Skip to main content
  • 30 Accesses

Abstract

In studying sense organs one of our ultimate aims is to learn to understand the mechanisms of sensory integration. For this reason it is necessary to use the appropriate adequate stimuli and combihe an analysis of the sensory response in afferent nerves with parallel exploration of what takes place in the nervous centres. Every experimenter will realize that there can be no understanding of sensory integration hefore we know the specific attributes whereby one kind of response is discriminated from another, in fact, the fundamental general problem facing the investigator nearly always concerns discrimination. The more important the sense organ, the better developed its discriminatory function. Sight, our most important channel of information, has brought discrimination to such a degree of perfection that a nervous centre behind the receptors immediately takes charge of the primary message for purposes of elaboration. This fact should always be borne in mind. It is a complication as well as an advantage providing us with unique opportunities for research.

The Nobel Institute for Neurophysiology, Karolinska Institutet, Stockholm. — Paper received June 20 1949

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, E. D.: Mechanism of nervous action. Oxford 1932.

    Google Scholar 

  2. -Visual responses in the cat and monkey. J. of Physiol 100, 9P (1941).

    Google Scholar 

  3. -Rod and cone components in the electric response of the eye. J. of Physiol. 105, 24–37 (1946).

    Google Scholar 

  4. -, and R. Matthews: The action of light on the eye. The discharge of impulses in the optic nerve and its relation to the electric change in the retina. J. of Physiol. 63, 378–414 (1927).

    Google Scholar 

  5. --The action of light on the eye. Part II. The processes involved in retinal excitation. J. of Physiol. 64, 279–301 (1927).

    Google Scholar 

  6. --The action of light on the eye. Part III. The interaction of retinal neurones. J. of Physiol. 65, 273–298 (1928).

    Google Scholar 

  7. Ball, S., F. D. Collins, R. A. Morton and A. L. Stubbs: Chemistry of visual process. Nature (Lond.) 1948, 161, 424.

    Google Scholar 

  8. -R. A. Morton and T. W. Goodwin: Retinenecvitamin A aldehyde. Biochemic. J.40, Proc. 59 (1946).

    Google Scholar 

  9. Bayliss, L. E., R. J. Lythgoe and K. Tansley: Some new forms of visual purpie found in sea fishes, with a note on the visual celIs of origin. Proc. roy. Soc. Lond. B 120, 95–113 (1936).

    Google Scholar 

  10. Bernhard, C. G.: Isolation of retinal and optic ganglion response in the eye of Dytiscus. J. of Neurophysiol. 5, 32–48 (1942).

    Google Scholar 

  11. -R. Granit and C. R. Skoglund: The breakdown of accommodation —nerve as model sense organ. J. of Neurophysiol. 5, 55–68 (1942).

    Google Scholar 

  12. Bills, M. A.: The lag of visual sensation in its relation to wave-Iengths and intensity of light. Psychol. Monogr. 28, 1–101 (1920).

    Google Scholar 

  13. Bliss, A. F.: Derived photosensitive pigments from invertebrate eyes. J. gen. Physiol. 26, 361–367 (1943).

    Google Scholar 

  14. -Thc chemistry of daylight vision. J. gen. Physiol. 29, 277–297 (1946).

    Google Scholar 

  15. -The mechanism of retinal vitamin A formation. J. of biol. Chem. 172, 165–178 (1948).

    Google Scholar 

  16. -The absorption spectra of visual purpie of the squid and its bleaching products. J. of biol. Chem. 176, 563–569 (1948).

    Google Scholar 

  17. Bogoslowski, A. J., et J. Segal: La sensibilite electrique de l’oeil. I. J. Physiol. et Path. gén. 39, 101–117 (1946).

    Google Scholar 

  18. --La sensibilité électrique de I’oeil. H. J. Physiol. et Path. gén. 39, 87–99 (1946).

    Google Scholar 

  19. Brooks, C. McC., and J. C. Eccles: An electrical hypothesis of central inhibition. Nature (Lond.) 159, 760–764 (1947).

    Google Scholar 

  20. --Inhibitory action on a motor nucleus and iocal potentials generated therein. J. of Neurophysiol. 11, 401–416 (1948).

    Google Scholar 

  21. --Inhibition of.antidromic responses of motoneurones. J. of Neurophysiol. 11, 431–445 (1948).

    Google Scholar 

  22. --and J. L. Malcolm: Synaptic potentials of inhibited motoneurones. J. of Neurophysiol. 11, 417–431 (1948).

    Google Scholar 

  23. Chase, A. M., and C. Haig: The absorption spectrum of visual purple. J. gen. Physiol. 21, 411–430 (1938).

    Google Scholar 

  24. Creed, R. S., D. Denny-Brown, J. C. Eccles, E. G. T. Liddell and C. S. Sherrington: Reflex activity of the spinal cord. Oxford 1932.

    Google Scholar 

  25. Dartnall, H. J. A.: Visual purpie and the photopic luminosity curve. Brit. J. Ophthalm. 32, 793–811 (1948).

    Google Scholar 

  26. -, and C. F. Goodeve: Scotopic luminosity curve and the absorption spectrum of visual purple. Nature (Lond.) 139, 409 (1937).

    Google Scholar 

  27. Donner, K. O.: Variations, due to colour, in the spike frequency-time curves of single retinal elements. Experientia 5, 413 (1949). Later in full in Acta physiol. scand. (Stockh.) 1950. In course of publication.

    Google Scholar 

  28. -, and R. Granit: Scotopic dominator and state of visual purple in the retina. Acta physiol. scand. (Stockh.) 17, 161–169 (1949).

    Google Scholar 

  29. --The effect of illumination upon the sensitivity of isolated retinal elements to polarization. Acta physiol. scand. (Stockh.) 18, 113–120 (1949).

    Google Scholar 

  30. Euler, H. V., u. E. Adler: Über die Verbreitung von Lyochromen und von Vitamin B2 Sv. Kem. Tidskr. 45, 276–280 (1933).

    Google Scholar 

  31. Forbes, A., B. Renshaw and B. Rempel: Units of electrical activity in the cerebral cortex. Amer. J. Physiol. 119, 309–310 (1937).

    Google Scholar 

  32. Gernandt, B.: Colour sensitivity, contrast and polarity of the retinal elements. J. of Neurophysiol. 10, 303–308 (1947).

    Google Scholar 

  33. -The form variations of the spike recorded by a micro-electrode applied on to the mammalian retina. Acta physiol. scand. (Stockh.) 15, 88–92 (1948).

    Google Scholar 

  34. -Polarity of dark adapted retinal on/off-elements as a function of wave-length. Acta physiol. scand. (Stockh.) 15, 286–289 (1948).

    Google Scholar 

  35. Selective adaptation and the off/on-ratio of the retinal on/off-elements. Acta physiol. scand. (Stockh.) 17, 150–160 (1949).

    Google Scholar 

  36. Gernandt, B.: ‘Adaptation factors’ to weak light adaptation of isolated retinal elements. Acta physiol. scand. (Stockh.) 18, 19–25 (1949).

    Google Scholar 

  37. -, and R. Granit: Single fibre analysis of inhibition and the polarity of the retinal elements. J. of Neurophysiol. 10, 295‘302 (1947).

    Google Scholar 

  38. Graham, C. H., and H. K. Hartline: The response of single visual sense cells to lights of different wave-Iengths. J. gen. Physiol. 18, 917‘931 (1935).

    Google Scholar 

  39. Granit, R.: Comparative studies on the peripheral and central retina. I. On interaction between distant areas in the human eye. Amer. J. Physiol. 94, 41–50 (1930).

    Google Scholar 

  40. -The components of the retinal action potential and their relation to the discharge in the optic nerve. J. of Physiol. 77, 207–240 (1933).

    Google Scholar 

  41. -Rotation of activity and spontaneous rhythms in the retina. Acta Physiol. scand. (Stockh.) 1, 370–379 (1941).

    Google Scholar 

  42. -The “red” receptor of Testudo. Acta physiol. scand. (Stockh.) 1, 386–388 (1941).

    Google Scholar 

  43. -Isolation of colour-sensitive elements in a mammalian retina. Acta physiol. scand. (Stockh.) 2, 93–109 (1941).

    Google Scholar 

  44. -A relation between rod and cone substances based on scotopic and photopie spectra of Cyprinus, Tinca, Anguilla, and Testudo. Acta physiol. scand (Stockh.) 2, 334–346 (1941).

    Google Scholar 

  45. -Colour receptors of the frog’s retina. Acta physiol. scand. (Stockh.) 3, 137–151 (1941).

    Google Scholar 

  46. -Spectral properties of the visual receptor elements of the guinea pig. Acta physiol. scand. (Stockh.) 3, 318–328 (1942).

    Google Scholar 

  47. -“Red” and “Green” receptors in the retina of Tropidonotus. Acta physiol. scand. (Stockh.) 5, 108–113 (1943).

    Google Scholar 

  48. -The spectral properties of the visual receptors of the cat. Acta physiol. scand. (Stockh.) 5, 219–229 (1943).

    Google Scholar 

  49. -Stimulus intensity in relation to excitation and pre-and post-excitatory inhibition in isolated elements of mammalian retinae. J. of Physiol. 103, 103–118 (1944).

    Google Scholar 

  50. -Some properties of post-excitatory inhibition studied in the optic nerve with micro-electrodes. Veto Akad. Arkiv Zool. A36, No 11 (1945).

    Google Scholar 

  51. -The distribution of excitation and inhibition in single-fibre responses from a polarized retina. J. of Physiol. 105, 45–53 (1946).

    Google Scholar 

  52. -Sensory mechanisms of the retina. London: Oxford Univ. Press 1947.

    Google Scholar 

  53. -Neural organization of the retinal elements, as revealed by polarization. J. of Neurophysiol. 11, 239–252 (1948).

    Google Scholar 

  54. -The mammalian colour modulators. J. of Neurophysiol. 11, 253–260 (1948).

    Google Scholar 

  55. -The effect of two wave lengths of light upon the same retinal element. Acta physiol. scand. (Stockh.) 18, 281–294 (1949).

    Google Scholar 

  56. -, and T. Helme: Changes in retinal excitability due to polarization and some observations on the relation between the processes in retina and nerve. J. of Neurophysiol. 2, 556–565 (1939).

    Google Scholar 

  57. -, and Svaetichin: Principles and technique of the electrophysiological analysis

    Google Scholar 

  58. olour reception with the aid of microelectrodes. Uppsala Läk.för. Förh. 65, 161–177 (1939).

    Google Scholar 

  59. -, and K. Tansley: Rods, cones and the localization of preexcitatory inhibition in the mammalian retina. J. of Physiol. 107, 54–66 (1948).

    Google Scholar 

  60. -, and P. O. Therman: Inhibition of the off-effect in the optic nerve and its relation to the equivalent phase of the retinal response. J. of Physiol 81, 47P (1934).

    Google Scholar 

  61. --Excitation and inhibition in the retina and in the optic nerve. J. of Physiol. 83, 359–381 (1935).

    Google Scholar 

  62. --and C. M. Wrede: Selective effects of different adapting wave-Iengths on the dark adapted frog’s retina. Skand. Arch. Physiol. (Berl. u. Lpz.) 80, 142–155 (1938).

    Google Scholar 

  63. Granit, R, P. B. Therman and C. M. Wrede: The electrical responses of lightadapted frog’s eyes to monochromatic stimuli. J. of Physiol. 89, 239–256 (1937).

    Google Scholar 

  64. Grund Fest, H.: The sensibility of the sun-fish, Lepomis, to monochromatic radiation of low intensities. J. gen. Physiol. 15, 307’328 (1932).

    Google Scholar 

  65. -The spectral sensibility of the sun-fish as evidence for a double visual system. J. gen. Physiol. 15, 507’524 (1932).

    Google Scholar 

  66. Hartline, H. K.: Impulses in single optic nerve fibres of the vertebrate retina. Amer. J. Physiol. 113, 59P (1935).

    Google Scholar 

  67. -The response of single optic nerve fibres of the vertebrate eye to illumination of the retina. Amer. J. Physiol. 121, 400–415 (1938).

    Google Scholar 

  68. -The discharge of impulses in the optic nerve of Pecten in response to illumination of the eye. J. cellul. a. comp. Physiol. 11, 465–478 (1938).

    Google Scholar 

  69. -The receptive field of the optic nerve fibres. Amer. J. Physiol. 130, 690–699 (1940).

    Google Scholar 

  70. -The effects of spatial summation in the retina on the exeitation of the fibers in the optic nerve. Amer. J. Physiol. 130, 700–711 (1940).

    Google Scholar 

  71. -, and C. H. Graham: Nerve impulses from single receptors in: the eye. J. cellul. a. comp. Physiol. 1, 277–295 (1932).

    Google Scholar 

  72. Hartrldge, H.: The visual perception of fine detail. Phil. Trans. roy. Soc. Lond. B 1947, No 592.

    Google Scholar 

  73. Hecht, S.: The retinal processes concerned with visual acuity and colour vision. Howe Lab. Ophthalm. Bull. 1931, No 4.

    Google Scholar 

  74. -S. Shlaer and M. H. Pirenne: Energy, quanta and vision. J. gen. Physiol. 25, 819–840 (1942).

    Google Scholar 

  75. Hosoya. Y., T. Okita and T. Akune: Über die lichtempfindliche Substanz in der Zapfennetzhaut. Tohoku J. exper. Med. 34, 532–541 (1938).

    Google Scholar 

  76. Judd, D. B.: Standard response functions for protanopic and deuteranopic vision. J. Res. nato Bur. Standards 33, 407–437 (1944).

    Google Scholar 

  77. Karpe, G.: The basis of clinical electroretinography. Acta ophthalm., K2benh.) Suppl. 24, 1–118 (1945).

    Google Scholar 

  78. -Apparatus and method for clinical recording of the electroretinogram. Documenta ophthalm. 2, 268–276 (1948).

    Google Scholar 

  79. -Early diagnosis of Siderosis retinae by the use of electroretinography. Documenta ophthalm. 2, 277–296 (1948).

    Google Scholar 

  80. -, and K. Tansley: The relationship between the change in the electroretinogram and the subjective dark-adaptation curve. J. of Physiol. 107, 272–279 (1947).

    Google Scholar 

  81. Krause, A. C., and A. E. Sldwell: The absorption spectra of visual purple and its photodecomposition products. Amer. J. Physiol. 121, 215–223 (1938).

    Google Scholar 

  82. Kravkov. S. V., and L. P. Galochkina: Colour vision as affected byelectrotonus. C. r. Acad. Sei. URSS. 48, No 1 (1945).

    Google Scholar 

  83. Kries, J. v.: Die Gesichtsempfindungen. In Nagels Handbuch der Physiologie, Bd. 3, S. 109–282. t 904.

    Google Scholar 

  84. KÜhne, W., und H. Sewall: Zur Physiologie des Sehepithels, insbesondere der Fische. Unters. Physiol. Inst. Univ. Heidelbg 3, 221–277 (1879–80).

    Google Scholar 

  85. KÖnig, A.: Gesammelte Abhandlungen zur Physiologischen Optik. Leipzig 1903.

    Google Scholar 

  86. Lloyd, D. P. C.: The interaction of antidromic and orthodromic volleys in a segmental spinal motor nucleus. J. of Neurophysiol. 6, 143–152 (1943).

    Google Scholar 

  87. Loeb, J.: Forced movements, tropisms, and animal conduct. Monogr. on Exper. Biol. Philadelphia a. London: Lippincott Co. 1918.

    Google Scholar 

  88. Lorente De No, R.: Transmission of impulses through cranial motor nuclei. J. of Neurophysiol. 2, 402–464 (1939).

    Google Scholar 

  89. Lythgoe, R J.: The absorption spectra of visual purpie and of indicator yellow. J. of Physiol. 89, 331–358 (1937).

    Google Scholar 

  90. -, and J. P. Quilliam: The relation of transient orange to visual purpie and indicator yellow. J. of Physiol. 94, 399–410 (1938).

    Google Scholar 

  91. Monnier, M.: L’Electroretinogramme de l’homme. J. Electroenc. a. Clin. Neurophysiol. 1, 87–108 (1949).

    Google Scholar 

  92. Morton, R. A.: Chemical aspects of the visual process. Nature (Lond.) 153, 69–71 (1944).

    Google Scholar 

  93. -, and T. W. Goodwin: Preparation of retinene in vitro. Nature (Lond.) 153, 405–406 (1944).

    Google Scholar 

  94. Motokawa, K.: Das Elektroretinogramm des Menschen und seine Beziehung zur Unterschiedsschwelle der Lichtempfindlichkeit und zur Sehschärfe. Jap. J. med. Sei., Biophysics 8, 135–147 (1942).

    Google Scholar 

  95. -Die Abhängigkeit des Aktionsstroms der menschlichen Netzhaut von Reizintensität und Gesichtsfeldgröße. Tohoku J. exper. Med. 43, 371–382 (1942).

    Google Scholar 

  96. -, und K. Mita: Über eine einfachere Untersuchungsmethode und Eigenschaften der Aktionsströme der Netzhaut des Menschen. Tohoku J. exper. Med. 42, 114–133 (1942).

    Google Scholar 

  97. :-und T. Mita: Das Elektroretinogramm des Menschen und die Gesichtswahrnehmung in Abhängigkeit von der Intensität und Farbe der Reizlichter. Jap. J. med. Sei., Biophysics 9, 23–35 (1943).

    Google Scholar 

  98. --Die Helligkeitsverteilung im Dispersionsspektrum und die Aktionsströme der menschlichen Netzhaut. Tohoku J. exper. Med. 48, 267–283 (1945).

    Google Scholar 

  99. MÜller, G. E.: Über die galvanischen Gesichtsempfindungen. Z. Psychol. 14, 329–374 (1897).

    Google Scholar 

  100. Parinaud, H.: La vision. E’tude physiologique. Paris 1898.

    Google Scholar 

  101. Parry, D. A.: Thefunctionoftheinsect ocellus. J.of exper. Biol. 24, 211–219 (1947).

    Google Scholar 

  102. Polyak, S.: Minute structure of the retina in monkeys and in apes. Arch. of Ophthalm. 15, 477–519 (1936).

    Google Scholar 

  103. -The retina. Univ. Chicago Press 1941.

    Google Scholar 

  104. Purkinje, J. E.: Beobachtungen und Versuche zur Physiologie der Sinne. Beiträge. zur Kenntnis des Sehens in subjektiver Hinsicht. H. Prag 1823.

    Google Scholar 

  105. Ramon Y Cajal, S.: Die Retina der Wirbeltiere. Wiesbaden 1894.

    Google Scholar 

  106. -La retine des vertebres. Trav. Labor. Rech. biol. Univ. Madr., Suppl. 28 (1933).

    Google Scholar 

  107. Renqvist, Y.: Über die photoelektrische Reaktion des Froschauges. Skand. Arch. Physiol. (Berl. u. Lpz.) 45, 95–131 (1924).

    Google Scholar 

  108. Renshaw, B.: Influence of the discharge of motoneurons upon excitation of neighboring motoneurons. J. of Neurophysiol 4, 167–183 (1941).

    Google Scholar 

  109. -Effects of presynaptic volleys on spread of impulses over the soma of the motoneuron. J. of Neurophysiol. 5, 235–243 (1942).

    Google Scholar 

  110. -Central effects of centripetal impulses in axons of spinal ventral roots. J. of Neurophysiol. 9, 191–204 (1946).

    Google Scholar 

  111. Saito, Z.: Isolierung der Stäbchenaußenglieder und spektrale Untersuchung des daraus hergestellten Sehpurpurextraktes. Tohoku J. exper. Med. 32, 432–446 (1938).

    Google Scholar 

  112. Schaefer, H.: Elektrophysiologie, Bd. II. Wien: Franz Deuticke 1942.

    Google Scholar 

  113. Schultze, M.: Die Retina. In STRICKERS Handbuch der Lehre von den Geweben, Bd.2, S. 977–1034. 1871.

    Google Scholar 

  114. Sherrington, C. S.: The integrative action of the nervous system. Oxford: Univ. Press 1906.

    Google Scholar 

  115. Shlaer, S. A.: A photoelectric transmission spectrophotometer for measurements of photosensitive solutions. J. opt. Soc. Amer. 28, 18 (1937).

    Google Scholar 

  116. Skoglund, C. R.: Reeiprocal effects due to stimulation of the spinal cord by constant currents of opposite direction. Nature (Lond.) 158, 131 (1946).

    Google Scholar 

  117. -Reeiprocal effects due to stimulation of the spinal cord by currents of opposite direction. Acta physiol. scand. (Stockh.) 14, Suppl. 47, 1 (1947).

    Google Scholar 

  118. -Reciprocal effects evoked by stimulation of the descending motor tracts with currents of opposite direction. Acta physiol. scand (Stockh.) 14, Suppl 47, 2 (1947).

    Google Scholar 

  119. Stiles, W. S.: The directional sensitivity of the retina and the spectral sensitivities of the rods and cones. Proc. roy. Soc. Lond. B 127, 64–105 (1939).

    Google Scholar 

  120. STILES, W. S.: Separation of the ‘blue’ and ‘green’ mechanisms of foveal vision by measurements of increment thresholds. Proc. roy. Soc. Lond. B 133, 418–434 (1946).

    Google Scholar 

  121. Studnitz, G. v.: Weitere Studien an der Zapfensubstanz. Pflügers Arch. 239, 515–525 (1937).

    Google Scholar 

  122. -Physiologie des Sehens. Leipzig: Akademische Verlagsgesellschaft 1940.

    Google Scholar 

  123. Thomson, L. C.: The effect of change of brightness level upon the fovealluminosity curve measured with small fields. J. of Physiol. 106, 368–377 (1947).

    Google Scholar 

  124. -Intensity discrimination of the central fovea measured with small fields. J. of Physiol. 108, 78–91 (1949).

    Google Scholar 

  125. Trendelenburg, W.: Quantitative Untersuchungen über die Bleichung des Sehpurpurs in monochmmatischem Licht. Z. Psychol. usw. 37, 1–55 (1904).

    Google Scholar 

  126. Wald, G.: Carotenoids and the visual cycle. J. gen. Physiol. 19, 351–371 (1935).

    Google Scholar 

  127. -Photo-labile pigments of the chicken retina. Nature (Lond.) 140, 545 (1937).

    Google Scholar 

  128. -On rhodopsin in solution. J. gen. Physiol. 21, 795–832 (1938).

    Google Scholar 

  129. -On the distribution of vitamins Al and A2. J. gen. Physiol.22, 391–415 (1939).

    Google Scholar 

  130. -The photoreceptor function of the carotenoids and vitamins A, vitamins and hormones. New York: Academic Press Inc. 1943.

    Google Scholar 

  131. -The synthesis from vitamin Al of “retinenel” and of a new 545 mp. chromogen yielding light-sensitive product. J. gen. Physiol. 31, 489–504 (1948).

    Google Scholar 

  132. Waller, A. D.: On the “Blaze-currents” of the frog’s eyeball. Proc. roy. Soc. Lond. 67, 439–441 (1900).

    Google Scholar 

  133. -On the “Blaze zurrents” of the frog’s eyeball. Phil. Trans. roy. Soc. Lond., In. s. 194, 183–233 (1901).

    Google Scholar 

  134. Walls, G. L.: The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science. Michigan 1942.

    Google Scholar 

  135. Walters, H. V.: Some experiments on the trichromatic theory of vision. Proc. roy. Soc. Lond. B 131, 27–50 (1942).

    Google Scholar 

  136. -The spectral sensitivity of the fovea and extrafovea in the PURKINJE range. Proc. roy. Soc. Lond. B 131, 340–361 (1943)

    Google Scholar 

  137. Wilska, A.: Aktionspotentialänderungen emzelner Netzhautelemente des Frosches. Acta Soc. Medic. fenn. Duodecim A 12, 50–62 (1939).

    Google Scholar 

  138. Aktionspotentialentladungen einzelner Netzhautelemente der Katze. Acta Soc. Medic. fenn. Dnodecim A 12, 63–71 (1939).

    Google Scholar 

  139. -, and H. K. Hartline: The origin of “off-response” in the optic pathway. Amer. J. Physiol. 133 491P (1941)

    Google Scholar 

  140. Wright, W. D.: The foveallight adaptation process. Proc roy. Soc. Lond. B 122, 220–245 (1937).

    Google Scholar 

  141. -Researches on normal and defective colonr vision, London: Kimpton 1946.

    Google Scholar 

  142. -, and R. Granit: On the correlation of some sensory and physiological phenomena of vision. Brit. J. Ophthalm. Suppl. 9 (1938).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1950 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Granit-Stockholm, R. (1950). The organization of the vertebrate retinal elements. In: Krayer, O., et al. Ergebnisse der Physiologie Biologischen Chemie und Experimentellen Pharmakologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49756-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49756-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49472-7

  • Online ISBN: 978-3-642-49756-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics