For a deeper study of the M. C. {x n , n ≧ 0} we now introduce transition probabilities with taboo states. Let H be an arbitrary set of states. We define
$$_{H}P_{ij}^{\left( n \right)}=P\left\{ {{x}_{n}} \right.\left( \omega \right)=j;{{x}_{\nu }}\left( \omega \right)\notin H,0<\nu <n\left| {{x}_{0}} \right.\left( \omega \right)=\left. i \right\},n\ge 1.$$


Renewal Process Discrete Parameter Positive Class Tauberian Theorem Stationary Transition Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1960

Authors and Affiliations

  • Kai Lai Chung
    • 1
  1. 1.Syracuse UniversityUSA

Personalised recommendations