Skip to main content

Die Rolle des Acetylcholins in den Elementarvorgängen der Nervenleitung

  • Chapter
  • 27 Accesses

Zusammenfassung

Das Nervensystem vermittelt Nachrichten zwischen der Außenwelt und dem Organismus und zwischen den verschiedenen Stellen und Organen des Körpers. Viele der wichtigsten Funktionen unterstehen der Kontrolle des Nervensystems. Das Gehirn ist der Sitz des Denkens, des menschlichen Intellekts. Im Hinblick auf diese überragende Bedeutung des Nervensystems ist es leicht verständlich, daß Galvanis Ideen über Elektrizität im Nerven mit großer Leidenschaft nicht nur von der wissenschaftlichen Welt, sondern von allen Gebildeten aufgenommen wurden. Die Kritik seiner Auslegungen durch seinen Landsmann Volta war zwar berechtigt. Nichtsdestoweniger stellte es sich heraus, daß Nerventätigkeit tatsächlich mit elektrischen Strömen verknüpft ist. Es dauerte allerdings ein halbes Jahrhundert, bis diese Tatsache durch die Beobachtungen von Matteuci aus Pisa und vor allem durch die klassischen Arbeiten von DuBois-Reymond eindeutig festgestellt wurde. Seitdem, d. h. ungefähr ein Jahrhundert lang, waren fast alle Anstrengungen der Nervenphysiologie mehr oder weniger dem Studium dieser elektrischen Erscheinungen gewidmet. Die Verfügbarkeit hochempfindlicher Meßapparate begünstigte einen schnellen Fortschritt auf diesem Gebiete; besonders durch die Einführung des Kathodenstrahlenoscillographen durch Erlanger und Gasser vor etwa 30 Jahren wurde ein hoher Grad von Vollkommenheit der elektrophysiologischen Meßmethoden erreicht.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abderhalden, E., H. Paffrath: Beitrag zur Frage der Inkret- (Hormon-)Wirkung des Cholins auf die motorischen Funktionen des Verdauungskanals. V. Mitt. Über die Synthese von Cholinestern aus Cholin und Fettsäuren mittels Fermenten des Dünndarms. Fermentforsch. 8, 299 (1925).

    CAS  Google Scholar 

  • Adams, D. H.: The specificity of the human erythrocyte cholinesterase. Biochim. et Biophysica Acta 3, 1 (1949).

    Article  CAS  Google Scholar 

  • Aldridge, W. N., and A. N. Davison: The mechanism of inhibition of cholinesterases by organophosphorus compounds. Biochemic. J. 55, 763 (1953).

    CAS  Google Scholar 

  • Alles, G. A., and R. C. Hawes: Cholinesterases in the blood of man. J. of Biol. Chem. 113, 375 (1940).

    Google Scholar 

  • Altamirano, M., C. W. Coates, H. Grundfest and D. Nachmansohn: Mechanisms of bioelectric activity in electric tissue. I. The response to indirect and direct stimu- lation of electroplaques of electrophorus electricus. J. Gen. Physiol. 37, 91 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Altamirano, M„ W. L. Schleyer, C. W. Coates and D. Nachmansohn: Electrical activity in electric tissue. I. The difference between tertiary and quaternary nitrogen compounds in relation to their chemical and electrical activities. Biochim. et Biophysica Acta 16, 268 (1955).

    Article  CAS  Google Scholar 

  • Ammon, R., and H. Kwiatkowski: Die Bildung von Acetylcholin in Serum und Embryonalextract. Pfligers Arch. 234, 269 (1934).

    Article  CAS  Google Scholar 

  • Asher, L.: Über die chemischen Wirkungen der Herznervenreizung. Pflügers Arch. 210, 689 (1925).

    Article  CAS  Google Scholar 

  • Augustinsson, K. B.: Cholinesterases. Acta physiol. stand. (Stockh.) 15, Suppl. 52, 1 (1948).

    Google Scholar 

  • Augustinsson, K. B.: Substrate concentration and specificity of choline ester splitting enzymes. Arch. of Biochem. 23, 111 (1949).

    CAS  Google Scholar 

  • Augustinsson, K. B.: Acetylcholine esterase and cholinesterase. In J. B. Sumner and K. Myrbaeck, The Enzymes, Vol. I, Part I, p. 443. New York: Academic Press 1950.

    Google Scholar 

  • Augustinsson, K. B., and D. Nachmansohn: Distinction between acetylcholine esterase and other choline ester splitting enzymes. Science (Lancaster, Pa.) 110, 98 (1949a).

    CAS  Google Scholar 

  • Augustinsson, K. B., and D. Nachmansohn: Studies on cholinesterase. VI. Kinetics of the inhibition of acetylcholine esterase. J. of Biol. Chem. 179, 543 (1949).

    CAS  Google Scholar 

  • Baddiley, J., and E. M. Thain: Coenzyme A. Part II. Evidence for its formulation as a derivative of pantothenic acid-4’ phosphate. J. Chem. Soc. 1951, 2253.

    Google Scholar 

  • Barcroft, J., and D. H. Barron: Movement in the mammalian foetus. Erg. Physiol. 42, 107 (1939).

    Google Scholar 

  • Barlow, R. B., and H. R. Ing: Curare-like action of polymethylene bisquaternary ammonium salts. Nature (Lond.) 161, 718 (1948).

    Article  CAS  Google Scholar 

  • Bear, R. S., F. O. Schmitt and J. Z. Young: The sheath components of the giant nerve fibres of the squid. Proc. Roy. Soc. Lond., Ser. B 123, 496 (1937).

    Article  CAS  Google Scholar 

  • Bentley, R., and D. Rittenberg: Enzyme-catalyzed exchange of oxygen atoms between water and carboxylate ion. J. Amer. Chem. Soc. 76, 4883 (1954).

    Article  CAS  Google Scholar 

  • Berg, P.: Participation of adenyl-acetate in the acetate-activating system. J. Amer. Chem. Soc. 77, 3163 (1955).

    Article  CAS  Google Scholar 

  • Bergami, G.: Liberazione di una sostanza acetilcolino-simile da un tronco nervoso sopravvivente durante la stimolazione elettrica in vitro. Boll. Soc. ital. Biol. sper. 11, 275 (1936).

    CAS  Google Scholar 

  • Bergami, G.: Liberazione di una sostanza acetilcolino-simile dalla superficie di taglio del nervo durant l’eccitamento fisiologico. Atti Accad. naz Lincei, Ser. V I 23, 518 (1936).

    Google Scholar 

  • G. Cantoni, T. Gualtierotti: Sulla liberazione di sostanze biologicamento attive dalla superficie di taglio di nervi durante l’eccitamento fisiologico o provocato. I. La loro azione sul preparato di muscolo dorsale di sanguisuga. Arch. Ist. biochim. ital. 8, 267 (1936).

    Google Scholar 

  • Bergmann, F., I. B. Wilson and D. Nachmansohn: Acetylcholinesterase. IX. Structural features determining the inhibition by amino acids and related compounds. J. of Biol. Chem. 186, 693 (1950).

    CAS  Google Scholar 

  • Bergmann, F., I. B. Wilson and D. Nachmansohn: The inhibitory effect of stilbamidine, curare and related compounds and its relationship to the active groups of acetylcholine esterase. Action of stilbamidine upon nerve impulse conduction. Biochim. et Biophysica Acta 6, 217 (1950b).

    Article  CAS  Google Scholar 

  • Berman, R., I. B. Wilson and D. Nachmansohn: Choline acetylase specificity in relation to biological function. Biochim. et Biophysica Acta 12, 315 (1953).

    Article  CAS  Google Scholar 

  • Berman-Reisberg, R.: Sulfhydryl groups of choline acetylase. Biochim. et Biophysica Acta 14, 442 (1954).

    Article  Google Scholar 

  • Berman-Reisberg, R.: Characteristics and mode of action of choline acetylase. Doctoral Thesis, Columbia University, New York 1955.

    Google Scholar 

  • Bernhard, K.: Über die Herkunft der Essigsäure bei den Acetylierungen in vivo. I. Die Acetylierung von Sulfanilamid und p-aminobenzoesäure bei gleichzeitigen Gaben von Deutero-essigsäure. Z. physiol. Chem. 267, 91 (1940)

    Article  CAS  Google Scholar 

  • Bernstein, J.: Elektrobiologie. Braunschweig 1912.

    Google Scholar 

  • Bloch, K., and D. Rittenberg: An estimation of acetic acid formation in the rat. J. of Biol. Chem. 159, 45 (1945)

    CAS  Google Scholar 

  • Boell, E. J., and D. Nachmansohn: Localization of choline esterase in nerve fibers. Science (Lancaster, Pa.) 92, 513 (1940).

    CAS  Google Scholar 

  • Bovet, D., and F. Bovet-Nitti: Structure et activité pharmacodynamique des medicaments du système nerveux végétatif. Basel: S. Karger 1948.

    Google Scholar 

  • Bovet, D., F. Bovet-Nitti, U. Mitarb: Rend. Ist. sup. Sanita 12, 1 (1949)

    Google Scholar 

  • Boyer, P. D., O. J. Koeppe, W. W. Luchsinger and A. B. Falcone: Mechanism of participation of ATP in enzymic syntheses. Federat. Proc. 14, 185 (1955).

    Google Scholar 

  • Brauer, R. W., and M. A. Root: The cholinesterase of human erythrocytes. Federat. Proc. 4, 113 (1945)

    Google Scholar 

  • Brecht, K., u. M. Corsten: Acetylcholin in sensiblen Nerven. Pflügers Arch. 245, 160 (1941).

    Article  CAS  Google Scholar 

  • Brink, F., D. W. Bronk; F. D. Carlson and C. M. Connelly: The Oxygen uptake of active axons. Cold Spring Harbor Symp. Quant. Biol. 17, 53 (1952)

    Article  PubMed  CAS  Google Scholar 

  • Bronk, D. W.: Synaptic mechanisms in sympathetic ganglia. J. of Neurophysiol. 2, 380 (1939)

    Google Scholar 

  • Brown, G. M., J. A. Craig and E. E. Snell: Relation of the lactobacillus bulgaricus factor to pantothenic acid and coenzyme A. Arch, of Biochem. 27, 473 (1950)

    CAS  Google Scholar 

  • Brown, G. L.: Transmission at nerve endings by acetylcholine. Physiologic. Rev. 17, 485 (1937).

    Google Scholar 

  • Buchanan, J. M., and A. B. Hastings: The use of isotopically marked carbon in the study of intermediary metabolism. Physiologic. Rev. 26, 120 (1946).

    CAS  Google Scholar 

  • Bueding, E.: Acetylcholinesterase activity of schistosoma mansoni. Brit. J. Pharmacol. 7, 563 (1952)

    PubMed  CAS  Google Scholar 

  • Bugnard, L: The heat production of cat’s nerve. J. of Physiol. 86, 29 (1936).

    CAS  Google Scholar 

  • Bullock, T. H.: Conduction and transmission of nerve impulses. Ann. Rev. Physiol. 13, 261 (1951)

    Article  CAS  Google Scholar 

  • Bullock, T. H., H. Grundfest, D. Nachmansohn and M. A. Rothenberg: Generality of the role of aetcylcholin in nerve and muscle conduction. J. of Neurophysiol. 10, 11 (1947).

    CAS  Google Scholar 

  • Bullock, T. H., H. Grundfest, D. Nachmansohn and M. A. Rothenberg: Effect of di-isopropyl fluorophosphate (DFP) on action potential and cholinesterase of nerve. J. of Neurophysiol. 10 63 (1947).

    CAS  Google Scholar 

  • Bullock, T. H., H. Grundfest, D. Nachmansohnand M. A. Rothenbergand K. Sterling: Effect of di-isopropyl fluorophosphate (DFP) on action potential and choline esterase of nerve. J. of Neurophysiol. 9, 253 (1946).

    CAS  Google Scholar 

  • Bullock, T. H., D. Nachmansohnand M. A. Rothenberg: Effects of inhibitors of choline esterase on the nerve action potential. J. of Neurophysiol. 9, 9 (1946).

    CAS  Google Scholar 

  • Calabro, Q.: Sulla regolazione neuro-umorale cardiaca. Riv. Biol. 15, 299 (1933).

    Google Scholar 

  • Cantoni, G. L., and O. Loewi: Inhibition of cholinesterase activity of nervous tissues by eserine in vivo. J. of Pharmacol. 81, 67 (1944).

    CAS  Google Scholar 

  • Chang, H. C., W. M. Hsieh, T. H. Liand R. K. S. Dim: Studies on tissue acetylcholine. VI. The liberation of acetylcholine from nerve trunks during stimulation. Chin. J. Physiol. 14, 19 (1939).

    CAS  Google Scholar 

  • Chang, H. C., W. M. Hsieh, W. M. Hsieh, L. Y. Lee, T. H. Liand R. K. S. Dim: Studies on tissue acetylcholine. VII. Acetylcholine content of various nerve trunks and its synthesis in vitro. Chin. J. Physiol. 14, 27 (1939).

    CAS  Google Scholar 

  • Clark, A. J.: The Mode of action of drugs on cells. London: Edw. Arnold and Co. 1933.

    Google Scholar 

  • Clark, A. J.: General Pharmacology. In Handbuch Experimenteller Pharmakologie, Bd. IV. Herausgeg. von W. Heubner u. J. Schueller. Berlin: Springer 1937.

    Google Scholar 

  • Cole, K. S.: Dynamic electrical characteristics of the squid axon membrane. Arch. Sci. Physiol. 3, 253 (1949).

    CAS  Google Scholar 

  • Cole, K. S., and H. J. Curtis: Electric impedance of the squid giant axon during activity. J. Gen. Physiol. 22, 649 (1939).

    Article  PubMed  CAS  Google Scholar 

  • Couteaux, R.: La cholinestérase des plaques motrices après section du nerf moteur. Bull. biol. France et Belg. 76, 14 (1942).

    Google Scholar 

  • Couteaux, R.: Contribution à l’étude de la synapse myoneurale. Rev. can. biol. 6, 563 (1947).

    Google Scholar 

  • Couteaux, R., H. Grundfest, D. Nachmansohnand M. A. Rothenberg: Effect of di-isopropyl fluorophosphate (DFP) on the action potential of muscle. Science (Lancaster, Pa.) 104, 317 (1946).

    CAS  Google Scholar 

  • Couteaux, R., and D. Nachmansohn: Changes of cholinesterase at end plates of voluntary muscle following section of sciatic nerve. Proc. Soc. Exper. Biol. a. Med. 43, 177 (1940).

    CAS  Google Scholar 

  • Couteaux, R., J. Taxi: Recherches histochimiques sur la distribution des activités cholinestératiques au niveau de la synapse myoneurale. Arch. Anat. Micro et Morph. Exper. 41, 352 (1952).

    Google Scholar 

  • Cox, R. T., C. W. Coatesand M. V. Brown: Relations between the structure, electrical characteristics and chemical processes of electric tissue. J. Gen. Physiol. 28, 187 (1945).

    Article  PubMed  CAS  Google Scholar 

  • Cox, R. T., C. W. Coatesand M. V. Brown: Electrical characteristics of electric tissue. Ann. New York Acad. Sci. 47, 487 (1946).

    Article  CAS  Google Scholar 

  • Crescitelli, F. N., G. B. Koelleand A. Gilman: Transmission of impulses in peripheral nerves treated with di-isopropyl fluorophosphate (DFP). J. of Neurophysiol. 2, 241 (1946).

    Google Scholar 

  • Curtis, H. J., and K. S. Cole: Membrane resting and action potentials from the squid giant axon. J. Cellul. a. Comp. Physiol. 19, 135 (1942).

    Article  CAS  Google Scholar 

  • Dakin, H. D.: The mode of oxidation in the animal organism of phenyl derivatives of fatty acids. Part V. Studies on the fate of phenylvaleric acid and its derivatives. J. of Biol. Chem. 6, 221 (1909).

    CAS  Google Scholar 

  • Dale, H. H.: Transmission of nervous effects by acetylcholine. Harvey Lect. 32, 229 (1936).

    Google Scholar 

  • Dale, H. H., W. Feldbergand M. Vogt: Release of acetylcholine at voluntary motor nerve endings. J. of Physiol. 86, 353 (1936).

    CAS  Google Scholar 

  • Dubois-Reymond, E.: Gesammelte Abhandlungen zur allgemeinen Muskel-und Nervenphysik. Leipzig: Veit & Co. Bd. 1875, Bd. II 1875.

    Google Scholar 

  • Dubois-Reymond, E., D. Carl-Sachs: Untersuchungen am Zitteraal, Gymnotus electricus. Leipzig: Veit & Co. 1881.

    Google Scholar 

  • Eccles, J. C.: Synaptic and neuro-muscular transmission. Physiologic. Rev. 17, 538 (1937).

    Google Scholar 

  • Eccles, J. C.: An electrical hypothesis of synaptic and neuromuscular transmission. Ann. New York Acad. Sci. 47, 429 (1946).

    Article  Google Scholar 

  • Eccles, J. C.: Synaptic potentials of motoneurones. J. of Neurophysiol. 9, 87 (1946).

    CAS  Google Scholar 

  • Eccles, J. C.: Acetylcholine and synaptic transmission in the spinal cord. J. of Neurophysiol. 10, 197 (1947).

    CAS  Google Scholar 

  • Eisenberg, M. A.: The tricarboxylic acid cycle in Rhodosprillum rubrum. J. of Biol. Chem. 203, 815 (1953).

    CAS  Google Scholar 

  • Eisenberg, M. A.: The acetate-activating enzyme of Rhodospirillum rubrum. Biochim. et Biophysica Acta 16, 58 (1955).

    Article  CAS  Google Scholar 

  • Elliot, T. R.: The action of adrenalin. J. of Physiol. 32, 401 (1905).

    Google Scholar 

  • Emmelin, N. G., and F. C. Macintosh: Some conditions affecting the release of acetylcholine in sympathetic ganglia and skeletal muscles. Acta physiol. scand. (Stockh.) 16, Suppl. 53, 16 (1948).

    Google Scholar 

  • Erlanger, J.: The initiation of impulses in axons. J. of Neurophysiol. 2, 370 (1939).

    Google Scholar 

  • Feigl, F.: Qualitative analysis by spot tests. Amsterdam u. New York: Elsevier 1946.

    Google Scholar 

  • Feld, E. A., H. Grundfest, D. Nachmansohnand M. A. Rothenberg: Effect of di-isopropyl fluorophosphate (DFP) on action potential and cholinesterase of nerve. IV. J. of Neurophysiol. 11, 125 (1948).

    CAS  Google Scholar 

  • Feldberg, W.: Synthesis of acetylcholine in sympathetic ganglia and cholinergic nerves. J. of Physiol. 101, 432 (1943).

    CAS  Google Scholar 

  • A. Fessardand D. Nachmansohn: The cholinergic nature of the nervous supply to the electrical organ of the torpedo (torpedo marmorata). J. of Physiol., 97, 3P (1940)

    Google Scholar 

  • Feldberg, W., and T. Mann: Properties and distribution of the enzyme system which synthesizes acetylcholin in nervous tissue. J. of Physiol. 104, 411 (1946).

    CAS  Google Scholar 

  • Feng, T. P.: The heat production of nerve. Erg. Physiol. 38, 73 (1936).

    Google Scholar 

  • Fenn, W. O.: The oxygen consumption of frog nerve during stimulation. J. Gen. Physiol. 10, 767 (1927).

    Article  PubMed  CAS  Google Scholar 

  • Fulton, J. F.: Physiology of the nervous system. Science (Lancaster, Pa.) 90, 110 (1939).

    CAS  Google Scholar 

  • Fulton, J. F.: Physiology of the nervous system. London: Oxford Univ. Press, 943, 149, 1938

    Google Scholar 

  • D. Nachmansohn: Acetylcholine and the physiology of the central nervous system. Science (Lancaster, Pa.) 97, 569 (1943).

    Google Scholar 

  • Gerard, R. W., and O. Meyerhof: ‘Ober die mit der Nervenerregung verknüpften chemischen Vorgänge. Naturwiss. 15, 538 (1927).

    Article  CAS  Google Scholar 

  • Glicx, D.: Studies on the specificity of choline esterase. J. of Biol. Chem. 125, 729 (1938).

    Google Scholar 

  • Glicx, D.: Further studies on the specificity of choline esterase. J. of Biol. Chem. 130, 527 (1939).

    Google Scholar 

  • Glicx, D.: Some additional observations on the specificity of cholinesterase. J. of Biol. Chem. 137, 357 (1941).

    Google Scholar 

  • Glicx, D.: The controversy on cholinesterase. Science (Lancaster, Pa.) 102, 100 (1945).

    Google Scholar 

  • Glicx, D.: Green, D. E.: Fatty acid oxidation in soluble systems of animal tissues. Biol. Rev. 29, 330 (1954).

    Article  Google Scholar 

  • Greig, M. E., and W. C. Holland: Studies on the permeability of erythrocytes. I. The relationship between cholinesterase activity and permeability of dog erythrocytes. Arch. of Biochem. 23, 370 (1949).

    CAS  Google Scholar 

  • Grundfest, H., D. Nachmansohnand M. A. Rothenberg: Effect of di-isopropyl fluorophosphate (DFP) on action potential and cholinesterase of nerve. III. J. of Neurophysiol. 10, 155 (1947).

    CAS  Google Scholar 

  • Grundfest, H., D. Nachmansohn, C. Y. Kaoand R. Chambers: Mode of blocking of axonal activity by curare and inhibitors of acetylcholinesterase. Nature (Lond.) 169, 190 (1952).

    Article  CAS  Google Scholar 

  • Haldane, J. B. S: Enzymes. London: Longmann, Green & Co. 1930.

    Google Scholar 

  • Hestrin, S.: The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine and its analytical application. J. of Biol. Chem. 180, 249 (1949).

    CAS  Google Scholar 

  • Hestrin, S.: Acylation reactions mediated by purified acetylcholinesterase. Biochem. et Biophysica Acta 4, 310 (1950).

    Article  CAS  Google Scholar 

  • Hill, A. V.: Chemical wave transmission in nerve. Cambridge: Univ. Press 1932.

    Google Scholar 

  • Hodgkin, A. L.: The ionic basis of electrical activity in nerve and muscle. Biol. Rev. 26 338 (1951).

    Article  Google Scholar 

  • Hill, A. V., and A. F. Huxley: Resting and action potentials in single nerve fibers. J. of Physiol. 104, 176 (1945).

    Google Scholar 

  • Hill, A. V., and A. F. Huxley: Properties of nerve axons. I. Movement of sodium and potassium ions during nervous activity. Cold Spring Harbor Symp. Quant. Biol. 17, 43 (1953).

    Google Scholar 

  • Holland, W. C., and M. E. Greig: Studies on the permeability of erythrocytes. II. The effect of physostigmine and acetylcholine on the permeability of dog, cat, and rabbit erythrocytes to sodium and potassium. Amer. J. Physiol. 162, 610 (1950).

    PubMed  CAS  Google Scholar 

  • Holtz, P., H. J. Schueman: Butyrylcholin in Gehirnextrakten. Naturwiss. 41, 306 (1954).

    Article  CAS  Google Scholar 

  • Hunt, R., and R. M. Taveau: On the physiological action of certain choline derivatives and new methods for dedecting choline. Brit. Med. J. 196, 188, 1966.

    Google Scholar 

  • Huxley, A. F.: Electrical processes in nerve conduction. In Ion transport across membranes, p. 23, H. T. Clarke, edit. New York: Academic Press 1954.

    Google Scholar 

  • Jansen, E. F., M. D. F. Nuttingand A. K. Balls: Mode of inhibition of chymotrypsin by diisopropyl fluorophosphate. I. Introduction of phosphorus. J. of Biol. Chem. 179, 201 (1949).

    CAS  Google Scholar 

  • Jansen, E. F., M. D. F. Nutting, R. Jangand A. K. Balls: Mode of inhibition of chymotrypsin by diiisopropyl fluorophosphate. II. Introduction of isopropyl and elimination of fluorine as hydrogen fluoride. J. of Biol. Chem. 105, 209 (1950).

    Google Scholar 

  • Jones, M. E., F. Lipmann, H. Hilzand F. Lynen: On the enzymatic mechanism of coenzyme A acetylation with adenosine triphosphate and acetate. J. Amer. Chem. Soc. 75, 3285 (1953).

    Article  CAS  Google Scholar 

  • Keynes, R. D., and P. R. Lewis: The sodium and potassium content of cephalopod nerve fibers. J. of Physiol. 114, 151 (1951).

    CAS  Google Scholar 

  • Keynes, R. D. and H. Martins-Ferreira: Membrane potentials in the electroplates of the electric eel. J. of Physiol. 119, 315 (1953).

    CAS  Google Scholar 

  • Kibjakow, A. W.: Über humorale Übertragung der Erregung von einem Neuron auf das andere. Pflügers Arch. 232, 432 (1933).

    Article  Google Scholar 

  • Kimura, K. K., K. Unnaand C. C. Pfeiffer: Diatropine derivates as proof that d-tubocurarine is a blocking moiety containing twin atropine-acetylcholine prosthetic groups. J. of Pharmacol. 95, 149 (1949).

    CAS  Google Scholar 

  • King, H.: Curare alkaloids. Part I. Tubocurarine. J. Chem. Soc. Lond. 2, 1381 (1935).

    Google Scholar 

  • Klein, J. R., and J. S. Harris: The acetylation of sulfanilamide in vitro. J. of Biol. Chem. 124, 613 (1938).

    CAS  Google Scholar 

  • Knoop, F.: Der Abbau aromatischer Fettsäuren im Tierkörper. Beitr. chem. Physiol. 6, 150 (1905).

    Google Scholar 

  • Korey, S. R., B. De Braganzaand D. Nachmansohn: Choline acetylase. V. Esterifications and transacetylations. J. of Biol. Chem. 189, 705 (1951).

    CAS  Google Scholar 

  • Korkes, S., A. Del Campillo, S. R. Korey, J. R. Stern, D. Nachmansohnand S. Ochoa: Compling of acetyl donor sytemss with cholin acetylase. J. of Biol. Chem. 198, 215 (1952).

    CAS  Google Scholar 

  • Kwiatkowski, H.: Versuche über die Cholinesterase. Fermentforsch. 15, 138 (1936).

    CAS  Google Scholar 

  • Landgren, S., G. Liljestrandand Y. Zotterman: The effect of certain autonomic drugs on the action potentials of the sinus nerve. Acta physiol. scand. (Stockh.) 26, 264 (1952).

    Article  CAS  Google Scholar 

  • Lapique, L.: Nouvelle hypothèse sur le rôle de l’acétylcholine dans la transmission de l’excitation nerveuse au muscle strié. C. r. Soc. Biol. Paris 122, 990 (1936).

    Google Scholar 

  • Leheux, J. W.: Cholin als Hormon der Darmbewegung. Pflügers Arch. 173, 8 (1919).

    Article  Google Scholar 

  • Leheux, J. W.: Cholin als Hormon der Darmbewegung. III. Mitt. Die Beteiligung des Cholins an der Wirkung verschiedener organischer Säuren auf den Darm. Pflügers Arch. 190, 280 (1921).

    Article  CAS  Google Scholar 

  • Lehninger, A. L.: Oxidative Phosphorylation. Harvey Lect. 49, 176 (1953).

    Google Scholar 

  • Lipmann, F.: Acetylation of sulfanilamide by liver homogenates and extracts. J. of Biol. Chem. 160, 173 (1945).

    CAS  Google Scholar 

  • Lipmann, F., and N. O. Kaplan: A common factor in the enzymatic acetylation of sulfanilamide and of choline. J. of Biol. Chem. 162, 743 (1946).

    CAS  Google Scholar 

  • Lipmann, F., N. O. Kaplan, G. D. Novelli, L. C. Tuttleand B. M. Guirard: Coenzyme for acetylation, a pantothenic acid derivative. J. of Biol. Chem. 167, 869 (1947).

    CAS  Google Scholar 

  • Lipmann, F., and L. C. Tuttle: A specific micromethod for the determination of acyl phosphates. J. of Biol. Chem. 159, 21 (1945).

    CAS  Google Scholar 

  • Lipton, M. A.: Mechanism of the enzymatic synthesis of acetylcholin. Federat. Proc. 5, 145 (1946).

    CAS  Google Scholar 

  • Lissak, K., and J. Pasztor: Azetylcholingehalt sensibler Nerven. Pflügers Arch. 244, 210 (1941).

    Google Scholar 

  • Loewi, O.: Über humorale Übertragbarkeit der Herznervenwirkung. I. Mitt. Pflügers Arch. 189, 239 (1921).

    Article  Google Scholar 

  • Loewi, O., and H. Hellauer: The acetylcholine content of the nerves of warmblooded animals. J. of Physiol. 93, 34 P (1938).

    Google Scholar 

  • Loewi, O., and E. Navratil: Über humorale Übertragbarkeit der Herz-Nervenwirkung. X. Mitt. Über das Schicksal des Vagusstoffes. Pflügers Arch. 214, 678 (1926).

    Article  CAS  Google Scholar 

  • Lorente, R.: Liberation of acetylcholine by the superior cervivcal sympathetic ganglion and the nodosum ganglion of the vagus. Amer. J. Physiol. 121, 331 (1938).

    Google Scholar 

  • Lorente, R.: Effects of choline and acetylcholine chloride upon peripheral nerve fibers. J. Cellul. a. Comp. Physiol. 24, 84 (1944).

    Google Scholar 

  • Lundsgaard, E.: Untersuchungen über Muskel-Kontraktionen ohne Milchsäurebildung. Biochem. Z. 217, 166 (1930).

    Google Scholar 

  • Lynen, F., and S. Ocxoa: Enzymes of fatty acid metabolism. Biochem. et Biophysica Acta 12, 299 (1953).

    Article  CAS  Google Scholar 

  • Lynen, F., E. Reichertand L. Rueff: Zum biologischen Abbau der Essigsäure. VI. „Aktivierte Essigsäure“, ihre Isolierung aus Hefe und ihre chemische Natur. Liebigs Ann. 547, 1 (1951).

    Google Scholar 

  • Lynen, F., E. Reichertand L. Rueff: Macy Conference on „Nerve Impulse“ I. D. Nachmansohn, edit. New York: Josiah Macy, Jr. Foundation 1951.

    Google Scholar 

  • Lynen, F., E. Reichert and L. Rueff: on „Nerve Impulse“ II. D. Nachmansohn, edit. New York: Josiah Macy, Jr. Foundation 1951.

    Google Scholar 

  • Mann, P. J. G., M. Tennenbaumand J. H. Quastel: On the mechanism of acetylcholine formation in vitro. Biochem. Z. 32, 243 (1938).

    CAS  Google Scholar 

  • Marmont, G.: Studies on the axon membrane. J. Cellul. a. Comp. Physiol. 34, 351 (1949).

    Article  CAS  Google Scholar 

  • Marnay, A.: Cholinestérase dans l’organe électrique de la torpille. C. r. Soc. Biol. Paris 126, 573 (1937).

    CAS  Google Scholar 

  • Marnay, A., and D. Nachmansohn: Sur la repartition de la cholinestérase dans le muscle couturier de la grenouille. C. r. Soc. Biol. Paris 125, 41 (1937).

    CAS  Google Scholar 

  • Marnay, A., and D. Nachmansohn: Cholinesterase in voluntary muscle. J. of Physiol. 92, 37 (1938).

    CAS  Google Scholar 

  • Mcintyre, A. R., F. M. Downing, A. L. Bennettand A. L. Dunn: Acetylcholine content of tyrode solution perfused through muscles as affected by calcium and procaine hydrochloride. Proc. Soc. Exper. Biol. a. Med. 74, 180 (1950).

    CAS  Google Scholar 

  • Mendel, B., and H. Rudney: Studies on cholinesterase. I. Cholinesterase and pseudo-cholinesterase. Biochemic. J. 37, 59 (1943).

    CAS  Google Scholar 

  • Meyer, K. H.: La perméabilité des membranes. V. Sur l’origine des courants bioélectriques. Helvet. chim. Acta 20, 634 (1937).

    Article  CAS  Google Scholar 

  • Meyerhof, O.: Zur Energetik der Zellvorgänge. Vortrag. Göttingen: Vandenhoeck & Ruprecht 1913.

    Google Scholar 

  • Meyerhof, O.: Chemical dynamics of life phenomena. Monogr. Exper. Biol. 5, 20 (1924).

    Google Scholar 

  • Michel, H. O., and S. Krop: The reaction of cholinesterase with diisopropyl fluorophosphate. J. of Biol. Chem. 190, 119 (1951).

    CAS  Google Scholar 

  • Muralt, A.V.: Gibt es Aktionssubstanzen bei der Nervenerregung ? Naturwiss. 27, 265 (1939).

    Article  Google Scholar 

  • Muralt, A. V.: Über den Nachweis von Aktionssubstanzen der Nervenerregung. Pflügers Arch. 245, 604 (1942).

    Article  Google Scholar 

  • Muralt, A. V: Die Signalvermittlung in Nerven. Basel: Birkhauser 1946.

    Google Scholar 

  • Muralt, A. V.: Excitation and conduction in peripheral nerves. Annal Rev. Physiol. 16, 305 (1954).

    Article  Google Scholar 

  • Nachmansohn, D.: Cholinestérase dans les tissus embryonnaires. C. r. Soc. Biol. Paris 127, 670 (1938a).

    CAS  Google Scholar 

  • Muralt, A. V: Cholinestérase dans le tissu nerveux. C. r. Soc. Biol. Paris 127, 894 (1938).

    Google Scholar 

  • Muralt, A. V: Cholinestérase dans les fibres nerveuses. C. r. Soc. Biol. Paris 128, 516 (1938).

    Google Scholar 

  • Muralt, A. V: Transmission of nerve impulses in the central nervous system. J. of Physiol. 93, 2 P (1938).

    Google Scholar 

  • Muralt, A. V: Changements de la cholinestérase dans le muscle strié. C. r. Soc. Biol. Paris 128, 599 (1938).

    Google Scholar 

  • Muralt, A. V: Cholinesterase in of Physiol. J. central. Bull. Soc. 95, 29 (1939).

    Google Scholar 

  • Muralt, A. V: Cholinesterase in of Physiol voluntary muscle. J. central. Bull. Soc. 21, 761 (1938).

    Google Scholar 

  • Muralt, A. V: Cholinesterase dans le système nerveux (1939). in brain and spinal cord of sheep embryos. J. of Neurophysiol. 3, 396 (1940).

    Google Scholar 

  • Muralt, A. V: Choline esterase nerve impulses. Collect. Net. 17, 1 (1942).

    Google Scholar 

  • Muralt, A. V: On the mechanism of transmission of esterase nerve impulses. Collect. Net. 17, 1 (1942).

    Google Scholar 

  • Muralt, A. V: The role of acetylcholine in the mechanism of nerve activity. Vitamins a. Hormones 3, 337 (1945).

    Google Scholar 

  • Muralt, A. V: Chemical Mechanism of nervous action. In: Currents in Biochemical Research, p. 335. E. E. Green, edit. New York: Interscience 1946.

    Google Scholar 

  • Nachmansohn, D.: Chemical mechanism of nerve activity. Ann New York Acad. Sci. 47, 395 (1946b).

    Article  CAS  Google Scholar 

  • Nachmansohn, D.: The role of acetylcholine in conduction. Bull. Johns Hopkins Hosp. 83, 463 (1948).

    PubMed  CAS  Google Scholar 

  • Nachmansohn, D.: Chemical control of nervous activity. A. Acetylcholine. Hormones, II, p. 515. G. Pincusand K. V. Thimann, edit. New York: Academic Press 1950.

    Google Scholar 

  • Nachmansohn, D.: Studies on permeability in relation to nerve function. I. Axonal conduction and synaptic transmission. Biochim. et Biophysica Acta 4, 78 (1950).

    Article  CAS  Google Scholar 

  • Nachmansohn, D.: Chemical mechanisms of nerve activity. In: Modern Trends of physiology and biochemistry, p. 229. E. S. G. Barron, edit. New York: Academic Press 1952.

    Google Scholar 

  • Nachmansohn, D.: Metabolisme et fonction de la cellule nerveuse. Bull. Soc. Chim. biol. Paris 34, 447 (1952).

    PubMed  CAS  Google Scholar 

  • Nachmansohn, D.: La conduction de l’influx nerveux et la transmission synaptique. Estratto Rend. Ist. Super. Sanita 15, 1267 (1952).

    Google Scholar 

  • Nachmansohn, D.: Metabolism and function of the nerve cell. Harvey Lect. 49, 57 (1953).

    PubMed  Google Scholar 

  • Nachmansohn, D., and M. Berman: Studies on choline acetylase. III. On the preparation of the coenzyme and its effect on the enzyme. J. of Biol. Chem. 165, 551 (1946).

    CAS  Google Scholar 

  • Nachmansohn, D., and M. Berman, and M. S. Weiss: Presence of choline acetylase in striated and cardiac muscle. J. of Biol. Chem. 167, 295 (1947).

    CAS  Google Scholar 

  • Nachmansohn, D., C. W. Coatesand R. T. Cox: Electric potential and activity of choline esterase in the electric organ of electrophorus electricus (LINNAEUS). J. Gen. Physiol. 25, 75 (1941).

    Article  PubMed  CAS  Google Scholar 

  • Nachmansohn, D., C. W. Coatesand M. A. Rothenberg: Studies on cholinesterase. II. Enzyme activity and voltage of the action potential in electric tissue. J. of Biol. Chem. 163, 39 (1946).

    CAS  Google Scholar 

  • Nachmansohn, D., C. W. Coates, M. A. Rothenbergand M. V. Brown: On the energy source of the action potential in the electric organ of electrophorus electricus. J. of Biol. Chem. 165, 223 (1946).

    CAS  Google Scholar 

  • Nachmansohn, D., R. T. Cox, C. W. Coatesand A. L. Machado: Action potential and enzyme activity in the electric organ of electrophorus electricus (LINNAEUS). I. Choline esterase and respiration. J. of Neurophysiol. 5, 499 (1942).

    CAS  Google Scholar 

  • Nachmansohn, D., R. T. Cox, and C. W. Coates: Phosphocreatine as energy source of the action potential. Proc. Soc. Exper. Biol. a. Med. 52, 97 (1943).

    CAS  Google Scholar 

  • Nachmansohn, D., R. T. Cox, C. W. Coates. and A. L. Machado: Action potential and enzyme activity in the electric organ of electrophorus electricus. II. Phosphocreatine as energy source of the action potential. J. of Neurophysiol. 6, 383 (1943).

    CAS  Google Scholar 

  • Nachmansohn, D., and E. A. Feld: Studies on cholinesterase. IV. On the mechanism of di-isopropyl fluorophosphate (DFP) action in vivo. J. of Biol. Chem. 171, 715 (1947).

    CAS  Google Scholar 

  • Nachmansohn, D., and H. M. John: Inhibition of choline acetylase by a-keto acids. Proc. Soc. Exper. Biol. a. Med. 57, 361 (1944).

    CAS  Google Scholar 

  • Nachmansohn, D., and H. M. John: Studies on choline acetylase. I. Effect of amino acids on the dialyzed enzyme. Inhibition by a-keto acids. J. of Biol. Chem. 158, 157 (1945).

    CAS  Google Scholar 

  • Nachmansohn, D., H. M. John, and M. Berman: Studies on choline acetylase. II. The formation of acetylcholine in the nerve axon. J. of Biol. Chem. 163, 475 (1946).

    CAS  Google Scholar 

  • Nachmansohn, D., H. M. John. and H. Waelsch: Effect of glutamic acid on the formation of acetylcholine. J. of Biol. Chem. 150, 485 (1943).

    CAS  Google Scholar 

  • Nachmansohn, D. and E. Lederer: Sur quelques propriétés chimiques de la cholinestérase. C. r. Soc. Biol. Paris 130, 321 (1939a).

    CAS  Google Scholar 

  • Nachmansohn, D. and E. Lederer: Sur la biochimie de la cholinestérase. I. Préparation de l’enzyme. Groupements-SH. Bull. Soc. Chim. biol. Paris 21, 797 (1939b).

    CAS  Google Scholar 

  • Nachmansohn, D. and A. L. Machado: The formation of acetylcholine. A new enzyme „choline acetylase“. J. of Neurophysiol. 6, 397 (1943).

    CAS  Google Scholar 

  • Nachmansohn, D. and B. Meyerhof: Relation between electrical changes during nerve activity and concentration of choline esterase. J. of Neurophysiol. 4, 348 (1941).

    CAS  Google Scholar 

  • Nachmansohn, D. and M. A. Rothenberg: On the specificity of choline esterase in nervous tissue. Science (Lancaster, Pa.) 100, 454 (1944).

    CAS  Google Scholar 

  • Nachmansohn, D. and M. A. Rothenberg: Studies on cholinesterase. I. On the specificity of the enzyme in nerve tissue. J. of Biol. Chem. 158, 653 (1945).

    CAS  Google Scholar 

  • Nachmansohn, D., M. A. Rothenbergand E. A. Feld: Studies On cholinesterase. V. Kinetics of the enzyme inhibition. J. of Biol. Chem. 174, 247 (1948).

    CAS  Google Scholar 

  • Nachmansohn, D. and M. S. Weiss: Studies on choline acetylase. IV. Effect of citric acid. J. of Biol. Chem. 172, 677 (1948).

    CAS  Google Scholar 

  • Nachmansohn, D. and I. B. Wilson: The enzymic hydrolysis and synthesis of acetylcholine. Adv. Enzymol. 12, 259 (1951).

    CAS  Google Scholar 

  • Nachmansohn, D. I. B. Wilson, S. R. Koreyand R. Berman: Choline acetylase. VI. Substitution of ATP-acetate by thiolacetate. J. of Biol. Chem. 194, 613 (1952).

    Google Scholar 

  • Nastuk, W. L.: Membrane potential changes at a single muscle end-plate produced by transitory application of acetylcholine with an electrically controlled microjet. Federat. Proc. 12, 102 (1953).

    Google Scholar 

  • Novelli, G. D.: Metabolic functions of pantothenic acid. Physiologic. Rev. 33, 525 (1953).

    CAS  Google Scholar 

  • Novelli, G. D., and F. Lipmann: The catalytic function of coenzyme A in citric acid synthesis. J. of Biol. Chem. 182, 213 (1950).

    CAS  Google Scholar 

  • Novelli, G. D., F. J. Schmetzjr. and N. O. Kaplan: Enzymatic degradation and resynthesis of coenzyme A. J. of Biol. Chem. 206, 533 (1954).

    CAS  Google Scholar 

  • Ochoa, S.: „Coupling“ of phosphorylation with oxidation of pyruvic acid in brain. J. of Biol. Chem. 138, 751 (1941).

    CAS  Google Scholar 

  • Novelli, G. D.: Efficiency of aerobic phosphorylation in cell-free heart extracts. J. of Biol. Chem. 151, 493 (1943).

    Google Scholar 

  • Novelli, G. D.: Enzyme studies in biological oxidations and synthesis. Harvey Lect. 46, 153 (1950/51).

    Google Scholar 

  • Novelli, G. D.: Biological mechanism of carboxylation and decarboxylation. Physiologic. Rev. 31, 56 (1951).

    Google Scholar 

  • Novelli, G. D.: Enzymic mechanism in the citric acid cycle. Adv. Enzymol. 15, 183 (1954).

    Google Scholar 

  • Novelli, G. D., J. R. Sternand M. C. Schneider: Enzymatic synthesis of citric acid. II. Crystalline condensing enzyme. J. of Biol. Chem. 193, 691 (1951).

    Google Scholar 

  • Ostwald, W.: Elektrische Eigenschaften halbdurchlässiger Scheidewände. Z. physik. Chem. 6, 71 (1890).

    Google Scholar 

  • Persky, H., and M. Gold: The choline acetylase and choline esterase content of some invertebrate tissues. Biol. Bull. 95, 278 (1948).

    PubMed  CAS  Google Scholar 

  • Pezard, A., and R. M. May: Les terminaisons nerveuses du muscle couturier de la grenouille et la question de sa partie aneurale. C. r. Soc. Biol. Paris 124, 942 (1937).

    Google Scholar 

  • Richter, D., and P. G. Croft: Blood esterases. Biochemic. J. 36, 746 (1942).

    CAS  Google Scholar 

  • Rittenberg, D., and K. Bloch: The utilization of acetic acid for fatty acid synthesis. J. of Biol. Chem. 154, 311 (1944).

    CAS  Google Scholar 

  • Rittenberg, D., and K. Bloch: The utilization of acetic acid for the synthesis of fatty acids. J. of Biol. Chem. 160, 417 (1945).

    CAS  Google Scholar 

  • Roetthjr., A. J. De: Role of acetylcholine in nerve activity. J. of Neurophysiol. 14, 55 (1951).

    Google Scholar 

  • Rona, P., u. P. Neukirch: Experimentelle Beiträge zur Physiologie des Darmes. II. Pflügers Arch. 146, 371 (1912).

    Google Scholar 

  • Rosenberg, H.: Die elektrischen Organe. In Handbuch der normalen and pathologischen Physiologie, Bd. VIII/2, S. 876. Berlin: Springer 1928.

    Google Scholar 

  • Rothenberg, M. A.: The ion permeability of the giant axon of squid. Biol. Bull. 95, 242 (1948).

    PubMed  CAS  Google Scholar 

  • Rothenberg, M. A.: Studies on the permeability of nerve membranes to ions. Trans. Amer. Neur. Assoc. 230, 96 (1949).

    Google Scholar 

  • Rothenberg, M. A.: Studies on permeability in relation to nerve function. II. Ionic movements across axonal membranes. Biochem. et Biophysica Acta 4, 96 (1950).

    Article  CAS  Google Scholar 

  • Rothenberg, M. A., and E. A. Feld: Rate of penetration of electrolytes into nerve fibers. J. of Biol. Chem. 172, 345 (1948).

    CAS  Google Scholar 

  • Rothenberg, M. A., and D. Nachmansohn: Studies on cholinesterase. III. Purification of the enzyme from electric tissue by fractional ammonium sulfate precipitation. J. of Biol. Chem. 168, 223 (1947).

    CAS  Google Scholar 

  • D. Nachmansohn: Die Rolle des Acetylcholins in den Elementarvorgängen. J. of Biol. Chem. 168, 223 (1947).

    Google Scholar 

  • Rothenberg, M. A., D. B. Sprinsonand D. Nachmansohn: Site of action of acetylcholine. J. of Neurophysiol. 11, 111 (1948).

    CAS  Google Scholar 

  • Sawyer, C. H.: Cholinesterase and the behavior problem in amblystoma. I. The re-. lationship between the development of the enzyme and early motility. II. The effects of inhibiting cholinesterase. J. of Exper. Zool. 92, 1 (1943).

    Article  CAS  Google Scholar 

  • Schleyer, W. L.: Electrical activity in electric tissue. II. Evaluation of esterase activity in intact electroplax. Biochim. et Biophysica Acta 16, 396 (1955).

    Article  CAS  Google Scholar 

  • Schoenheimer, R., and D. Rittenberg: The study of intermediary metabolism of animals with the aid of isotopes. Physiologic. Rev. 20, 218 (1940).

    CAS  Google Scholar 

  • Schrader, G.: Die Entwicklung neuer Insektizide auf Grundlage organischer Fluor- und Phosphor-Verbindungen, 2. Aufl. Weinheim: Verlag Chemie 1952.

    Google Scholar 

  • Seaman, G. R.: Localization of acetylcholinesterase activity in the protozoan tetrahymena geleii S. Proc. Soc. Exper. Biol. a. Med. 76, 169 (1951).

    CAS  Google Scholar 

  • Seaman, G. R., and R. K. Houlihan: Enzyme systems in ietrahymena geleii S. II. Acetylcholinesterase activity. Its relation to motility of the organism and to coordinated ciliary action in general. J. Cellul. a. Comp. Physiol. 37, 309 (1951).

    Article  CAS  Google Scholar 

  • Shuster, L., and N. O. Kaplan: A specific b nucleotidase. J. of Biol. Chem. 201, 535 (1953).

    CAS  Google Scholar 

  • Simon, E. J., and D. Shemin: The preparation of S-succinyl-coenzyme A. J. Amer. Chem. Soc. 75, 2520 (1953).

    Article  CAS  Google Scholar 

  • Snell, E. E., G. M. Brown, V. J. Peters, J. A. Craig, E. L. Wittle, J. A. Moore, V. M. Mcglohonand O. D. Bird: Chemical nature and synthesis of the lactobacillus bulgaricus factor. J. Amer. Chem. Soc. 72, 5349 (1950).

    Article  CAS  Google Scholar 

  • Sprinson, D. B., and D. Rittenberg: Nature of the activation process in enzymatic reactions. Nature (Lond.) 167, 484 (1951).

    Article  CAS  Google Scholar 

  • Stadtman, E. R.: Coenzyme A-dependent transacetylation and transphosphorylation. Federat. Proc. 9, 233 (1950).

    Google Scholar 

  • Stadtman, E. R.: The purification and properties of phosphotransacetylase. J. of Biol. Chem. 196, 527 (1952).

    CAS  Google Scholar 

  • Stadtman, E. R.: The net enzymatic synthesis of acetyl coenzyme A. J. of Biol. Chem. 196, 535 (1952).

    CAS  Google Scholar 

  • Stedman, E., E. Stedmanand L. H. Easson: Choline-Esterase. An enzyme present in the blood serum of the horse. Biochemic. J. 26, 2056 (1932).

    CAS  Google Scholar 

  • Stein, S. S., and D. E. Koshland; Mechanism of hydrolysis of acetylcholine catalyzed by acetylcholinesterase and by hydroxide ion. Arch. of Biochem. 45, 467 (1953).

    Article  CAS  Google Scholar 

  • Stern, J. R., and S. Ocxoa: Enzymatic synthesis of citric acid by condensation of acetate and oxalacetate. J. of Biol. Chem. 179, 491 (1949).

    CAS  Google Scholar 

  • Stern, J. R., and S. Ocxoa: Enzymatic synthesis of citric acid. I. Synthesis with soluble enzymes. J. of Biol. Chem. 191, 161 (1951).

    CAS  Google Scholar 

  • Stern, J. R., and S. Ocxoa, and F. Lynen: Enzymatic synthesis of citric acid. V. Reaction of acetyl coenzyme A. J. of Biol. Chem. 198, 313 (1952).

    CAS  Google Scholar 

  • Stern, J. R., and S. Ocxoa, and F. Lynen: Symposium on the physico-chemical mechanism of nerve activity. Ann. New York Acad. Sci. 47, 375 (1946).

    Google Scholar 

  • Stern, J. R., and S. Ocxoa, and F. Lynen: On curare and anti-curare agents. Ann New York Acad. Sci. 54, 297 (1951).

    Google Scholar 

  • Stern, J. R., and S. Ocxoa, and F. Lynen: On phosphorus metabolism, Bd. I. W. D. MCELROY and B. Glass, edit. Baltimore: Johns Hopkins Press 1951.

    Google Scholar 

  • Stern, J. R., and S. Ocxoa, and F. Lynen: On chemistry and functions of coenzyme A. Federat. Proc. 12, 673 (1953).

    Google Scholar 

  • Taylor, I. M., J. M. Wellerand A. B. Hastings: Effect of cholinesterase and choline acetylase inhibitors on the potassium concentration gradient and potassium exchange of human erythrocytes. Amer. J. Physiol. 168, 658 (1952).

    PubMed  CAS  Google Scholar 

  • Teorell, T.: Transport process and electrical phenomena in ionic membranes. Progr. Biophysics a. Biophysical. Chem. 3, 305 (1953).

    CAS  Google Scholar 

  • Toman, J. E. P., J. W. Woodburyand L. A. Woodbury: Mechanism of nerve conduction block produced by anticholinesterase. J. of Neurophysiol. 10, 429 (1947).

    CAS  Google Scholar 

  • Vahlquist, B.: On the esterase activity of human blood plasma. Skand. Arch. Physiol. (Berl. u. Lpz.) 72, 133 (1935).

    CAS  Google Scholar 

  • Weiland, W.: Zur Kenntnis der Entstehung der Darmbewegung. Pflügers Arch. 147, 171 (1912).

    Article  Google Scholar 

  • Wilson, I. B.: Acetylcholinesterase. XI. Reversibility of tetraethyl pyrophosphate inhibition. J. of Biol. Chem. 190, 111 (1951).

    CAS  Google Scholar 

  • Wilson, I. B.: Mechanism of enzymic hydrolysis. I. Role of the acidic groups in the esteratic site of acetylcholinesterase. Biochim. et Biophysica Acta 7, 466 (1951).

    Article  CAS  Google Scholar 

  • Wilson, I. B.: Mechanism of hydrolysis. II. New evidence for an acylated enzyme as intermediate. Biochim. et Biophysica Acta 7, 520 (1951).

    Article  CAS  Google Scholar 

  • Wilson, I. B.: Acetylcholinesterase. XII. Further studies of binding forces. J. of Biol. Chem. 197, 215 (1952a).

    CAS  Google Scholar 

  • Wilson, I. B.: Acetylcholinesterase. XIII. Reactivation of alkyl phosphate-inhibited enzyme. J. of Biol. Chem. 199, 113 (1952b).

    CAS  Google Scholar 

  • Wilson, I. B.: Preparation of acetyl coenzyme A. J. Amer. Chem. Soc. 74, 3205 (1952).

    Article  CAS  Google Scholar 

  • Wilson, I. B.: The mechanism of enzyme hydrolysis studied with acetylcholinesterase. In „The Mechanism of Enzyme Action“ W. D. Mcelroyand B. Glass, edit. p. 642. Baltimore: Johns Hopkins Press 1954.

    Google Scholar 

  • Wilson, I. B.: Reactivation of human serum esterase inhibited by alkylphosphates. J. Amer. Chem. Soc. 77, 2383 (1955).

    Article  CAS  Google Scholar 

  • Wilson, I. B., and F. Bergmann: Studies on cholinesterase. VII. The active surface of acetylcholine esterase derived from effects of pH on inhibitors. J. Biol, Chem. 185, 479 (1950).

    CAS  Google Scholar 

  • Wilson, I. B., and F. Bergmann: Acetylcholinesterase. VIII. Dissociation constants of the active groups. J. of Biol. Chem. 186, 683 (1950).

    CAS  Google Scholar 

  • Wilson, I. B., F. Bergmann, and D. Nachmansohn: Acetylcholinesterase. X. Mechanism of the catalysis of acylation reactions. J. of Biol. Chem. 186, 781 (1950).

    CAS  Google Scholar 

  • Wilson, I. B., and M. Cohen: The essentiality of acetylcholinesterase in conduction. Biochim. et Biophysica Acta 11, 147 (1953).

    Article  CAS  Google Scholar 

  • Wilson, I. B., and S. Ginsburg: Reactivation of acetylcholinesterase inhibited by alkylphosphates. Arch. of Biochem. a. Biophysics 54, 569 (1955).

    Article  CAS  Google Scholar 

  • Wilson, I. B., and E. K. Meislich: The reactivation of acetylcholinesterase by tetraethyl-pyrophosphate and diisopropyl fluorophosphate. J. Amer. Chem. Soc. (in press).

    Google Scholar 

  • Wilson, I. B., and E. K. Meislich: Reactivation of acetylcholinesterase inhibited by alkylphosphates. J. Amer. Chem. Soc. 75, 4628 (1953).

    Article  CAS  Google Scholar 

  • Wilson, I. B., and D. Nachmansohn: The generation of bioelectric potentials. In: Ion transport across membranes, p. 35. Hans T. Clarke, edit. New York: Academic Press 1954.

    Google Scholar 

  • Wintersteiner, O., and J. D. Dutcher: Curare alkaloids from chondodendron tomen-tosum. Science (Lancaster, Pa.) 97, 467 (1943).

    CAS  Google Scholar 

  • Wood, H. G.: The fixation of carbon dioxide and the interrelationship of the tricarboxylic acid cycle. Physiologic. Rev. 26, 198 (1946).

    CAS  Google Scholar 

  • Young, J. Z.: The structure of synaptic junctions. In: Transactions of the 3rd Macy Conference on Nerve Impulse., H. H. Merrit, edit. New York: Josiah Macy, Jr. Foundation 1952.

    Google Scholar 

  • Youngstrom, K. A.: Acetylcholine esterase concentration during the development of the human fetus. J. of Neurophysiol. 4, 473 (1941).

    CAS  Google Scholar 

  • Zeller, E. A., and A. Bissegger: Über die Cholinesterase des Gehirns und der Erythrocytes. Helvet. chim. Acta 26, 1619 (1943).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1955 Springer-Verlag OHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Nachmansohn, D. (1955). Die Rolle des Acetylcholins in den Elementarvorgängen der Nervenleitung. In: Krayer, O., et al. Ergebnisse der Physiologie Biologischen Chemie und Experimentellen Pharmakologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49715-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49715-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49436-9

  • Online ISBN: 978-3-642-49715-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics