Characterization of Interconnection Components

  • J. Schwider
Part of the ESPRIT Basic Research Series book series (ESPRIT BASIC)


Free space optical interconnects are used in optoelectronic and optical networks as it is discussed in the second section of this book. A very promising scheme uses optoelectronic switching planes and optical interconnects between those planes. In the most general approach this is a more or less regular 3D-fabric of elements, this is why such a structure can be used as a symbolical example for free space interconnects. Here, we will deal with passive optical elements only which are necessary to interconnect emitters on one plane with opto-electronic detectors on the plane of the following stage.


Point Spread Function Modulation Transfer Function Diffraction Efficiency Optical Path Difference Microlens Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Streibl, K.-H. Brenner, A. Huang, J. Jahns, J. Jewell, A. Lohmann, D. A. B. Miller, M. Murdocca, M. E. Prise, Th. Sizer, “Digital Optics”, Proc IEEE 77, 1989, p. 1954–1969CrossRefGoogle Scholar
  2. 2.
    N. Streibl, “Beam shaping with optical array generators” J. of Mod. Opt. 36, 1989, p. 1559–1573CrossRefGoogle Scholar
  3. 3.
    L. Solymar, J. Cooke, “Volume holography and volume gratings”, Academic Press 1981Google Scholar
  4. 4.
    K. Iga, Y. Kokubun, M. Oikawa, “Fundamentals of microoptics”, Academic Press, Tokyo 1984Google Scholar
  5. 5.
    D. Daly, R.F. Stevens, M.C. Hutley, “The manufacture of microlenses by melting photoresist”, Meas. Sci. Technl. 1, 1990, p. 759–766CrossRefGoogle Scholar
  6. 6.
    G. Schulz, J. Schwider, “Interferometric testing of smooth surfaces”, Progress in Optics 13, 1976, p. 92–167, editor E. Wolf, North Holand Publ. AmsterdamGoogle Scholar
  7. 7.
    Zygo description of phase shifting interferometer, Zygo Corp., Middlefield CT, USAGoogle Scholar
  8. 8.
    N. Abramson, “The Interferoscope a new type of interferometer with variable fringe separation”, Optik 30, 1969, p. 56Google Scholar
  9. 9.
    J. Schwider et al., “Semiconductor wafer and technical flat planeness testing interferometer”, Measurement 5, 1987, p. 98–101Google Scholar
  10. 10.
    K.G. Birch, “Oblique incidence interferometry applied to non-optical surfaces”, J. Phys. E. Sci. Instr. 1973, Volume 6, p. 1045–1048CrossRefGoogle Scholar
  11. 11.
    N. Streibl, U. Mischer, J. Jahns, S. Walker, “Array generation with lenslet arrays”, Appl. Opt. 30, 1991, p. 2739–2742CrossRefGoogle Scholar
  12. 12.
    H.-P. Herzig, D. Prongue, R. Dändliker, “Design and fabrication of highly efficient fan-out elements”, Proc. of the Int. Top. Meeting on “Optical Computing” in Kobe, Japan, April 1990Google Scholar
  13. 13.
    J. A. Cox, “Overview of diffractive optics at Honeywell”, Proc. SPIE 884, 1988 p. 127–131Google Scholar
  14. 14.
    J. R. Leger, M.L. Scott, P. Bundman, M.P. Griswold, “Astigmatic wavefront correction of gain-guided laser diode array using anamorphic diffractive microlenses”, Proc. SPIE 884, 1988, p. 82–89Google Scholar
  15. 15.
    W. Krug, J. Rienitz, G. Schulz, “Contributions to Interference Microscopy”, Hilger & Watts, 1964, LondonGoogle Scholar
  16. 16.
    G. Schulz, “Ein einfaches Interferenzmikroskop für Auflicht”, Naturwissenschaften 48, 1961, p. 565–566CrossRefGoogle Scholar
  17. 17.
    U.-C. Minor, G. Schulz, “Über ein Auflicht-Interferenzmikroskop ohne Vergleichsfläche”, Wiss. Zeitschr. Hochsch. Elektrotechn. Ilmenau 8, 1962, p. 475–479Google Scholar
  18. 8.
    C. Koliopoulos, “Interferometric optical phase measurement techniques”, Thesis, 1981, Tucson OSCGoogle Scholar
  19. 19.
    Topo 3D-Interferometer-prospectus, Wyko Corp.Google Scholar
  20. 20.
    M. Born, E. Wolf, “Principles of Optics”, 6-th edition, Pergamon Press, 1980Google Scholar
  21. 21.
    J. Schwider, “Advanced evaluation techniques in interferometry”, Progress in Optics 28, 1990, p. 272–359, editor E. Wolf, North Holand Publ. AmsterdamGoogle Scholar
  22. 22.
    J. Schwider, R. Burow, K.-E. Elßner, J. Grzanna, R. Spolaczyk, K. Merkel, “Digital wavefront measuring interferometry: some systematic error sources”, Appl. Opt. 22, 1983, p. 3421–3432CrossRefGoogle Scholar
  23. 23.
    G. Schulz, “Über Interferenzen gleicher Dicke und Längenmessung mit Lichtwellen”, Ann. Phys. (6) 14, 1954, p. 177–187zbMATHCrossRefGoogle Scholar
  24. 24.
    G. Schulz, “Über Interferenzen gleicher Dicke bei größeren Keilwinkeln und größerer Apertur”, Optik 16, 1959, p. 280–287Google Scholar
  25. 25.
    K. Creath, “Calibration of numerical aperture effects in interferometric microscope objectives”, Appl. Opt. 28, 1989, p. 3333–38CrossRefGoogle Scholar
  26. 26.
    J. Biegen, “Calibration requirements for Mirau and Linnik microscope interferometers”, Appl. Opt. 28, 1989, p. 1972–1974CrossRefGoogle Scholar
  27. 27.
    G. Schulz, K.-E. Elßner, “Errors in phase measurement interferometry with high numerical apertures”, Appl. Opt. 30, 1991, p. 4500–4506CrossRefGoogle Scholar
  28. 28.
    K. Creath “Phase-Measurement Interferometry Techniques”, Prog. in Optics 26, 1988, p. 349–393CrossRefGoogle Scholar
  29. 29.
    Osten, “Digitale Verarbeitung und Auswertung von Interferenzbildern”, Akademie Verlag, Berlin 1991Google Scholar
  30. 30.
    G. Makosch, B. Solf, “Surface profiling by electro-optical phase measurements”, Proc. SPIE Vol. 316, 1981Google Scholar
  31. 31.
    C. C. Huang, “Optical heterodyne profilometer”, Opt. Eng. 23, 1984, p. 365Google Scholar
  32. 32.
    J. C. Wyant, K. Creath, “Recent advances in interferometric optical testing”, Laser Focus/Electrooptics 21, Nov. 1985, p. 118–132Google Scholar
  33. 33.
    W. Kösters, “Anwendung der Interferenzen zu Messzwecken”, Handbuch der physikalischen Optik Bd.1, p. 471–498, ed. E. Gehrcke, Leipzig 1927, J.A. BarthGoogle Scholar
  34. 34.
    Y.-Y. Cheng, J.C. Wyant, “Two-wavelength phase shifting interferometry”, Appl. Opt. 23, 1984, p. 4539–4543CrossRefGoogle Scholar
  35. 35.
    K. Creath, “Step height measurement using two-wavelength phase-shifting interferometry”, Appl.Opt. 26, 1987, p. 2810–2816CrossRefGoogle Scholar
  36. 36.
    Talystep, Taylor & Hobson, Instrument description, 1987Google Scholar
  37. 37.
    Rodenstock, Laser Stylus RM 600Google Scholar
  38. 38.
    D. Rugar, P Hansma, “Atomic force microscopy”, Phys. Today, Oct 1990, p. 23–30Google Scholar
  39. 39.
    D. Sarid, “Scanning force microscopy with appliocations to electric, magnertic, atomic forces”, Oxford University Press, New York, 1991Google Scholar
  40. 40.
    T. W. Cline, R. B. Jander, “Wavefront aberration measurements on Grin-rod lenses”, Appl. Opt. 21, 1982, p. 1035–1041CrossRefGoogle Scholar
  41. 41.
    J. Schwider, K.-E. Elssner, J. Grzanna, R. Spolaczyk, “Results and error sources in absolute sphericity measurements”, IMEKO Laser Measurement Working Group Symposium Budapest, November 1986Google Scholar
  42. 42.
    O. Falkenstörfer, H. Kobolla, U. Krackhardt, N. Lindlein, J. Schwider, N. Streibl, R. Völkel, H. Weißmann, “Optimization of holographic lenslets and their measurement”, IOP Short meeting on Microlens Arrays, Teddington 1. May 1991, p. 53–60Google Scholar
  43. 43.
    M.C. Hutley, D. Daly, R.F. Stevens, “The testing of microlens arrays”, Proc. IOP-Short-meeting on “Microlens arrays”, 1.May 1991 Teddington, Institute of Physics Series No. 30, p. 67–81Google Scholar
  44. 44.
    O’Neill, “Introduction to statistical optics”, 1963, Read. Mass.Google Scholar
  45. 45.
    K. Murata, “Instruments for the measuring of optical transfer functions”, Prog. in Optics vol. V, ed. E. Wolf, North Holland publ. House, 1966Google Scholar
  46. 46.
    D. Malacara, “Optical shop testing”, J. Wiley & Sons, 1978, New YorkGoogle Scholar
  47. 47.
    D. Prongue, H. P. Herzig, “Design and fabrication of HOE for clock distribution in integrated circuits”, Conference Proceedings “Holographic Systems, Components and Applications”, Bath, Sept. 1989Google Scholar
  48. 48.
    H.-P. Herzig; “Holographic optical elements (HOE) for semiconductor lasers”, Opt. Comm. 58, 1986, p. 144–148Google Scholar
  49. 49.
    K. Hamanaka, H. Nemoto, M. Oikawa, E. Okuda, T. Kishimoto, “Multiple imaging and multiple Fourier transformation using planar microlens arrays”, Appl. Opt. 29, 1990, p. 4064–4070CrossRefGoogle Scholar
  50. 50.
    R. R. A. Syms, “Practical volume holography”, Clarendon Press, Oxford 1990Google Scholar
  51. 51.
    H. Kogelnik, “Coupled wave theory for thick hologram gratings”, Bell Syst. Techn. Journ. 48, 1969, p. 2909Google Scholar
  52. 52.
    G.R. Chamberlin, D.E. Sheat, A.M. Hill, “Holographic transmission gratings for use in the 1250–1600 fibre window”, Conference Proceedings “Holographic Systems, Components and Applications”, Bath, Sept. 1989Google Scholar
  53. 53.
    G. Birnbaum, C.M. Vest, “Holographic nondestructive evaluation: status and future. Int. Adv. in Nondestr. Test. 9, 1983, p. 257–282Google Scholar
  54. 54.
    Y. Kokubun, K. Iga, “Index profiling of distributed-index lenses by a shearing interference method”, Appl. Opt. 21, 1982, p. 1030–1034CrossRefGoogle Scholar
  55. 55.
    Y. Kokubun, T. Usui, M. Oikawa, K. Iga, “Wave aberration testing system for micro-lenses by shearing interference method”, Jap. J. Appl. Phys. 23, 1984, p. 101–104.CrossRefGoogle Scholar

Copyright information

© ECSC — EEC — EAEC, Brussels — Luxembourg 1993

Authors and Affiliations

  • J. Schwider
    • 1
  1. 1.Angewandte OptikPhysikalisches Institut Universität Erlangen-NürnbergGermany

Personalised recommendations