Skip to main content

Heat transfer in laminar flow of non-Newtonian fluids

  • Conference paper
Progress and Trends in Rheology II

Abstract

Laminar flow of non-Newtonian power-law fluids with temperature dependent rheological properties as well as temperature dependent thermal fluid conductivity has been considered. Three different kinds of thermal boundary conditions have been taken into account. The basic equation of energy has been solved by means of an approximate analytical method of optimal linearization. A simple formula for calculating the pressure drop valid for all the cases considered has been derived. Some selected results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

\(Y = r/R\) :

dimensionless radial coordinate

\(\theta = \left( {T - {T_i}} \right)/{T_i}\) :

dimensionless temperature

\(B{i_e} = {\alpha _e}R/{\lambda _e}\) :

Biot number

\(\mathop {B{i_e}}\limits^ \wedge = \frac{{2n}}{{3n + 1}}B{i_e},\mathop {B{i_e}}\limits^ \wedge = \left( {1 + {\alpha _1}} \right)\mathop {B{i_e}}\limits^ \wedge\) :

modified Biot numbers

\(Br = {\left( {{\tau _w}/{K_i}} \right)^{\left( {n + 1} \right)/n}} \cdot \left( {{K_i}{R^2}} \right)/\left( {{\lambda _i}{T_i}} \right)\) :

Brinkman number

\(\mathop {Br}\limits^ \wedge = \frac{{2n}}{{3n + 1}}\sqrt {Br\gamma } ,\mathop {Br}\limits^{\hat \wedge } = \mathop {Br}\limits^ \wedge /\sqrt {1 - \alpha /\gamma }\) :

modified Brinkman numbers

\({\operatorname{Re} _i} = \left[ {ev_m^{2 - n}{{\left( {2R} \right)}^n}} \right]/\left[ {{8^{n - 1}}{{\left( {\frac{{3n + 1}}{{4n}}} \right)}^n}{K_i}} \right]\) :

modified Reynolds number

\({\alpha _1} = \frac{{\alpha /\gamma }}{{1 - \alpha /\gamma }}\) :

constant specifying the dependence of thermal fluid conductivity on temperature

References

  1. Nowak Z, Gryglaszewski P, Stacharska-Targosz J (1980) ul. Warszawska 24 Wärme-und Stoffübertragung 14: 281

    Google Scholar 

  2. Nowak Z, Gryglaszewski P, Stacharska-Targosz J (1982) Acta Mechanica 45: 205

    Article  MATH  Google Scholar 

  3. Nowak Z, Gryglaszewski P, Stacharska-Targosz J (1983) Proc 11th PCCE Meeting 2: 189

    Google Scholar 

  4. Nowak Z, Stacharska-Targosz J (1984) Mena B, GarciaRejón A, Rangel-Nafaile C (eds) Advances in Rheology (Proc IXth Intern Congr Rheology) Universidad Nacional Autonoma de México, Vol 2, p 127

    Google Scholar 

  5. Nowak Z, Stacharska-Targosz J (1985) ZAMM 66: T252

    Google Scholar 

  6. Vujanovic B (1973) Int J Heat Mass Transfer 16: 315

    Article  Google Scholar 

  7. Sokolov J (1957) Ukrain J Mathematics 1: 9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stacharska-Targosz, J., Gryglaszewski, P. (1988). Heat transfer in laminar flow of non-Newtonian fluids. In: Giesekus, H., Hibberd, M.F. (eds) Progress and Trends in Rheology II. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-49337-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49337-9_43

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-49339-3

  • Online ISBN: 978-3-642-49337-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics