Skip to main content

Part of the book series: ESPRIT Basic Research Series ((ESPRIT BASIC))

  • 80 Accesses

Abstract

Over the last years considerable progress has been made in semiconductor optoelectronics because of the needs of optical telecommunications and the emergence of new fields. Today, semiconductor optical devices are used in fiberoptic systems and for satellite communication, for optical data communication, storage, reading and writing, for optical sensors and measurements, and as solidstate laser pumps. These devices are expected to be more extensively applied in emerging areas such as optical interconnects, optical signal processing and computing or optical memory. This development has been made possible by the greater maturity of material growth and device fabrication techniques, and by an increased knowledge of semiconductor materials and device structures. Ongoing research in this field is reported in the literature and enhanced fabrication tends to make high-yield and low-cost semiconductor devices available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Useful reviews on detectors can be found, e.g., in Tsang W.T.: Semiconductors and Semimetals, Willardson, R.K., and Beer, A.C., eds., Academic Press, 22D and 22E, 1985; Scribner D.A., Kruer M.R., Killiany J.M.: Infrared focal plane array technology, Proc. IEEE, 79, 1991, pp 66–85.

    Google Scholar 

  2. Casey Jr, H.C., Panish, M.B.: Liquid phase epitaxy. In Heterostructure Lasers, Part B, Academic Press, 1978, pp 109–132.

    Google Scholar 

  3. Nakajima, K.: The liquid phase epitaxial growth of InGaAsP. In Semiconductors and semimetals,, 22 A, 1985, pp 1–93.

    Google Scholar 

  4. Botez, D.: Liquid phase epitaxy over channelled substrates. J. Cryst. growth, 70, 1984, pp 150–154.

    Article  Google Scholar 

  5. Thulke, W.: Can liquid-phase epitaxy still be useful for optoelectronic devices. In Materials for optoelectronic devices, OEICs and photonics, Proc. of E-MRS Conference, Strasbourg, Nov. 27–30, 1990, pp 61–67.

    Google Scholar 

  6. Stringfellow, G.B.: Organometallic vapor-phase epitaxial growth of III-V semiconductors. In Semiconductors and semimetals, Willardson, R.K., and Beer, A.C., eds., Academic Press, 22A, 1985, pp 209–259.

    Google Scholar 

  7. Razeghi, M.: Low-pressure metallo-organic chemical vapor deposition of GaInAsP alloys. In Semiconductors and semimetals, Willardson, R.K., and Beer, A.C., eds., Academic Press, 22A, 1985, pp 298–375.

    Google Scholar 

  8. Cho, A.Y., Arthur, J.R.: Molecular beam epitaxy. J. Progress in solid state chem., 10, 1975, pp 157–191.

    Article  Google Scholar 

  9. Tsang, W.T.: Molecular beam epitaxy for III-V compound semiconductors. In Semiconductors and semimetals, Willardson, R.K., and Beer, A.C., eds., Academic Press, 22A, 1985, pp 95–207.

    Google Scholar 

  10. Perales, A., Goldstein, L., Accard, A., Fernier, B., Leblond, F., Gourdain C., Brosson, P.: High performance DFB-MQW lasers at 1.5 gm grown by GSMBE. Electron. Lett., 26, 1990, pp 236–237.

    Article  Google Scholar 

  11. Tsang, W.T.: Progress in chemical beam epitaxy. J. Cryst. growth, 105, 1990, pp 1–29.

    Article  Google Scholar 

  12. Davies, G.J., Duncan, W.J., Skevington, P.J., French, C.L., Foord, J.S.: Selective area growth for opto-electronic integrated circuits. In Materials for optoelectronic devices, OEICs and Photonics, Proc. of E-MRS Conference, Strasbourg, Nov. 27–30, 1990, pp 93–100.

    Google Scholar 

  13. Casey Jr, H.C., Panish, M.B.: Heterostructure lasers, Part A, Academic Press, 1978.

    Google Scholar 

  14. Baets, R.: Heterostructures in III-V optoelectronic devices. Sol. St. Electron., 30, 1987, pp 1175–1182.

    Article  Google Scholar 

  15. Weisbuch, C.: Fundamental properties of III-V semiconductor two-dimensional quantized structures: the basis for optical and electronic device applications. In Semiconductors and semimetals, Willardson, R.K., and Beer A.C., eds., Academic Press, 24, 1987, pp 1–133.

    Google Scholar 

  16. Okamoto, H.: Semiconductor quantum-well structures for optoelectronics–Recent advances and future prospects. Jap. J. of Appl. Phys., 26, 1987, pp 315–330.

    Article  Google Scholar 

  17. Dingle, R., Wiegmann, W., Henry, C.H.: Quantum states of confined carriers in very thin A1GaAs-GaAs-A1GaAs heterostructures. Phys. Rev. Lett., 33, 1974, pp 827–830.

    Article  Google Scholar 

  18. Holonyak, N., Kolbas, R.M., Dupuis, R.D., Dapkus, P.D.: Quantum-well heterostructure lasers. IEEE J Quantum Electron., 16, 1980, pp 170–185.

    Article  Google Scholar 

  19. Mittelstein, M., Arakawa, Y., Larsson, A., Yariv, A.: Second quantized state lasing of a current pumped single quantum well laser. Appl. Phys. Lett., 45, 1986, pp 1689–1691.

    Article  Google Scholar 

  20. Tokuda, Y., Tsukada, N., Fujiwara, K., Hamanaka, K., Nakayama, T.: Widely separate wavelength switching of single quantum well laser diode by injection-current control. Appl. Phys. Lett., 49, 1986, pp 1629–1631.

    Article  Google Scholar 

  21. Dutta, N.K., Hartman, R.L., Tsang, W.T.: Gain and carrier lifetime measurements in AIGaAs single quantum well lasers. EEE J. Quantum Electron, 19, 1983, pp 1243–1246.

    Article  Google Scholar 

  22. Asada, M., Kameyama, A., Suematsu, Y.: Gain and intervalence band absorption in quantum-well lasers. IEEE J. Quantum Electron., 20, 1984, pp 745–753.

    Article  Google Scholar 

  23. Chemla, D.S., Miller, D.A.B., Smith, P.W.: Nonlinear optical properties of multiple quantum well structures for optical signal processing. In Semiconductors and semimetals, Willardson, R.K., and Beer, A.C., eds., Academic Press, 24, 1987, pp 279–318.

    Google Scholar 

  24. Wood, T.H.: Direct measurement of the electric-field-dependent absorption coefficient in GaAs/AlGaAs multiple quantum wells. Appl. Phys. Lett., 48, 1986, pp 1413–1415.

    Article  Google Scholar 

  25. Lau, K.Y., Deny, P.L., Yariv, A.: Ultimate limit in low threshold quantum well GaA1As semiconductor lasers. Appl. Phys. Lett., 52, 1988, pp 88–90.

    Article  Google Scholar 

  26. Kapon, E., Simhony, S., Harbison, J.P., Florez, L.T., Worland P.: Threshold current reduction in patterned quantum-well semiconductor lasers grown by molecular beam epitaxy. Appl. Phys. Lett., 56, 1990, pp 1825–1827.

    Article  Google Scholar 

  27. Tsang, W.T.: Quantum confinement heterostructure semiconductor lasers. In Semiconductors and semimetals, Willardson, R.K., and Beer, A.C., eds., Academic Press, 24, 1987, pp 397–458.

    Google Scholar 

  28. Chin, R., Holonyak Jr, N., Vojak, B.A., Hess, K., Dupuis, R.D., Dapkus, P.D.: Temperature dependence of threshold current for quantum-well A1GaAsGaAs heterostructure laser diodes. Appl. Phys. Lett., 36, 1980, pp 19–21.

    Article  Google Scholar 

  29. Hayakawa, T., Suyama, T., Kondo, M., Hosoda, M., Yamamoto, S., Hijikata, T.: High-power (2.2 W) CW operation of (111)-oriented GaAs/A1GaAs singlequantum-well lasers prepared by molecular-beam epitaxy. J. Appl. Phys., 64 (5), 1988, pp 2764–2766.

    Article  Google Scholar 

  30. Arakawa, Y., Yariv, A.: Theory of gain, modulation response, and spectral linewidth in A1GaAs quantum well lasers. IEEE J Quantum Electron, 21, 1985, pp 1666–1674.

    Article  Google Scholar 

  31. Lang, H., Wolf, H.D., Korte, L., Hedrich, H., Hoyler, C., Thanner, C.: GaAs/A1GaAs quantum well laser for high-speed applications. IEE Proc., part J, 138, 1991, pp 117–121.

    Google Scholar 

  32. Lee, T.P.: Recent advances in long-wavelength semiconductor lasers for optical fiber communication. Proc. IEEE, 79, 1991, pp 253–276.

    Article  Google Scholar 

  33. Scherer, A., Jewell, J.L., Lee, Y.H., Harbison, J.P., Florez, L.T.: Fabrication of microlasers and microresonator optical switches. Appl. Phys. Lett., 55, 1989, pp 2724–2726.

    Article  Google Scholar 

  34. Walker, R.G.: High speed III-V semiconductor intensity modulators. IEEE J. Quantum Electron., 27, 1991, pp 654–667.

    Article  Google Scholar 

  35. Lentine, A.L., Hinton, H.S., Miller, D.A., Henry, J.E., Cunningham, J.E., Chirovsky, M.F.: Symmetric Self-Electrooptic Effect Device: Optical Set-Reset Latch, Differentiel Logic Gate and Differential Modulator/Detector. IEEE J. Quantum Electron., 25, 1989, pp 1928–1936.

    Article  Google Scholar 

  36. Law, K.K., Whitehead, M., Merz, J.L., Coldren, L.A.: Simultaneous achievement of low insertion loss high contrast and low operating voltage in asymmetric Fabry-Perot reflection modulator. Electron. Lett., 27, 1991, pp 1863–1865.

    Article  Google Scholar 

  37. Huang, T.C., Chung, Y., Dagli, N., Coldren, L.A.: GaAs/A1GaAs multiple quantum well field-induced optical waveguide. Appl. Phys. Lett., 57, 1990, pp 114–116.

    Article  Google Scholar 

  38. Ozeki, Y., Johnson, J.E., Tang, C.L.: Polarisation bistability in semiconductor lasers with intracavity multiple quantum well saturable absorbers. Appl. Phys. Lett., 58, 1991, pp 1958–1960.

    Article  Google Scholar 

  39. Jin, R., Chuang, C.L., Gibbs, H.M., Koch, S.W., Policy, J.N., Pubanz, G.A.: Picosecond all-optical switching in single-mode GaAs/AlGaAs strip-loaded nonlinear directional couplers. Appl. Phys. Lett., 53, 1988, pp 1791–1793.

    Article  Google Scholar 

  40. Tarucha, S., Okamoto, H.: Monoliithic integration of a laser diode and an optical waveguide modulator having a GaAs/AlGaAs quantum well double heterostructure. Appl. Phys. Lett., 48, 1986, pp 1–3.

    Article  Google Scholar 

  41. Hernandez-Gil, F., Koch, T.L., Koren, U., Gnall, R.P., Burrus, C.A.: Tunable MQW–DBR laser with monolithically integrated GaInAsP/InP directional coupler switch. Electron. Lett., 25, 1989, pp 1271–1272.

    Article  Google Scholar 

  42. Asada, M., Miyamoto, Y., Suematsu, Y.: Gain and the threshold of three-dimensional quantum-box lasers. IEEE J. Quantum Electron., 22, 1986, pp 1915–1921.

    Article  Google Scholar 

  43. Yariv, A.: Scaling laws and minimum threshold currents for quantum-confined semiconductor lasers. Appl. Phys. Lett., 53, 1988, pp 1033–1035.

    Article  Google Scholar 

  44. Miyamoto, Y., Miyake, Y., Asada, M., Suematsu, Y.: Threshold current density of GaInAsP/InP box lasers. IEEE J. Quantum Electron., 25, 1989, pp 2001–2006.

    Article  Google Scholar 

  45. T. Takahashi, Y. Arakawa: Nonlinear gain effects in quantum well,quantum well wire, and quantum well box lasers. IEEE J Quantum Electron., QE-27, 1991, pp 1825–1829.

    Google Scholar 

  46. Maile, B.E., Forchel, A., Germann, R., Straka, J., Korte, L., Thanner, C.: Lateral quantization induced emission energy shift of buried GaAs/AlGaAs quantum wires. Appl. Phys. Lett., 57, 1990, pp 807–809.

    Article  Google Scholar 

  47. Shimomura, K., Suematsu, Y., Arai, S.: Analysis of semiconductor intersectional waveguide optical switch modulator. IEEE J. Quantum Electron., 26, 1990, pp 883–892.

    Article  Google Scholar 

  48. Aizawa, T., Shimomura, K., Arai, S., Suematsu, Y.: Observation of field-induced refractive index variation in quantum box structure. IEEE Photon. Technol. Lett., 3, 1991, pp 907–909.

    Article  Google Scholar 

  49. Petroff, P.M., Gossard, A.C., Logan, R.A., Wiegmann, W.: Toward quantum well wires: fabrication and optical properties. Appl. Phys. Lett., 41, 1982, pp 635–638.

    Article  Google Scholar 

  50. Kapon, E., Simhony, S., Bhat, R., Hwang, D.M.: Single quantum wire semiconductor lasers. Appl. Phys. Lett., 55, 1989, pp 2715–2717.

    Article  Google Scholar 

  51. Simhony, S., Kapon, E., Colas, E., Hwang, D.M., Stoffel, N.G., Worland, P.: Vertically stacked multiple-quantum-wire semiconductor diode lasers. Appl. Phys. Lett., 59, 1991, pp 2225–2227.

    Article  Google Scholar 

  52. Fukui, T., Ando, S., K. Fukai, Y.: Lateral quantum well wires fabricated by selective metalorganic chemical vapor deposition. Appl. Phys. Lett., 57, 1990, pp 1209–1211.

    Article  Google Scholar 

  53. Izrael, A., Sermage, B., Marzin, J.Y., Ougazzaden, A., Azoulay, R., Etrillard, J., Thierry-Mieg, V., Henry, L.: Microfabrication and optical study of reactive ion etched InGaAsP/InP and GaAs/GaA1As quantum wires. Appl. Phys. Lett., 56, 1990, pp 830–832.

    Article  Google Scholar 

  54. Vieu, G., Schneider, M., Mailly, D., Planel, R., Launois, H., Marzin, J.Y., Descouts, B.: Optical characterization of selectively intermixed GaAs/ GaA1As quantum wires by Ga+ masked implantation. J. Appl. Phys., 70, 1991, pp 1444–1450.

    Article  Google Scholar 

  55. Capasso, F.: Graded-gap and superlattice devices by bandgap engineering“ In Semiconductors and semimetals, Willardson, R.K., and Beer, A.C., eds., Academic Press, 24, 1987, pp 319–393.

    Google Scholar 

  56. Hall, D.C., Deppe, D.G., Holonak Jr, N., Matyi, R.J., Shichijo, H., Epler, J.E.: Thermal behavior and stability of room-temperature continuous A1GaAsGaAs quantum well heterostructure lasers grown on Si. J. Appl. Phys., 64, 1988, pp 2854–2860.

    Article  Google Scholar 

  57. Choi, H.K., Wang, C.A., Fan, J.C.C.: Room-temperature continuous operation of GaAs/AlGaAs lasers grown on Si by organometallic vapor-phase epitaxy. J. Appl. Phys., 68, 1990, pp 1916–1918.

    Article  Google Scholar 

  58. Egawa, T., Soga, T., Jimbo, T., Umeno, M.: Room-temperature continuous-wave operation of AlGaAs-GaAs single-quantum-well lasers on Si by metalorganic chemical-vapor deposition using A1GaAs-A1GaP intermediate layers. IEEE J. Quantum Electron., 27, 1991, pp 1798–1803.

    Article  Google Scholar 

  59. Sugo, M., Mori, H., Itoh, Y., Sakai, Y., Tachikawa, M.: 1.5 pm long-wavelength multiple quantum well laser on a Si substrate. Jap. J. Appl. Phys., 30, 1991, pp 3876–3878.

    Google Scholar 

  60. Van Ackere, M., Ackaert, A., Moerman, I., Lootens, D., Demeester, P., Van Daele, P., Baets, R., Lagasse, P.: GaAs single-quantum well GRIN-SCH ridge lasers grown on InP by MOVPE. Electron. Lett., 25, 1989, pp 47–48.

    Article  Google Scholar 

  61. Lo, Y.H., Caneau, C., Bhat, R., Florez, L.T., Chang, G.K., Harbison, J.P., Lee, T.P.: High-speed GaAs-on-InP long wavelength transmitter OEICs. Electron. Lett., 25, 1989, pp 666–667.

    Article  Google Scholar 

  62. Pollentier, I., Buydens, L., Demeester, P., Van Daele, P., Enard, A., Lanier, E., Glastre, G., Rondi, D.: Monolithic integration of GaAs MESFET and InP/InGaAsP 2 x 2 optical switch. Electron. Lett., 27, 1991, pp 2339–2340.

    Article  Google Scholar 

  63. Eng, L.E., Chen, T.R., Sanders, S., Zhuang, Y.H., Zhao, B., Yariv, A., Morkoç, H.: Submilliampere threshold current pseudomorphic InGaAs/ AlGaAs buried-heterostructure quantum well lasers grown by molecular beam epitaxy. Electron. Lett., 55, 1989, pp 1378–1379.

    Google Scholar 

  64. Wang, C.A., Walpole, J.N., Missagia, L.J., Donnelly, J.P., Choi, H.K.: AlInGaAs/AlGaAs separate-confinement heterostructure strained single quantum well diode lasers grown by organometallic vapor phase epitaxy. Electron. Lett., 58, 1991, pp 2208–2210.

    Google Scholar 

  65. Tanbun-Ek, T., Logan, R.A., Chu, S.N.G., Sergent, A.M., Wecht, K.W.: Effects of strain in multiple quantum well distributed feedback lasers. Electron. Lett., 57, 1990, pp 2184–2186.

    Google Scholar 

  66. Yasaka, H., Takahata, K., Yamamoto, N., Naganuma, M.: Gain Saturation coefficients of strained-layer multiple quantum-well distributed feedback lasers. IEEE Photon. Technol. Lett., 3, 1991, pp 879–882.

    Article  Google Scholar 

  67. Blez, M., Kazmierski, C., Quillec, M., Robein, D., Allovon, M., Gloukhian, A., Sermage, B.: First DFB GRIN-SCH GalnAs/AlGalnAs 1.55 mm MBE MQW active layer buried ridge structure lasers. Electron. Lett., 27, 1991, pp 93–94.

    Article  Google Scholar 

  68. Thijs, P.J.A., TIiemeijer, L.F., Kuindersma, P.I., Binsma, J.J.M., Van Dongen, T. : High-performance 1.5 mm wavelength InGaAs-InGaAsP strained quantum well lasers and amplifiers. IEEE J. Quantum Electron., 27, 1991, pp 1426–1439.

    Article  Google Scholar 

  69. Zah, C.E., Bhat, R., Menocal, S.G., Favire, F., Lin, P.S.D., Gozdz, A.S., Andreadakis, N.C., Pathak, B., Koza, M.A., Lee, T.P.: Reliable InGaAs quantum well lasers at 1.1 mm. Electron. Lett., 27, 1991, pp 552–553.

    Article  Google Scholar 

  70. Murison, R.F., Moore, A.H., Lee, S.R., Holehouse, N., Dzurko, K.M., Cockerill, T.M., Coleman, J.J.: High power continuous operation of laser diode at 1064 nm. Electron. Lett., 27, 1991, pp 1979–1981.

    Article  Google Scholar 

  71. Major, J.S., Plano, W.E., Welch, D.F., Scifres, D.: Single-made InGaAs-GaAs laser diodes operating at 980 nm. Electron. Lett., 27, 1991, pp 539–540.

    Article  Google Scholar 

  72. Welch, D.F., Cardinal, M., Streifer, B., Scifres, D.: High-power single mode InGaAs/A1GaAs laser diode at 910 nm. Electron. Lett., 26, 1990, pp 233–235.

    Article  Google Scholar 

  73. Pearsall, T.P.: Si-Ge alloys and superlattices for optoelectronics. In Materials for optoelectronic devices, OEICs and Photonics, Proc. of E-MRS Conference, Strasbourg, Nov. 27–30, 1990, pp 225–231.

    Google Scholar 

  74. Turton, R.J., Jaros, M.: Linear and nonlinear optical properties of direct gap Si-Ge superlattices. lEE Proc. J, 138, 1991, pp 323–329.

    Google Scholar 

  75. Agawal, G.P., Dutta, N.K.: Long wavelength semiconductor lasers. Van Nostrand Reinhold Company, 1986.

    Google Scholar 

  76. Suematsu, Y., Arai, S.: Integrated optics approach for advanced semiconductor lasers. Proc. IEEE, 75, 1987, pp 1472–1487.

    Article  Google Scholar 

  77. Forrest, S. : Optoelectronic integrated circuits. Proc. IEEE, 75, 1987, pp 1488–1497.

    Article  Google Scholar 

  78. Koch, T.L., Koren, U.: InP-based photonic integrated circuits. IEE Proc. J, 138, 1991, pp 139–147.

    Google Scholar 

  79. Choi, H.K., Wang, C.A., Kolesar, D.F., Aggarwal, R.L., Walpole, J.N.: High-power, high-temperature operation of AlInGaAs-A1GaAs strained-singlequantum-well diode lasers. IEEE Photonics Technology Letters, 3, 1991, pp 857–859.

    Article  Google Scholar 

  80. Welch, D.F., Cross, P., Scifres, D., Streifer, W., Burnham, R.D.: In-phase emission from index-guided laser array up to 400 mW. Electron. Lett., 22, 1986, pp. 293–294.

    Google Scholar 

  81. Goldstein, B., Carlson, N.W., Evans, G.A., Dinkel, N.A., Masin, V.J.: Performance of channelled-substrate-planar high-power phase-locked array operating in the diffraction limit. Electron. Lett., 23, 1987, pp 1136–1138.

    Article  Google Scholar 

  82. Jansen, M., Yang, J.J., Ou, S.S., Botez, D., Wilcox, J., Mawst, L.: Diffraction-limited operation from monolithically integrated diode laser array and self-imaging (Talbot) cavity. Appl. Phys. Lett., 55, 1989, pp 1949–1951.

    Article  Google Scholar 

  83. Thompson, G.H.B., Witheaway, J.E.A.: Analysis of the stability of the highest-order supermode in semiconductor laser arrays. Electron. Lett., 23, 1987, pp 444–446.

    Article  Google Scholar 

  84. Botez, D., Jansen, M., Mawst, L.J., Peterson, G., Roth, T.J.: Watt-range, coherent, uniphase powers from phase-locked arrays of antiguided diode lasers. Appl. Phys. Lett., 58, 1991, pp 2070–2072.

    Article  Google Scholar 

  85. Major, J.S., Mehuys, D., Welch, D.F., Scifres, D.R.: High power, high efficiency antiguide laser arrays. Appl. Phys. Lett., 59, 1991, pp 2210–2212.

    Article  Google Scholar 

  86. Streifer, W., Scifres, D.R., Harnagel, G.L., Welch, D.F., Berger, J., Sakamoto, M.: Advances in diode laser pumps. IEEE J. Quantum Electron., 24, 1988, pp. 883–893.

    Article  Google Scholar 

  87. Sakamoto, M., Endriz, J.G., Scifres, D.R.: 20 W CW monolithic AlGaAs (810 nm) laser diode arrays. Electron. Lett., 28, 1992, pp 178–180.

    Article  Google Scholar 

  88. Sakamoto, M., Endriz, J.G., Scifres, D.R.: 120 W CW output power from monolithic A1GaAs (800 nm) laser diode array mounted on diamond heatsink. Electron. Lett., 28, 1992, pp 197–198.

    Article  Google Scholar 

  89. Harnagel, G.L., Ahrabi, M., Browder, G.S., Worland, D.P., Endriz, J.G., Scifres, D.R.: High power, high-efficiency quasi-CW two-dimensional laser diode arrays. Electron. Lett., 27, 1991, pp 55–56.

    Article  Google Scholar 

  90. Welch, D.F., Scifres, D.R.: High power, 8.5 W CW, visible laser. Electron. Lett., 27, 1991, pp 1915–1916.

    Article  Google Scholar 

  91. Liau, Z.L., Walpole, J.N.: Large monolithic two-dimensional arrays of GaInAsP/InP surface-emitting lasers. Appl. Phys. Lett., 50, 1987, pp 528–530.

    Article  Google Scholar 

  92. Kim, J.H., Larsson, A., Lee, L.P.: Pseudomorphic InGaAs/GaAs/GaAlAs single quantum well surface emitting lasers with integrated 45° beam deflectors. Appl. Phys. Lett., 58, 1991, pp 7–9.

    Article  Google Scholar 

  93. Chao, C.P., Law, K.K., Merz, J.L.: Low threshold InGaAs/GaAs strained layer ridge waveguide surface emitting lasers with two 45° angle etched internal total reflection mirrors. Appl. Phys. Lett., 59, 1991, pp 1532–1534.

    Article  Google Scholar 

  94. Takamori, T., Coldren, L.A., Merz, J.L.: Folded cavity transverse junction stripe surface-emitting lasers. Appl. Phys. Lett., 55, 1989, pp 1053–1055.

    Article  Google Scholar 

  95. Ou, S.S., Yang, J.J., Jansen, M., Sargent, M., Mawst, L.J., Wilcox, J.Z.: High performance surface-emitting lasers with 45° intracavity micromirrors. Appl. Phys. Lett., 58, 1991, pp 16–18.

    Article  Google Scholar 

  96. Goodhue, W.D., Donnely, J.P., Wang, C.A., Lincoln, G.A., Rauschenbach, K., Bailey, R.J., Johnson, G.D.: Monolithic two-dimensional surface-emitting strained-layer InGaAs/AlGaAs and AlInGaAs/AlGaAs diode laser arrays with over 50 % differential quantum efficiencies. Appl. Phys. Lett., 59, 1991, pp 632–634.

    Article  Google Scholar 

  97. Goodhue, W.D., Rauschenbach, K., Wang, C.A., Donnely, J.P., Bailey, R.J., Johnson, G.D.: Monolithic two-dimensional GaAs/A1GaAs laser arrays fabricated by chlorine ion-beam-assisted micromaching. J. Electron. Mat., 19, 1990, pp 463–469.

    Article  Google Scholar 

  98. Missagia, L.J., Walpole, J.N., Liau, Z.L., Philips, R.J.: Microchannel heat sinks for two-dimensional high-power-density diode laser arrays. IEEE J. Quantum Electron., 25, 1989, pp 1988–1992.

    Article  Google Scholar 

  99. Hardy, A., Welch, D.F., Streifer, W.: Analysis of a dual grating-type surface emitting laser. IEEE J. Quantum Electron., 26, 1990, pp 50–60.

    Article  Google Scholar 

  100. Carlson, N.W., Bour, D.P., Evans, G.A., Liew, S.K. : Spectral linewidth narrowing in monolithic grating-surface-emitting multiple-quantum-well distributed feedback lasers. IEEE Photon. Technol. Lett., 2, 1990, pp 242–243.

    Article  Google Scholar 

  101. Welch, D.F., Parke, R., Hardy, A., Waarts, R., Streifer, W., Scifres, D.R.: High power, 16W, grating surface emitting laser with a superlattice substrate reflector. Electron. Lett., 26, 1990, pp 757–758.

    Article  Google Scholar 

  102. Evans, G.A., Carlson, N.W., Hammer, J.M., Lurie, M., Butler, J K., Palfrey, S.L., Amantea, R., Carr, L.A., Hawrylo, F.Z., James, E.-A., Kaiser, C.J., Kirk, J.B., Reichert, W.F.: Two-dimensional coherent laser arrays using grating surface emission. IEEE J. Quantum Electron., 25, 1989, pp 1525–1538.

    Google Scholar 

  103. Evans, G.A., Bour, D.P., Carlson, N.W., Amantea, R., Hammer, J.M., Lee, H., Lune, M., Lai, R.C., Pelka, P.F., Farkas, R.E., Kirk, J.B., Liew, S.K., Reichert, W.F., Wang, C.A., Choi, H.K., Walpole, J.N., Butler, J.K., Ferguson, W.F., DeFreez, R.K., Felisky, M.: Characteristics of coherent two-dimensional grating surface emitting diode laser arrays during CW operation. IEEE J Quantum Electron, 27, 1991, pp 1595–1607.

    Article  Google Scholar 

  104. Mehuys, D., Parke, R., Waarts, R.G., Welch, D.F., Hardy, A., Streifer, W., Scifres, D.R. : Characteristics of multistage monolithically integrated master oscillator power amplifiers. IEEE J Quantum Electron., 27, 1991, pp 1575–1581.

    Article  Google Scholar 

  105. Parke, R., Welch, D.F., Mehuys, D.: Coherent operation of 2D monolithically integrated master oscillator power amplifier. Electron. Lett., 27, 1991, pp 2097–2098.

    Article  Google Scholar 

  106. Iga, K., Koyama, F., Kinoshita, S.: Surface emitting semiconductor lasers. IEEE J Quantum Electron., 24, 1988, pp 1845–1855.

    Article  Google Scholar 

  107. Lee, Y.H., Jewell, J.L., Scherer, A., McCall, S.L., Harbison, J.P., Florez, L.T.: Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes. Electron. Left., 25, 1989, pp 1377–1378.

    Article  Google Scholar 

  108. Clausen Jr, E.M., Von Lehmen, A., Chang-Hasnain, C., Harbison, J.P., Florez, L.T.: Improved threshold characteristics of air-post vertical-cavity surface-emitting lasers using unique etching process. Electron. Lett., 27, 1991, pp 2243–2245.

    Article  Google Scholar 

  109. Geels, R.S., Coldren, L.A.: Submilliamp threshold vertical-cavity laser diodes. Appl. Phys. Lett., 57, 1990, pp 1605–1607.

    Article  Google Scholar 

  110. Yang, Y.J., Dziura, T.G., Fernandez, R., Wang, S.C., Du, G., Wang, S.: Low-threshold operation of a GaAs single quantum well mushroom structure surface-emitting laser. Appl. Phys. Lett., 58, 1991, pp 1780–1782.

    Article  Google Scholar 

  111. Geels, R.S., Corzine, S.W., Coldren, L.A.: InGaAs vertical-cavity surface-emitting lasers. IEEE J Quantum Electron., 27, 1991, pp 1359–1367.

    Article  Google Scholar 

  112. Jewell, J.J., Harbison, J.P., Scherer, A., Lee, Y.H., Florez, L.T.: Vertical-cavity surface-emitting lasers: design, growth, fabrication, charaterization. IEEE J. Quantum Electron., 27, 1991, pp 1332–1346.

    Article  Google Scholar 

  113. Chang-Hasnain, C.J., Harbison, J.P., Hasnain, G., Von Lehmen, A.C., Florez, L.T., Stoffel, N.G.: Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers. IEEE J. Quantum Electron., 27, 1991, pp 1402–1409.

    Article  Google Scholar 

  114. Ibaraki, A., Furusawa, K., Ishikawa, T., Yodoshi, K., Yamaguchi, T., Niina, T.: GaAs buried heterostructure vertical cavity top-surface emitting lasers IEEE J. Quantum Electron., 27, 1991, pp 1386–1390.

    Article  Google Scholar 

  115. Chang -Hasnain, C.J., Harbison, J.P., Zah, C.E., Maeda, M.W., Florez, L.T., Stoffel, N.G., Lee, T.P.: Multiple wavelength tunable surface-emitting laser arrrays. IEEE J Quantum Electron., 27, 1991, pp 1368–1376.

    Article  Google Scholar 

  116. Yoo, H.J., Hayes, J.R., Paek, E.G., Harbison, J.P., Florez, L.T., Kwon, Y.S.: Phase-locked two-dimensional arrays of implant isolated vertical cavity surface emitting lasers. Electron. Lett., 26, 1990, pp 1944–1946.

    Article  Google Scholar 

  117. Van Der Ziel, J.P., Deppe, D.G., Chand, N., Zydzik, G.J., Chu, S.N.G.: Characteristics of single and two-dimensional phase coupled arrays of vertical cavity surface emitting GaAs-A1GaAs lasers. IEEE J. Quantum Electron., 26, 1990, pp 1873–1882.

    Article  Google Scholar 

  118. Gourley, P.L., Warren, M.E., Hadley, G.R., Vawter, G.A., Brennan, T.M., Hammons, B.E.: Coherent beams from high efficiency two-dimensional surface-emitting semiconductor laser arrays. Appl. Phys. Lett., 58, 1991, pp 890–892.

    Article  Google Scholar 

  119. Orenstein, M., !Capon, E., Stoffel, N.G., Harbison, J.P., Florez, L.T., Wullert, J. : Two-dimensional phase-locked arrays of vertical-cavity semi-conductor lasers by mirror reflectivity modulation. Appl. Phys. Lett., 58, 1991, pp 804–806.

    Article  Google Scholar 

  120. Chang-Hasnain, C.J., Wullert, J.R., Harbison, J.P., Florez, L.T., Stoffel, N.G., Maeda, M.W.: Rastered, uniformly separated wavelengths emitted from a two-dimensional vertical-cavity surface-emitting laser array. Appl. Phys. Lett., 58, 1991, pp 31–33.

    Article  Google Scholar 

  121. Morgan, R.A., Robinson, K.C., Chirovsky, L.M.F., Focht, M.W., Guth, G.D., Leibenguth, R.E., Glogovsky, K.G., Przybylek, G.J., Smith, L.E.: Uniform 64x1 arrays of individually-addressed vertical cavity top surface emitting lasers. Electron. Lett., 27, 1991, pp 1400–1401.

    Article  Google Scholar 

  122. Orenstein, M., Von Lehmen, A.C., Chang-Hasnain, C., Stoffel, N.G., Harbison, J.P., Florez, L.T.: Matrix addressable vertical cavity surface emitting laser array. Electron. Lett., 27, 1991, pp 437–438.

    Article  Google Scholar 

  123. Von Lehmen, A., Chang-Hasnain, C., Wullert, J., Carrion, L., Stoffel, N., Florez, L., Harbison, J.: Independently addressable InGaAs/GaAs vertical-cavity surface-emitting laser arrays. Electron. Lett., 27, 1991, pp 583–585.

    Article  Google Scholar 

  124. Miller, D.A.: Photoelectronic applications of quantum wells. Opt. and Photon., 1, 1990, pp 7–14.

    Article  Google Scholar 

  125. Giles, C.R., Wood, T.H., Burrus, C.A.: Quantum well SEED optical oscillators. IEEE J Quantum Electron., 26, 1990, pp 512–518.

    Article  Google Scholar 

  126. Mc Cormick, F.B., Lentine, A.L., Morrison, R.L., Walker, S.L., Chirovsky, L.M.F., d’Asaro, L.A.: Parallel operation of a 32 x 16 symmetric self electrooptic effect device array. IEEE Photon. Technol. Lett., 3, 1991, pp 232–234.

    Article  Google Scholar 

  127. Mc Cormick, F.B., Tooley, F.A.P., Sasian, J.M., Brubaker, J.L., Lentine, A.L., Cloonan, T.J., Morrison, R.L., Walker, S.L., Crisci, R.J.: Parallel interconnection of two 64 x 32 symmetric self-electro-optic effect device arrays. Electron. Lett., 27, 1991, pp 1869–1871.

    Google Scholar 

  128. Chirovsky, L.M.F., Focht, M.W., Freund, J.M., Guth G.D., Leibenguth, R.E., Przybyblek, G.J., Smith, L.E., d’Asaro, L.A., Lentine, A.L., Novotny, R.A., Buchholz, D.B.: Large arrays of symmetric self electro-optic effect devices. Osa Top. Meet. Photon. Switch. Washington, D.C.: Opt. Soc. Amer. 1991, pp 150–153.

    Google Scholar 

  129. Lang, R., Kasahara, K., Sakaguchi, M.: VSTEP: a view on steps to optical inteconnects and processing. Proc. 16th European Conference on Optical Communication, Sept 16–20, 1990, pp 849–852.

    Google Scholar 

  130. Taylor, G.W., Mand, R.S., Simmons, J.G., Cho, A.Y.: Ledistor-a three terminal double heterostructure optoelectronic switch. Appl. Phys. Lett., 50, 1987, pp 338–340.

    Article  Google Scholar 

  131. Kuijk, M, Heremans, P., Borghs, G.: Highly sensitive NpnP optoelectronic switch by AlAs regrowth. Appl. Phys. Let. 59, ( 5), 1991, pp 497–498.

    Google Scholar 

  132. Chan, W.K., Harbisson, J.P., von Lehmen, A.C., Florez, L.T., Nguyen, C.K., Schwarz, SA.: Optically controled surface emitting lasers. Appl. Phys. Lett., 58, 1991, pp 2342–2344.

    Article  Google Scholar 

  133. Numai, T., Sugimoto, M., Ogura, I., Kosaka, H., Kasahara, K.: Surface-emitting laser operation in vertical-to-surface transmission electrophotonic devices with a vertical cavity. Appl. Phys. Lett., 58, 1991, pp 1250–1252.

    Article  Google Scholar 

  134. Zhou, P., Cheng, J., Schaus, C.F., Sun, S.Z., Hains, C., Zheng, K., Torres, A.: High performance latchable optical switch and logic gates based on the integration of surface emitting laser and photothyristors. Appl. Phys. Lett., 59, 1991, pp 2504–2506.

    Article  Google Scholar 

  135. Zhou, P., Cheng, J., Schaus, C.F., Sun, S.Z., Hains, C., Zheng, K., Armour, E., Hsin, W., Myers, D.R., Vawter, G.A.: Cascadable, latching photonic switch with high optical gain by the monolithic integration of a vertical—cavity surface emitting laser and pn-pn photothyristor. IEEE Photon. Technol. Lett., 3, 1991, pp 1009–1012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 ECSC — EEC — EAEC, Brussels — Luxembourg

About this chapter

Cite this chapter

Lozes-Dupuy, F., Martinot, H., Bonnefont, S. (1993). Optoelectronic semiconductor devices. In: Lalanne, P., Chavel, P. (eds) Perspectives for Parallel Optical Interconnects. ESPRIT Basic Research Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49264-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49264-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49266-2

  • Online ISBN: 978-3-642-49264-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics