Skip to main content

Reprogrammable Components: Photorefractive Materials

  • Chapter
  • 79 Accesses

Part of the book series: ESPRIT Basic Research Series ((ESPRIT BASIC))

Abstract

Photorefractive materials such as lithium niobate (LiNbO3), potassium niobate (KNbO3), barium titanate (BaTiO3), strontium barium niobate (SBN) and bismuth silicon oxide (Bi12SiO20) are attractive candidates for real-time optical connections (OC).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.S Chen, J.T La Macchia and D.B Fraser: Holographic storage in lithium niobate. Appl. Phys. Lett. 13, 1968, pp 223–225

    Article  Google Scholar 

  2. D.W Vahey: A non linear coupled wave theory of holographic storage in ferromaterials. J. Appl. Phys. 46, 1975, pp 3510–3515

    Article  Google Scholar 

  3. D.Von der Linde and A.M Glass: Photorefractive effects for reversible holographic storage of information. Appl. Phys. 8, 1975, pp 85–100

    Article  Google Scholar 

  4. D.L Staebler and J.J Annodei. J. Appl. Phys. 43, 1972, p 1042

    Google Scholar 

  5. D.L Staebler and W. Phillips. Appl. Opt. 13, 1974, p 788

    Article  Google Scholar 

  6. J.O White and A. Yariv: Real time image processing via four-wave mixing in a photorefractive material. Appl. Phys. Lett. 37, 1980, pp 5–7

    Article  Google Scholar 

  7. L. Pichon and J.P Huignard. Opt. Comm 36, 1981, p 277

    Article  Google Scholar 

  8. Y. Fainman, C.0 Guest and S.H Lee: Optical digital operation by two beam coupling in photorefractive material. Appl. Opt 25, 1986, pp 1598–1603

    Article  Google Scholar 

  9. H. Rajbenbach: Digital optical processing with photorefractive materials: Applications of a parallel half-adder circuit to algorithmic state machines. J. Appl. Phys. 62, 1987, pp 4675–4681

    Article  Google Scholar 

  10. J.P. Huignard, J.P. Herriau, P. Aubourg and E.Spitz: Phase conjugate wave front generation via real-time holography in BSO crystal. Opt. Lett. 4, 1979, pp 21–23

    Article  Google Scholar 

  11. J. Feinberg: Phase conjugating mirror with continuous wave gain. Opt. Lett. 5, 1980, pp 519–521

    Article  Google Scholar 

  12. M.D Levenson, K.M Johnson, V.0 Hanchett, K. Chiang. J. Opt. Soc. Am 71 1981, p 737

    Article  Google Scholar 

  13. J.P. Huignard, J.P. Herriau: Real time coherent edge reconstruction with BSO crystals. Appl. Opt 17, 1978, pp 2671–2672

    Article  Google Scholar 

  14. J. Feinberg: Real time edge enhancement using the photorefractive effect. Opt. Lett. 5, 1980, pp 330–332

    Article  Google Scholar 

  15. M. Cronin-Golomb and A. Yariv: Optical limiters using photorefractive nonlinearities. J. Appl. Phys. 57, 1985, pp 4906–4910.

    Article  Google Scholar 

  16. A. Ford, Y. Fainman and S.H. Lee: Single beam interferometry using photorefractive fanout. Opt. Lett, 1988.

    Google Scholar 

  17. D.Z. Anderson, D.M. Lininger and J. Feinberg: Optical tracking novelty filter. Opt. Lett. 12, 1987, pp 123–125.

    Article  Google Scholar 

  18. N.V. Kukhtarev, V.B. Markov and S.G. Odulov. Opt. Comm. 23, 1977, p 338.

    Article  Google Scholar 

  19. A. Manakchi and J.P. Huignard. Appl. Phys. 24, 1981, pp 24–131.

    Google Scholar 

  20. L.K. Lam, T.Y. Chang, J. Feinberg and R.W. Hellwarth. Opt. Lett. 6, 1981, p 475

    Article  Google Scholar 

  21. P. Günter, J.P. Huignard: Photorefractive materials and their applications. Vol I and II Springer Verlag, 1981

    Google Scholar 

  22. G.C. Valley and M.B. Klein: Optimal properties of photorefractive materials for optical data processing. Opt. Eng. 22, 1983, pp 704–711

    Google Scholar 

  23. P.Gunter: Holography, coherent light amplification and optical phase conjugation with photorefractive materials. Phys. Rep. 93, 1982, pp 199299

    Google Scholar 

  24. P. Gunter: Electro-Optic and Photorefractive Materials. Springer-Verlag 1987

    Google Scholar 

  25. G.C. Valley, M.B. Klein, R.A. Mullen, D. Rytz and B. Wechsler: Photorefractive materials. Ann. Rev. Mater. Sci 18, 1988

    Google Scholar 

  26. A. Ashkin, G.D Boyd, J.M Dziedzic, R.D Smith: Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3• Appl. Phys. Lett.9, 1966, pp 72–74

    Google Scholar 

  27. P.Yeh: Fundamental limit of the speed of photorefractive effect and its impact on device applications and material research: author’s reply to comment. Appl. Opt. 26, 1987, pp 3190–3191

    Article  Google Scholar 

  28. C.T Chen, D.M Kim and D.Von Linde: Efficient pulsed photorefractive process in LiNbO3: Fe for optical storage and deflection. IEEE J. Quant. Elec. 16, 1980, pp 126–129

    Article  Google Scholar 

  29. L.K Lam, T.Y Chang, J.Feinberg and R.W Hellwarth: Photorefractive-index gratings formed by nanosecond optical pulses in BaTiO3. Opt. Lett. 6, 1981, pp 475–477

    Article  Google Scholar 

  30. P Herman, J.P Herriau and J.P Huignard, Nanosecond four-wave mixing and holography in BSO crystals. Appl. Opt. 20, 1981, pp 2173–2175

    Article  Google Scholar 

  31. A.L Smirl, G.C. Valley, R.A. Mullen, K. Bonhert, C.D Mire and T.F Boggess: Picosecond photorefractive effect in BaTiO3. Opt. Lett. 12, 1987, pp 501503

    Google Scholar 

  32. G.C. Valley, A.L. Smirl, M.B. Klein, K. Bonhert and T.F. Boggess: Picosecond photorefractive beam coupling in GaAs. Opt. Lett. 11, 1986, pp 647–649

    Article  Google Scholar 

  33. P.J. Van Heerden: Theory of optical information storage in solides. Appl. Opt. 2, 1963, pp 393–400

    Article  Google Scholar 

  34. D. Psaltis, D. Brady, K. Wagner: Adaptative optical networks using photorefractive crystals. Appl. Opt. 27, 1988, pp 1752–1759

    Article  Google Scholar 

  35. Y. Fainman, H. Rajbenbach, S.H. Lee: Application of photorefractive crystals as basic computational modules for optical computing. J. Opt. Soc. Am. B3, 1986, p 16

    Google Scholar 

  36. J.P. Huignard, J.P. Herriau and F. Micheron: Selective erasure and processing in volume holograms superimposed in photosensitive ferroelectrics. Ferroelectrics 11, 1976, pp 393–396

    Article  Google Scholar 

  37. D. Van der Linde, A.M. Glass, K.F. Rodgers, Appl. Phys. Lett. 26, 1975, p 22

    Article  Google Scholar 

  38. J.P Herriau, J.P Huignard: Hologram fixing process at room temperature in photorefractive BSO. Appl. Phys. Lett. 49, 1986, pp 1140–1142

    Article  Google Scholar 

  39. L. Staebler, W.J. Burke, W. Phillips, J.J. Amodei: Multiple storage and erasure of fixed holograms in Fe-dopted LiNbO3. Appl. Phys. Lett. 26, 1975, pp 182–184.

    Article  Google Scholar 

  40. M. Cronin-Golomb, B. Fischer, J.O White and A. Yariv: Theory and applications of four-wave mixing in photorefractive media. IEE J Quant. El. 20, 1984, pp 12–29.

    Article  Google Scholar 

  41. A. Marrakchi, A.R. Tanguay, Jr, J. Yu and D. Psaltis: Physical characterization of the photorefractive incoherent to coherent optical converter. Opt. Eng. 24, 1985, pp 124–131

    Google Scholar 

  42. N.V. Kukhtarev, V.B. Markov, S.B. Odulov, M.S. Soskin and V.L. Vinestskii: Holographic storage in electro-optic crystals.I.steady state, and II. beam coupling light amplification. Ferroelectrics 22, 1979, pp 949–960 and pp 961–964

    Google Scholar 

  43. N.V. Kukhtarev and S. Odulov, Opt. Comm. 32, 1980, p 183

    Article  Google Scholar 

  44. D.L. Staebler and W. Phillips: Fe-doped LiNbO3 for read-write applications. Appl. Opt. 13, 1974, pp 788–794

    Article  Google Scholar 

  45. R.R. Shah, D.M. Kim, T.A. Rabson and F.K. Tittel: Characterization of iron-doped lithium niobate for holographic storage applications. J. Appl. Phys. 47, 1976, pp 5421–5431

    Article  Google Scholar 

  46. D.L. Staebler and J.J. Amodei: Coupled-wave analysis of holographic storage in LiNbO3. J. Appl. Phys. 43, 1972, pp 1042–1049

    Article  Google Scholar 

  47. H. Kurz: Photorefractive recording dynamics and multiple storage of volume holograms in photorefractive LiNbO3. Optica Acta 24, 1977, pp 463–473

    Article  Google Scholar 

  48. C.T. Chen, D.M. Kim and D. Von Der Linde: Efficient pulsed photorefractive process in LiNbO3: Fe for optical storage and deflection. IEEE, J. Quant, E1. 16, 1980, pp 126–1290

    Article  Google Scholar 

  49. D. Von Der Linde, A.M. Glass and K.F. Rogers: Multiphoton photorefractive processes for optical storage in LiNbO3. Appl. Phys. Lett. 25, 1974, pp 155–157

    Article  Google Scholar 

  50. P. Huignard and F. Micheron: High sensitivity read-write volume holographic storage in Bi12SiO20 and Bi12GeO20 crystals. J. Appl. Phys. 48, 1977, pp 3686–3690

    Google Scholar 

  51. M. Peltier and F. Micheron: Volume hologram recording and charge transfer process in Bi12SiO20 and Bi12GeO20. J. Appl. Phys. 48, 1977, pp 3683–3690

    Article  Google Scholar 

  52. J.P. Hermann, J.P. Herriau and J.P. Huignard: Nanosecond four-wave mixing in BSO crystals. Appl. Opt. 20, 1981, pp 2173–2175

    Article  Google Scholar 

  53. A. Marrakchi, R.V. Johnson and A.R. Tanguay. Jr: Polarization properties of photorefractive diffraction in electrooptic and optically active sillenide crystals (Bragg conditions). J. Opt. Soc. Am B3, 1986, pp 321–336

    Article  Google Scholar 

  54. M.A. Powell and C.R. Petts: Temperature enhancement of the photorefractive sensitivity of BSO and BGO. Opt. Lett. 11, 1986, pp 36–38

    Article  Google Scholar 

  55. R.A. Mullen and R.W. Hellwarth, Optical measurement of the photorefractive parameters of Bi12SiO20 crystals. J. Appl. Phys. 58, 1985,pp 40–44

    Article  Google Scholar 

  56. P. Herriau and J.P. Huignard: Hologram fixing process at room temperature in photorefractive Bi12SiO20 crystals. Appl. Phys. Lett. 49, 1986, pp 1140–42

    Article  Google Scholar 

  57. J.P. Huignard, J.P. Herriau and T. Valentin, Time-average holographic interferometry with photoconductive electrooptic Bi12SiO20 crystals. Appl.Opt. 16, 1977, pp 2796–2798

    Article  Google Scholar 

  58. J.P. Herriau, D. Rojas, J.P. Huignard, J.M. Bassat and J.C. Launay: Highly efficient diffraction in photorefractive BSO-BGO crystals at large applied fields, Ferroelectrics 66, 1986

    Google Scholar 

  59. J.P. Huignard and J.P. Herriau: Real time coherent object edge reconstruction with Bii2SiO20 crystals. Appl. Opt. 17, 1978, pp 2671–2672

    Article  Google Scholar 

  60. J.O. White and A. Yariv: Real time image processing via four-wave mixing in a photorefractive medium. Appl. Phys. Lett. 37, 1980, pp 5–7

    Article  Google Scholar 

  61. L. Pichon and J.P. Huignard: Dynamic joint-Fourier-transform correlator by Bragg diffraction in photorefractive Bi12SiO20 crystals. Opt. Comm. 36, 1981, pp 277–280

    Article  Google Scholar 

  62. J.P. Huignard, J.P. Herriau, P. Aubourg and E. Spitz: Phase-conjugate wavefront generation via real-time holography in Bi12SiO20 crystals. Opt.Lett. 4, 1979, pp 21–23

    Article  Google Scholar 

  63. G. Pauliat, J.P. Herriau, A. Delboulbe, G. Roosen and J.P. Huignard: Dynamic beam deflection using photorefractive gratings in Bi12SiO20 crystals. J. Opt. Soc. Am B3, 1986, pp 306–314

    Article  Google Scholar 

  64. J.B. Thaxter: Electrical control of holographic storage in strontium-barium niobate. Appl. Phys. Lett. 15, 1969, pp 210–212

    Article  Google Scholar 

  65. J.B. Thaxter and M. Kestigian: Unique properties on SBN and their use in a layered optical memory. App. Opt. 13, 1974, pp 913–924

    Article  Google Scholar 

  66. K. Megumi, H. Kosuka, M. Kobayashi and Y. Furuhata: High sensitivity holographic storage in Ce-doped SBN. Appl. Phys. Lett.3, 1977, pp 631633

    Google Scholar 

  67. G. Salamo, M.J. Miller, W.W. Clark III, G.L. Wood and E. Sharp: Strontium barium niobate as a self-pumped phase conjugator. Opt. Comm. 59, 1986, pp 417–422

    Article  Google Scholar 

  68. R.R. Neurgaonkar, W.K. Cory, J.R. Oliver, M.D. Ewbank and E.F. Hall: Development and modification of photorefractive properties in the tungsten bronze family crystals. Opt. Eng 26, 1987, pp 392–405

    Google Scholar 

  69. M.D. Ewbank, R. Neurgaonkar and W.K. Cory: Photorefractive properties of strontium-barium niobate. J. Appl. Phys. 62, 1987,pp 374–380

    Article  Google Scholar 

  70. G.L. Wood, W.W. Clark III, M.J. Miller, E.J. Sharp, G.P. Salamo and R.R Neurgaonkar: Broadband photorefractive properties and self-pumped phase conjugation in Ce-SBN: 60. IEEE J. Quant. E1.23, 1987, pp 21262134

    Google Scholar 

  71. F. Micheron, C. Mayeux and J.C. Trotier: Electrical control in photoferroelectric materials for optical storage. Appl. Opt. 13, 1974, pp 784–787

    Article  Google Scholar 

  72. R.L. Towsend and J.T. LaMacchia: Optically induced changes in BaTiO3

    Google Scholar 

  73. J.Feinberg, D. Heiman. A.R Tanguay, Jr and R.W Hellwarth. J. Appl. Phys. 51, 1980, p1297

    Google Scholar 

  74. Y.Fainman, E.Klancnik and S.H Lee: Optimal coherent image amplification by two wave coupling in photorefractive BaTiO3. Opt. Eng. 25, 1986, pp 228–234

    Google Scholar 

  75. F. Laeri, T. Tshudi and J. Abers: Coherent CW image amplifier and oscillator using two-wave interaction in a BaTiO3 crystal. Opt. Comm. 48, 1983, pp 247

    Article  Google Scholar 

  76. J. Feinberg: Self-pumped, continuous-wave, phase conjugator using internal reflection. Opt. Lett. 7, 1982, pp 486–488

    Article  Google Scholar 

  77. M. Cronin-Golomb, B. Fischer, J.O White and A. Yariv: Passive (self-pumped) phase conjugate mirror: Theoretical and experimental investigation. Appl. Phys. Lett. 41, 1982, pp 689–691

    Article  Google Scholar 

  78. Ducharme and J. Feinberg: Altering the photorefractive properties of BaTiO3 by reduction and oxidation at 650°C. J. Opt..Soc. Am. B3, 1986, pp 283–292

    Article  Google Scholar 

  79. B. Klein: Physics of the photorefractive effect in BaTiO3,Electro-Optic and Photorefractive Materials. Ed.P.Gunter, Springer-Verlag, 1987, pp 266–282

    Book  Google Scholar 

  80. D. Bize,J.E. Ford, T.Y. Taketomi, S.H. Lee: Effects of applied voltage on holographic storage in SBN: 60. SPIE Conf - San Diego - August 1988

    Google Scholar 

  81. J.E. Ford, Y. Taketomi, D. Bize and all: Multiplex holography in SBN: 60 with applied field. Sumitted to JOSA - A. special issue on Progress in Holography 9 /16/91

    Google Scholar 

  82. A. Krumins and P. Gunter: Diffraction efficiency and energytransfer during hologram formation in reduced KNbO3. Appl. Phys. 19, 1979, pp 153–163

    Article  Google Scholar 

  83. P. Gunter and A. Krumins: High-sensitivity read-write volume holographic storage in reduced KNbO3 crystals. Appl. Phys. 23, 1980, pp 199–207

    Article  Google Scholar 

  84. E.Volt and P. Gunter: Photorefractive spatial light modulation by anisotropic self-diffraction in KNbO3 crystals. Opt. Lett. 12, 1987, pp 769771

    Google Scholar 

  85. P. Gunter: Electric-field dependence of phase-conjugate wave-front reflectivity in reduced KNbO3 and B12GeO20. Opt. Lett. 7, 1982, pp 10–12

    Article  Google Scholar 

  86. J.P. Huignard, A. Marrakchi. Opt Corn - 38, 1981, p 249

    Article  Google Scholar 

  87. G.C. Valley: Two-wave mixing with an applied field and a moving grating. J. Opt. Soc. Am B1, 1984, pp 868–873

    Article  Google Scholar 

  88. H. Rajbenbach, J.P. Huignard, and B. Loiseaux. Opt. Comm. 48, 1983, p 247

    Article  Google Scholar 

  89. Ph. Refregier, L. Solymar, H. Rajbenbach and J.P. Huignard: Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: Theory and experiments. J. Appl. Phys. 58, 1985, pp 45–57

    Article  Google Scholar 

  90. J.Rodriguez, A.Siamakoun, M.J Miller, W.W.ClarkIII, G.L Wood, E.J. Sharp and R.R Neurgaonkar: BSKNN as a self-pumped phase conjugator. Appl. Opt. 26, 1987, pp 1732–1736

    Article  Google Scholar 

  91. A.M. Glass, A.M. Johnson, D.H. Olson, W. Simpson and A.A. Batlman: Four-wave mixing in semi-insulating InP and GaAs using the photorefractive effect. Appl. Phys. Lett. 44, 1984, pp 948–950

    Article  Google Scholar 

  92. G.C. Valley, A.L. Smirl, M.B. Klein, K. Bonhert and T.F. Boggess: Picosecond photorefractive beam coupling in GaAs. Opt. Lett. 1 1, 1986, pp 647–649

    Article  Google Scholar 

  93. A.L. Smirl, G.C. Valley, K. Bohnert and T.F. Boggess: Picosecond photorefractive and free-carrier transient energy transfer in GaAs at 1 pm. IEEE.J. Quant. Elec., Janv. 1988

    Google Scholar 

  94. G.C. Valley and A.L. Smirl: Theory of transient energy transfer in gallium arsenide IFFF J Quant. Elec., Janv 1988

    Google Scholar 

  95. J.M. Cohen-Jonathan, Ph. Rossignol, G. Roosen: Photorefractive grating build-up by a 28 ps light pulse in BSO. Journ. Phys., Suppl n° 6 Tome 49, 1988, p C2–267

    Google Scholar 

  96. J.C. Fabre, J.M. Cohen-Jonathan, G. Roosen: Photorefractive beam coupling in GaAs and InP generated by nanosecond light pulses. J. OptSoc. Am. B Vol. 5, 1988, p 1730

    Google Scholar 

  97. G. Pauliat, C. Besson, G. Roosen: Polarisation properties of two wave mixing under an alternating electric field in BSO crystals. IEEEJ. of Quantuum Elect., vol QE - 25 n° 7, 1989,p 1736

    Article  Google Scholar 

  98. G. Pauliat, A. Villing, J.C. Launay, G. Roosen: Optical measurement of charge carrier mobilities in photorefractive sillenite crystals. Journ. Opt. Soc. Am. B, vol 7, 1990, p 1481

    Article  Google Scholar 

  99. C. Besson, J.M.C. Jonathan, A. Villing, G. Pauliat, G. Roosen: Influence of alternating field frequency on enhanced photorefractive gain in two beam coupling. Opt. Lett., vol 14, n° 24, 1989, p 1359

    Article  Google Scholar 

  100. G. Pauliat, G. Roosen: Theoretical and experimental study of diffraction in optically active and linearly birefringent sillenite crystals. Ferroelectrics, vol 75, 1987, p 281

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 ECSC — EEC — EAEC, Brussels — Luxembourg

About this chapter

Cite this chapter

Bize, D. (1993). Reprogrammable Components: Photorefractive Materials. In: Lalanne, P., Chavel, P. (eds) Perspectives for Parallel Optical Interconnects. ESPRIT Basic Research Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49264-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49264-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49266-2

  • Online ISBN: 978-3-642-49264-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics