar 

  • Martius, B.: Über den Abbau der Citronensäure. Z. physiol. Chem. 247, 104–110 (1937).

    Article  CAS  Google Scholar 

  • Martius, B.: Der oxydative Endabbau. In,,Physiologische Chemie“ (herausgegeben von B. Flaschenträger und E. Lehnartz). Vol. II, lb S. 1025–1063. Berlin-Göttingen-Heidelberg: Springer 1954.

    Google Scholar 

  • Martius, B., u. F. Knoop: Der physiologische Abbau der Citronensäure. Z. physiol. Chem. 246, I–II (1937).

    Article  CAS  Google Scholar 

  • Martius, B., u. F. Lynen: Probleme des Citronensäurecyklus. Advanc. Enzymol. 10, 167–222 (1950).

    Google Scholar 

  • Martius, B., u. G. Schorre: Synthese und Abbau a, a-dideuterierter Citronensäuren. Z. Naturforsch. 5b, 170 (1950).

    Google Scholar 

  • Moses, V.: Tricarboxylic acid cycle reactions in the fungus Zygorrhynchus moelleri. J. gen. Microbiol. 13, 235–251 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Moses, V.: The metabolic significance of the citric acid cycle in the growth of the fungus Zygorrhynchus moelleri. J. gen. Microbiol. 16, 534–549 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Moss, J. A. de, and H. E. Swim: Quantitative aspects of the tricarboxylic acid cycle in baker’s yeast. J. Bact. 74, 445–451 (1957).

    Google Scholar 

  • Moyle, J.: Some properties of purified isocitric enzyme. Biochem. J. 63, 552–558 (1956).

    PubMed  CAS  Google Scholar 

  • Moyle, J., and M. Dixon: Purification of the isocitric enzyme (triphosphopyridine nucleotide-linked isocitric dehydrogenase-oxalosuccinic carboxylase). Biochem. J. 63, 548–552 (1956).

    PubMed  Google Scholar 

  • Niel, B. B. van, S. Ruben, S. F. Carson, M. D. Kamen and J. W. Foster: Radioactive carbon as an indicator of carbon dioxide utilization. VIII. Rôle of carbon dioxide in cellular metabolism. Proc. nat. Acad. Sci. (Wash.) 28, 8–15 (1942).

    Article  Google Scholar 

  • Niel, B. B. van, J. O. Thomas, S. Ruben and M. D. Kamen: Radioactive carbon as an indicator of carbon dioxide utilization, IX. The assimilation of carbon dioxide by Protozoa. Proc. nat. Acad. Sci. (Wash.) 28, 157–161 (1942).

    Article  Google Scholar 

  • Nishina, Y., S. Endo, and H. Nakayama: The bacterial synthesis of some dicarboxylic acids with the help of radioactive carbon dioxide. Sci. Papers, Inst. Phys. chem. Res., (Tokyo) 38, 341–346 (1941).

    Google Scholar 

  • Ochoa, S.: Isocitric dehydrogenase and carbon dioxide fixation. J. biol. Chem. 159, 243–244 (1945).

    CAS  Google Scholar 

  • Ochoa, S.: Biosynthesis of tricarboxylic acids by carbon dioxide fixation. III. Enzymatic mechanisms. J. biol. Chem. 174, 133–157 (1948).

    PubMed  CAS  Google Scholar 

  • OChoa, S.: Biological mechanisms of carboxylation and decarboxylation. Physiol. Rev. 31, 56–106 (1951).

    PubMed  CAS  Google Scholar 

  • OChoa, S.: Enzymatic mechanisms of carbon dioxide fixation. In “The Enzymes” Vol. II, Part 2, pp. 929–1032 (Summer, J. B. and K. Myrbäck, Eds.). New York: Academic Press Inc. 1952.

    Google Scholar 

  • OChoa, S.: Enzymic mechanisms in the citric acid cycle. Advanc. Enzymol. 15, 183–270 (1954).

    CAS  Google Scholar 

  • OChoa, S.: Métabolisme de l’acide propionique dans les tissus animaux. Bull. Soc. Chim. biol. 41, 1145–1162 (1959).

    PubMed  CAS  Google Scholar 

  • OChoa, S., A. Mehler and A. Kornberg: Reversible oxidative decarboxylation of malic acid. J. biol. Chem. 167, 871–872 (1947).

    PubMed  CAS  Google Scholar 

  • OChoa, S., A. Mehler and A. Kornberg: Biosynthesis of dicarboxylic acids by carbon dioxide fixation. I. Isolation and properties of an enzyme from pigeon liver catalyzing the reversible oxidative decarboxylation of L-malic acid. J. biol. Chem. 174, 979–1000 (1948).

    PubMed  CAS  Google Scholar 

  • OChoa, S., J. R. Stern and M. C. Schneider: Enzymatic synthesis of citric acid. II. Crystalline condensing enzyme. J. biol. Chem. 193, 691–702 (1951).

    PubMed  CAS  Google Scholar 

  • OChoa, S., and E. Weisz-Tabori: Oxalosuccinic carboxylase. J. biol. Chem. 159, 245–246 (1945).

    CAS  Google Scholar 

  • OChoa, S., and E. Weisz-Tabori: Biosynthesis of tricarboxylic acids by carbon dioxide fixation. II. Oxalosuccinic carboxylase. J. biol. Chem. 174, 123–132 (1948).

    PubMed  CAS  Google Scholar 

  • Ogston, A. G.: Interpretation of experiments on metabolic processes, using isotopic tracer elements. Nature (London) 162, 963 (1948).

    Article  CAS  Google Scholar 

  • Olson, J. A.: The purification and properties of yeast isocitric lyase. J. biol. Chem. 234, 5–10 (1959).

    PubMed  CAS  Google Scholar 

  • Olson, R. E.: Oxidation of C14-labeled carbohydrate intermediates in tumor and normal tissue. Cancer Res. 11, 571–584 (1951).

    PubMed  CAS  Google Scholar 

  • Plaut, G. W. E., and S.-C. Sung: Diphosphopyridine nucleotide isocitric dehydrogenase from animal tissues. J. biol. Chem. 207, 305–314 (1954).

    PubMed  CAS  Google Scholar 

  • Potter, V. R., and C. Heidelberger: Biosynthesis of “asymmetric” citric acid: a substantiation of the Ogston concept. Nature (London) 164, 180–181 (1949).

    Article  CAS  Google Scholar 

  • Reed, L. J.: The chemistry and function of lipoic acid. Advanc. Enzymol. 18, 319–347 (1957).

    CAS  Google Scholar 

  • Reed, L. J.: Metabolism and function of lipoic acid. In “Proc. Intern. Symp. Enz. Chem. Tokyo and Kyoto 1957” pp. 71–77. Tokyo: Maruzen 1958.

    Google Scholar 

  • Reed, L. J., M. Koike, M. E. Levitch and F. R. Leach: Studies on the nature and reactions of protein-bound lipoic acid. J. biol. Chem. 232, 143–158 (1958).

    PubMed  CAS  Google Scholar 

  • Reed, L. J., F. R. Leach and M. Koike: Studies on a lipoic acid-activating system. J. biol. Chem. 232, 123–142 (1958).

    PubMed  CAS  Google Scholar 

  • Roberts, R. B., P. H. Abelson, D. B. Cowie, E. T. Bolton and R. J. Britten: Studies of biosynthesis in Escherichia coli. Washington: Carnegie Inst, of Washington Publ. 607. 1955.

    Google Scholar 

  • Salles, J. B. V., I. Harary, R. F. Banfi and S. Ochoa: Enzymatic incorporation of carbon dioxide in oxalacetate in pigeon liver. Nature (London) 165, 675–676 (1950).

    Article  CAS  Google Scholar 

  • Saz, H. J., and L. O. Krampitz: Acetate oxidation by Micrococcus lysodeikticus. Bact. Proc. 1950, 126.

    Google Scholar 

  • Saz, H. J., and L. O. Krampitz: Acetate oxidation by Micrococcus lysodeikticus. Fed. Proc. 10, 243 (1951).

    Google Scholar 

  • Saz, H. J., and L. O. Krampitz: The oxidation of acetate by Micrococcus lysodeikticus. J. Bact. 67, 409–418 (1954).

    PubMed  CAS  Google Scholar 

  • Seaman, G. R.: Preparation and properties of the succinate-cleaving enzyme. J. biol. Chem. 228, 149–161 (1957).

    PubMed  CAS  Google Scholar 

  • Seaman, G. R., and M. D. Naschke: Reversible cleavage of succinate by extracts of Tetrahymena. J. biol. Chem. 217, 1–12 (1955).

    PubMed  CAS  Google Scholar 

  • Shreeve, W. W., G. H. Feil, V. Lorber and H. G. Wood: Distribution of fixed radioactive carbon in glucose from rat-liver glycogen. J. biol. Chem. 177, 679–682 (1949).

    PubMed  CAS  Google Scholar 

  • Siebert, G., M. Carsiotis and G. W. E. Plaut: The enzymatic properties of isocitric dehydrogenase. J. biol. Chem. 226, 977–991 (1957).

    PubMed  CAS  Google Scholar 

  • Siebert, G., J. Dubuc, R. B. Warner and G. W. E. Plaut: The preparation of isocitric dehydrogenase from mammalian heart. J. biol. Chem. 226, 965–975 (1957).

    PubMed  CAS  Google Scholar 

  • Slade, H. D., H. G. Wood, A. O. Nier, A. Hemingway and B H. Werkman: Assimilation of heavy carbon dioxide by heterotrophic bacteria. J. biol. Chem. 143, 133–145 (1942).

    CAS  Google Scholar 

  • Smith, R. A., and I. C. Gunsalus: Isocitritase: Enzyme properties and reaction equilibrium. J. biol. Chem. 229, 305–319 (1957).

    PubMed  CAS  Google Scholar 

  • Solomon, A. K., B. Vennesland, F. W. Klemperer, J. M. Buchanan and A. B. Hastings: The participation of carbon dioxide in the carbohydrate cycle. J. biol. Chem. 140, 171–182 (1941).

    CAS  Google Scholar 

  • Sonderhoff, R., u. H. Thomas: Die enzymatische Dehydrierung der Trideutero-essigsäure. Liebigs Ann. Chem. 530, 195–213 (1937).

    Article  CAS  Google Scholar 

  • Stern, J. R., M. J. Coon, A. del Campillo and M. C. Schneider: Enzymes of fatty acid metabolism. IV. Preparation and properties of coenzyme A transferase. J. biol. Chem. 221, 15–31 (1956).

    PubMed  CAS  Google Scholar 

  • Stern, J. R., S. Ochoa and F. Lynen: Enzymatic synthesis of citric acid. V. Reaction of acetyl coenzyme A. J. biol. Chem. 198, 313–321 (1952).

    CAS  Google Scholar 

  • Stern, J. R., B. Shapiro and S. Ochoa: Synthesis and breakdown of citric acid with cristalline condensing enzyme. Nature (London) 166, 403–404 (1950).

    Article  CAS  Google Scholar 

  • Stern, J. R., B. Shapiro, E. R. Stadtman and S. Ochoa: Enzymatic synthesis of citric acid. III. Reversibility and mechanism. J. biol. Chem. 193, 703–720 (1951).

    PubMed  CAS  Google Scholar 

  • Stetten, D. Jr., and G. E. Boxer: Carbohydrate metabolism. I. The rate of turnover of liver and carcass glycogen, studied with the acid of D. J. biol. Chem. 155, 231–236 (1944).

    CAS  Google Scholar 

  • Stoppani, A. O. M., S. L. S. de Favelukes and L. Conches: Formation of succinic acid in baker’s yeast through the citric acid cycle. Arch. Biochem. 75, 453–464 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Strecker, H. J., and S. Ochoa: Pyruvate oxidation system and acetoin formation. J. biol. Chem. 209, 313–326 (1954).

    PubMed  CAS  Google Scholar 

  • Strisower, E. H., G. D. Köhler and I. L. Chaikoff: Incorporation of acetate carbon into glucose by liver slices from normal and alloxan-diabetic rats. J. biol. Chem. 198, 115–126 (1952).

    PubMed  CAS  Google Scholar 

  • Suzuki, I., and C. H. Werkman: Phosphoenolpyruvate carboxylase in extracts of Thiobacillus thiooxidans, a chemoautotrophic bacterium. Arch. Biochem. 72, 514–515 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, I., and C. H. Werkman: Chemoautotrophic carbon dioxide fixation by extracts of Thiobacillus thiooxidans. I. Formation of oxalacetic acid. Arch. Biochem. 76, 103–111 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Swim, H. E., and L. O. Krampitz: Evidence for the condensation of acetic acid to succinic acid in Escherichia coli. Bact. Proc. 1950, 125–126.

    Google Scholar 

  • Swim, H. E., and L. O. Krampitz: Acetic acid oxidation by Escherichia coli: Evidence for the occurrence of a tricarboxylic acid cycle. J. Bact. 67, 419–425 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Swim, H. E., and L. O. Krampitz: Acetic acid oxidation by Escherichia coli: Quantitative significance of the tricarboxylic acid cycle. J. Bact. 67, 426–434 (1954a).

    PubMed  CAS  Google Scholar 

  • Swim, H. E., and M. F. Utter: Isotopic experimentation with intermediates of the tricarboxylic acid cycle. In “Methods in Enzymol.” Vol. IV, pp. 584–609 (Colowick, S. P., and N. O. Kaplan, Eds.). New York: Academic Press Inc. 1957.

    Google Scholar 

  • Tchen, T. T., F. A. Loewus and B. Vennesland: The mechanism of enzymatic carbon dioxide fixation into oxalacetate. J. biol. Chem. 213, 547–555 (1955).

    PubMed  CAS  Google Scholar 

  • Tchen, T. T., and B. Vennesland: Enzymatic carbon dioxide fixation into oxalacetate in wheat germ. J. biol. Chem. 213, 533–546 (1955).

    PubMed  CAS  Google Scholar 

  • Thomas, R. C., and L. J. Reed: Synthesis and properties of high specific activity DL-α-lipoic acid-S352. J. Amer. chem. Soc. 77, 5446–5448 (1955).

    Article  CAS  Google Scholar 

  • Thunberg, T.: Zur Kenntnis des intermediären Stoffwechsels und der dabei wirksamen Enzyme. Skand. Arch. Physiol. 40, 1–91 (1920).

    Article  CAS  Google Scholar 

  • Topper, Y. J., and A. B. Hastings: A study of the chemical origins of glycogen by use of C14-labeled carbon dioxide, acetate and pyruvate. J. biol. Chem. 179, 1255–1264 (1949).

    PubMed  CAS  Google Scholar 

  • Topper, Y. J., and D. Stetten Jr.: Formation of “acetyl” from succinate by rabbit liver slices. J. biol. Chem. 209, 63–71 (1954).

    PubMed  CAS  Google Scholar 

  • Utter, M. F.: Interrelationships of oxalacetic and L-malic acids in carbon dioxide fixation. J. biol. Chem. 188, 847–863 (1951).

    PubMed  CAS  Google Scholar 

  • Utter, M. F., L. O. Krampitz and B. H. Werkman: Oxidation of acetyl phosphate and other substrates by Micrococcus lysodeikticus. Arch. Biochem. 9, 285–300 (1946).

    PubMed  CAS  Google Scholar 

  • Utter, M. F., and K. Kurahashi: Purification of oxalacetic carboxylase from chicken liver. J. biol. Chem. 207, 787–802 (1954).

    PubMed  CAS  Google Scholar 

  • Utter, M. F., and K. Kurahashi: Mechanism of action of oxalacetic carboxylase. J. biol. Chem. 207, 821–841 (1954a).

    PubMed  CAS  Google Scholar 

  • Utter, M. F., and K. Kurahashi, and I. A. Rose: Some properties of oxalacetic carboxylase. J. biol. Chem. 207, 803–819 (1954).

    PubMed  CAS  Google Scholar 

  • Utter, M. F., and H. G. Wood: Fixation of carbon dioxide in oxalacetate by pigeon liver. J. biol. Chem. 160, 375–376 (1945).

    CAS  Google Scholar 

  • Utter, M. F., and H. G. Wood: Fixation of carbon dioxide in oxalacetate by pigeon liver. J. biol. Chem. 164, 455–476 (1946).

    PubMed  CAS  Google Scholar 

  • Utter, M. F., and H. G. Wood: Mechanisms of fixation of carbon dioxide by heterotrophs and autotrophs. Advane. Enzymol. 12, 41–151 (1951).

    CAS  Google Scholar 

  • Vennesland, B., J. Ceithaml and M. B Gollub: The fixation of carbon dioxide in a plant tricarboxylic acid system. J. biol. Chem. 171, 445–446 (1947).

    CAS  Google Scholar 

  • Vennesland, B.E. A. Evans Jr. and K. I. Altman: The effects of triphosphopyridine nucleotide and of adenosine triphosphate on pigeon liver oxalacetic carboxylase. J. biol. Chem. 171, 675–686 (1947).

    PubMed  CAS  Google Scholar 

  • Vennesland, B., T. T. Tchen and F. A. Loewus: Mechanism of enzymatic carbon dioxide fixation into oxalacetate. J. Amer. chem. Soc. 76, 3358–3359 (1954).

    Article  CAS  Google Scholar 

  • Villee, B. A., V. K. White and A. B. Hastings: Metabolism of C14-labeled glucose and pyruvate by rat diaphragm muscle in vitro. J. biol. Chem. 195, 287–297 (1952).

    PubMed  CAS  Google Scholar 

  • Weinhouse, S.: Oxidative metabolism of neoplastic tissues. Advanc. Cancer Res. 3, 269–325 (1955).

    Article  CAS  Google Scholar 

  • Weinhouse, S., and R. H. Millington : Acetate metabolism in yeast, studied with isotopic carbon. J. Amer. chem. Soc. 69, 3089–3093 (1947).

    Article  CAS  Google Scholar 

  • Weinhouse, S., and R. H. Millington, and K. F. Lewis: Oxidation of glucose by yeast, studied with isotopic carbon. J. Amer. chem. Soc. 70, 3680–3683 (1948).

    Article  CAS  Google Scholar 

  • Weinhouse, S., and R. H. Millington, and B. E. Wenner: Occurrence of the citric acid cycle in tumors. J. Amer. chem. Soc. 72, 4332–4333 (1950).

    Article  CAS  Google Scholar 

  • Werkman, B. H., and H. G. Wood: Heterotrophic assimilation of carbon dioxide. Advanc. Enzymol. 2, 135–182 (1942).

    CAS  Google Scholar 

  • Wiame, J. M.: Le role biosynthetique du cycle des acides tricarboxyliques. Advanc. Enzymol. 18, 241–280 (1957).

    CAS  Google Scholar 

  • WielandH..: Über den Mechanismus der Oxydations Vorgänge. Ergebn. Physiol. 20, 477–518 (1922).

    Article  Google Scholar 

  • Wieland, H.: Mechanismus der Oxydation und Reduktion in der lebenden Substanz. In „Handbuch der Biochemie des Menschen und der Tiere”. Vol. II., S. 252–272. Jena: Gustav Fischer 1925.

    Google Scholar 

  • Wilcox, P. E., C. Heidelberger and V. R. Potter: Chemical preparation of asymmetrically labeled citric acid. J. Amer. chem. Soc. 72, 5019–5024 (1950).

    Article  CAS  Google Scholar 

  • Wong, D. T. O., and S. J. Ajl: Conversion of acetate and glyoxylate to malate. J. Amer. chem. Soc. 78, 3230–3231 (1956).

    Article  CAS  Google Scholar 

  • Wong, D. T. O., and S. J. Ajl: Significance of the malate synthetase reaction in bacteria. Science 126, 1013–1014 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Wood, H. G.: Discussion on bacterial respiration; criteria for experiments on isotopes. In “A symposium on respiratory enzymes”. (O. Meyerhof, Ed.), pp. 252–258. Madison: University of Wisconsin Press 1942.

    Google Scholar 

  • Wood, H. G.: The fixation of carbon dioxide and the interrelationships of the tricarboxylic acid cycle. Physiol. Rev. 26, 198–246 (1946).

    PubMed  CAS  Google Scholar 

  • Wood, H. G.: The synthesis of liver glycogen in the rat as an indicator of intermediary metabolism. Cold Spr. Harb. Symp. quant. Biol. 13, 201–210 (1948).

    Article  CAS  Google Scholar 

  • Wood, H. G.: Tracer studies on the intermediary metabolism of carbohydrates. In “A symposium on the use of isotopes in biology and medicine” pp. 209–242. Madison: University of Wisconsin Press 1949.

    Google Scholar 

  • Wood, H. G., B. Vennesland and E. A. Evans Jr.: The mechanism of carbon dioxide fixation by cell-free extracts of pigeon liver: distribution of labeled carbon dioxide in the products. J. biol. Chem. 159, 153–158 (1945).

    CAS  Google Scholar 

  • Wood, H. G., and C. H. Werkman: The utilization of C02 in the dissimilation, of glycerol by the propionic acid bacteria. Biochem. J. 30, 48–53 (1936).

    PubMed  CAS  Google Scholar 

  • Wood, H. G., and C. H. Werkman: The utilization of CO2 by the propionic acid bacteria. Biochem. J. 32, 1262–1271 (1938).

    PubMed  CAS  Google Scholar 

  • Wood, H. G., and C. H. Werkman, A. Hemingway and A. O. Nier: Heavy carbon as a tracer in bacterial fixation of carbon dioxide. J. biol. Chem. 135, 789–790 (1940).

    CAS  Google Scholar 

  • Wood, H. G., and C. H. Werkman: Heavy carbon as a tracer in heterotrophic carbon dioxide assimilation. J. biol. Chem. 139, 365–376 (1941).

    CAS  Google Scholar 

  • Wood, H. G., and C. H. Werkman: The position of carbon dioxide carbon in succinic acid synthesized by heterotrophic bacteria. J. biol. Chem. 139, 377–381 (1941a).

    CAS  Google Scholar 

  • Wood, H. G., and C. H. Werkman: Mechanism of fixation of carbon dioxide in the Krebs cycle. J. biol. Chem. 139, 483–484 (1941b).

    CAS  Google Scholar 

  • Wood, H. G., and C. H. Werkman: Fixation of carbon dioxide by pigeon liver in the dissimilation of pyruvic acid. J. biol. Chem. 142, 31–45 (1942).

    CAS  Google Scholar 

  • Zeller, A.: Die Mobilisierung der Fette bei der Keimung. In „Handbuch der Pflanzenphysiologie“ (herausgegeb. v. W. Ruhland) Band VII, S. 323–353. Berlin-Göttingen-Heidelberg: Springer 1957.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1961 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holldorf, A., Holzer, H. (1961). Radioaktive Isotope bei Untersuchungen zum Citronensäurecyclus. In: Aisenberg, A.C., et al. Radioactive Isotopes in Physiology Diagnostics and Therapy / Künstliche Radioaktive Isotope in Physiologie Diagnostik und Therapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49761-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49761-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49477-2

  • Online ISBN: 978-3-642-49761-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics