Skip to main content

On the Distribution of Sums of Independent Random Variables

  • Chapter
Bernoulli 1713, Bayes 1763, Laplace 1813

Abstract

Let {X j ; j = 1, 2,...} be a finite sequence of independent random variables. Let S = Σ X j be their sum, and let P j be the distribution of X j . Let M be the measure defined on the line deprived of its origin by M (A) = Σ j P j {A ∩ {0}c}. The purpose of the present paper is to develop certain results on the approximation of the distribution L (S)of S by the accompanying infinitely divisible distribution which has for Paul Lévy measure the measure M itself. If λ= || M || is the total mass of M then V = M/λ is a probability measure. Let {Z k ; k = 1, 2,...} be an independent sequence of random variables having common distribution V. Let N be a Poisson variable independent of the Z k and such that EN = λ. A “natural” infinitely divisible approximation to the distribution of S is the distribution of T = Zk with Z o = 0. If μ is a signed measure, let || μ || be its norm, equal to the total mass || μ || = ||μ + || + || u ||. It can be shown that in some cases the approximation of L (S)by L (T)is good in the sense that || L (S) — L (T) || is small. More generally it will be shown that the Kolmogorov-Smirnov distance ϱ [L (S), L (T)] is small. This distance is defined by

$$ \left( \mu ,\upsilon \right)=\sup \left| \mu \left\{ \left( -\infty ,x \right] \right\}-\upsilon \left\{ \left( -\infty ,x \right] \right\} \right| $$

for any two signed measures,u and v. One could also use Paul Lévy’s diagonal distance Λ [μ, v] defined as the infimum of numbers α such that

$$ v\left\{ \left( -\infty ,x-\alpha \right] \right\}-\alpha \le \mu \left\{ \left( -\infty ,x \right] \right\}\le v\left\{ \left[ -\infty ,x+\alpha \right] \right\}+\alpha $$

for every value of x. However, since Λ is not invariant under scale changes, approximations in this sense are not always entirely satisfactory.

This paper was prepared with the partial support of the United States Army Research Office (Durham), grant DA-ARO(D)-31-124-G 83.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kolmogorov, A. N.: Deux théorèmes asymptotiques sur les sommes de variables indépendentes. Teor. Veroyatnost. i Primenen. 1, 427 (1956).

    Google Scholar 

  2. Kolmogorov, A. N.: On the approximation of distributions of sums of independent summands by infinitely divisible distributions. Sankhya 2, 159 (1963).

    Google Scholar 

  3. Meshalkin, L. D.: On the approximation of distributions of sums by infinitely divisible laws. Teor. Veroyatnost. i Primenen. 6, 257 (1961).

    Google Scholar 

  4. Prohorov, Yu. V.: On the uniform limit theorems of A. N. Kolmogorov. Teor. Veroyatnost. i Primenen. 5, 103 (1960).

    MathSciNet  Google Scholar 

  5. Kolmogorov, A. N.: Sur les propriétés des fonctions de concentration de M. P. LtvY. Ann. Inst. H. Poincaré. 16, 27 (1958).

    MathSciNet  MATH  Google Scholar 

  6. Rogozin, B. A.: On an estimate of the concentration function. Teor. Veroyatnost. i Primenen. 6, 103 (1961).

    MathSciNet  Google Scholar 

  7. Erdös, P.: On a lemma of Littlewood and Offord. Bull. Amer. Math. Soc. 51, 898 (1945).

    Article  MathSciNet  MATH  Google Scholar 

  8. Khintchine, A. Ya: Asymptotische Gesetze der Wahrscheinlichkeitsrechnung. Ergebnisse der Mathematik und ihrer Grenzgebiete. Berlin: Springer 1933.

    Google Scholar 

  9. Prhorov, Yu V.: Asymptotic behavior of the binomial distribution. Uspehi Mat. Nauk. 8, 135 (1953).

    Google Scholar 

  10. Le Cam, L.: An approximation theorem for the Poisson binomial distribution. Pacific J. Math. 10, 1181 (1960).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jerzy Neyman Lucien M. Le Cam

Rights and permissions

Reprints and permissions

Copyright information

© 1965 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

LeCam, L. (1965). On the Distribution of Sums of Independent Random Variables. In: Neyman, J., Le Cam, L.M. (eds) Bernoulli 1713, Bayes 1763, Laplace 1813. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49749-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49749-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49466-6

  • Online ISBN: 978-3-642-49749-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics