Skip to main content

Extension of the Kolmogorov-Smirnov Test to Regression Alternatives

  • Chapter
Bernoulli 1713 Bayes 1763 Laplace 1813

Summary

The Kolmogorov-Smirnov test for regression alternatives is defined in Section 3, where an artificial numerical example is also given. The limiting distribution is derived in Section 4 by means of techniques developed in Section 1 (conditions for convergence in distribution in C [0, 1]) and Section 2 (extension of a Kolmogorov inequality to the case of sampling without replacement from a finite population). The auxiliary results just mentioned also offer some interest in their own right.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartoszynski, L.: On a certain characterization of measures in C [0, 1], Bull. Acad. pol. Sci. Cl. 3. 10, No. 8, 445 (1962).

    MathSciNet  Google Scholar 

  2. Donsker, M. D.: Justification and extension of Doob’s heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Statist. 23, 277 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  3. Doob, J. L.: Heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Stat. 20, 393 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  4. Driml, M.: Convergence of compact measures on metric spaces. Transactions of the 2nd Prague Conf. Inf. Th. 1959, 71.

    Google Scholar 

  5. Hájek, J.: Asymptotically most powerful rank-order tests. Ann. Math. Statist. 33, 1124 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  6. Isserlis, L.: On the moment distributions of moments in the case of samples drawn from a limited universe. Proc. roy. Soc. 132, 586 (1931).

    Article  Google Scholar 

  7. Le Cam, L.: Convergence in distribution of stochastic processes. Univ. Calif. Publ. Statistics. 2, No. 11, 207 (1957).

    Google Scholar 

  8. Prohorov, Ju. V.: Convergence of stochastic processes and limiting theorems of probability theory. Probability Theory 1, 177 (1956).

    MathSciNet  Google Scholar 

  9. — The method of characteristic functionals. Proc. Fourth Berkeley Symposium on Mathematical Statistics and Probability 1961, 403.

    Google Scholar 

  10. Smirnov, N. V.: Estimation of the difference of two empirical distribution functions from two independent samples (in Russian). Bull. Mosk, Univ. 2, 3 (1939).

    Google Scholar 

  11. Spacek, A.: Regularity properties of random transforms. Czech. Math. J. 5, 143 (1955).

    MathSciNet  Google Scholar 

  12. Varadarajan, V. S.: Convergence of stochastic processes. Thesis. Indian Stat. Institute 1958.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jerzy Neyman Lucien M. Le Cam

Rights and permissions

Reprints and permissions

Copyright information

© 1965 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hájek, J. (1965). Extension of the Kolmogorov-Smirnov Test to Regression Alternatives. In: Neyman, J., Le Cam, L.M. (eds) Bernoulli 1713 Bayes 1763 Laplace 1813. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49750-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49750-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49467-3

  • Online ISBN: 978-3-642-49750-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics