Skip to main content

Characterization of Interconnection Components

  • Chapter
  • 76 Accesses

Part of the book series: ESPRIT Basic Research Series ((ESPRIT BASIC))

Abstract

Free space optical interconnects are used in optoelectronic and optical networks as it is discussed in the second section of this book. A very promising scheme uses optoelectronic switching planes and optical interconnects between those planes. In the most general approach this is a more or less regular 3D-fabric of elements, this is why such a structure can be used as a symbolical example for free space interconnects. Here, we will deal with passive optical elements only which are necessary to interconnect emitters on one plane with opto-electronic detectors on the plane of the following stage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Streibl, K.-H. Brenner, A. Huang, J. Jahns, J. Jewell, A. Lohmann, D. A. B. Miller, M. Murdocca, M. E. Prise, Th. Sizer, “Digital Optics”, Proc IEEE 77, 1989, p. 1954–1969

    Article  Google Scholar 

  2. N. Streibl, “Beam shaping with optical array generators” J. of Mod. Opt. 36, 1989, p. 1559–1573

    Article  Google Scholar 

  3. L. Solymar, J. Cooke, “Volume holography and volume gratings”, Academic Press 1981

    Google Scholar 

  4. K. Iga, Y. Kokubun, M. Oikawa, “Fundamentals of microoptics”, Academic Press, Tokyo 1984

    Google Scholar 

  5. D. Daly, R.F. Stevens, M.C. Hutley, “The manufacture of microlenses by melting photoresist”, Meas. Sci. Technl. 1, 1990, p. 759–766

    Article  Google Scholar 

  6. G. Schulz, J. Schwider, “Interferometric testing of smooth surfaces”, Progress in Optics 13, 1976, p. 92–167, editor E. Wolf, North Holand Publ. Amsterdam

    Google Scholar 

  7. Zygo description of phase shifting interferometer, Zygo Corp., Middlefield CT, USA

    Google Scholar 

  8. N. Abramson, “The Interferoscope a new type of interferometer with variable fringe separation”, Optik 30, 1969, p. 56

    Google Scholar 

  9. J. Schwider et al., “Semiconductor wafer and technical flat planeness testing interferometer”, Measurement 5, 1987, p. 98–101

    Google Scholar 

  10. K.G. Birch, “Oblique incidence interferometry applied to non-optical surfaces”, J. Phys. E. Sci. Instr. 1973, Volume 6, p. 1045–1048

    Article  Google Scholar 

  11. N. Streibl, U. Mischer, J. Jahns, S. Walker, “Array generation with lenslet arrays”, Appl. Opt. 30, 1991, p. 2739–2742

    Article  Google Scholar 

  12. H.-P. Herzig, D. Prongue, R. Dändliker, “Design and fabrication of highly efficient fan-out elements”, Proc. of the Int. Top. Meeting on “Optical Computing” in Kobe, Japan, April 1990

    Google Scholar 

  13. J. A. Cox, “Overview of diffractive optics at Honeywell”, Proc. SPIE 884, 1988 p. 127–131

    Google Scholar 

  14. J. R. Leger, M.L. Scott, P. Bundman, M.P. Griswold, “Astigmatic wavefront correction of gain-guided laser diode array using anamorphic diffractive microlenses”, Proc. SPIE 884, 1988, p. 82–89

    Google Scholar 

  15. W. Krug, J. Rienitz, G. Schulz, “Contributions to Interference Microscopy”, Hilger & Watts, 1964, London

    Google Scholar 

  16. G. Schulz, “Ein einfaches Interferenzmikroskop für Auflicht”, Naturwissenschaften 48, 1961, p. 565–566

    Article  Google Scholar 

  17. U.-C. Minor, G. Schulz, “Über ein Auflicht-Interferenzmikroskop ohne Vergleichsfläche”, Wiss. Zeitschr. Hochsch. Elektrotechn. Ilmenau 8, 1962, p. 475–479

    Google Scholar 

  18. C. Koliopoulos, “Interferometric optical phase measurement techniques”, Thesis, 1981, Tucson OSC

    Google Scholar 

  19. Topo 3D-Interferometer-prospectus, Wyko Corp.

    Google Scholar 

  20. M. Born, E. Wolf, “Principles of Optics”, 6-th edition, Pergamon Press, 1980

    Google Scholar 

  21. J. Schwider, “Advanced evaluation techniques in interferometry”, Progress in Optics 28, 1990, p. 272–359, editor E. Wolf, North Holand Publ. Amsterdam

    Google Scholar 

  22. J. Schwider, R. Burow, K.-E. Elßner, J. Grzanna, R. Spolaczyk, K. Merkel, “Digital wavefront measuring interferometry: some systematic error sources”, Appl. Opt. 22, 1983, p. 3421–3432

    Article  Google Scholar 

  23. G. Schulz, “Über Interferenzen gleicher Dicke und Längenmessung mit Lichtwellen”, Ann. Phys. (6) 14, 1954, p. 177–187

    Article  MATH  Google Scholar 

  24. G. Schulz, “Über Interferenzen gleicher Dicke bei größeren Keilwinkeln und größerer Apertur”, Optik 16, 1959, p. 280–287

    Google Scholar 

  25. K. Creath, “Calibration of numerical aperture effects in interferometric microscope objectives”, Appl. Opt. 28, 1989, p. 3333–38

    Article  Google Scholar 

  26. J. Biegen, “Calibration requirements for Mirau and Linnik microscope interferometers”, Appl. Opt. 28, 1989, p. 1972–1974

    Article  Google Scholar 

  27. G. Schulz, K.-E. Elßner, “Errors in phase measurement interferometry with high numerical apertures”, Appl. Opt. 30, 1991, p. 4500–4506

    Article  Google Scholar 

  28. K. Creath “Phase-Measurement Interferometry Techniques”, Prog. in Optics 26, 1988, p. 349–393

    Article  Google Scholar 

  29. Osten, “Digitale Verarbeitung und Auswertung von Interferenzbildern”, Akademie Verlag, Berlin 1991

    Google Scholar 

  30. G. Makosch, B. Solf, “Surface profiling by electro-optical phase measurements”, Proc. SPIE Vol. 316, 1981

    Google Scholar 

  31. C. C. Huang, “Optical heterodyne profilometer”, Opt. Eng. 23, 1984, p. 365

    Google Scholar 

  32. J. C. Wyant, K. Creath, “Recent advances in interferometric optical testing”, Laser Focus/Electrooptics 21, Nov. 1985, p. 118–132

    Google Scholar 

  33. W. Kösters, “Anwendung der Interferenzen zu Messzwecken”, Handbuch der physikalischen Optik Bd.1, p. 471–498, ed. E. Gehrcke, Leipzig 1927, J.A. Barth

    Google Scholar 

  34. Y.-Y. Cheng, J.C. Wyant, “Two-wavelength phase shifting interferometry”, Appl. Opt. 23, 1984, p. 4539–4543

    Article  Google Scholar 

  35. K. Creath, “Step height measurement using two-wavelength phase-shifting interferometry”, Appl.Opt. 26, 1987, p. 2810–2816

    Article  Google Scholar 

  36. Talystep, Taylor & Hobson, Instrument description, 1987

    Google Scholar 

  37. Rodenstock, Laser Stylus RM 600

    Google Scholar 

  38. D. Rugar, P Hansma, “Atomic force microscopy”, Phys. Today, Oct 1990, p. 23–30

    Google Scholar 

  39. D. Sarid, “Scanning force microscopy with appliocations to electric, magnertic, atomic forces”, Oxford University Press, New York, 1991

    Google Scholar 

  40. T. W. Cline, R. B. Jander, “Wavefront aberration measurements on Grin-rod lenses”, Appl. Opt. 21, 1982, p. 1035–1041

    Article  Google Scholar 

  41. J. Schwider, K.-E. Elssner, J. Grzanna, R. Spolaczyk, “Results and error sources in absolute sphericity measurements”, IMEKO Laser Measurement Working Group Symposium Budapest, November 1986

    Google Scholar 

  42. O. Falkenstörfer, H. Kobolla, U. Krackhardt, N. Lindlein, J. Schwider, N. Streibl, R. Völkel, H. Weißmann, “Optimization of holographic lenslets and their measurement”, IOP Short meeting on Microlens Arrays, Teddington 1. May 1991, p. 53–60

    Google Scholar 

  43. M.C. Hutley, D. Daly, R.F. Stevens, “The testing of microlens arrays”, Proc. IOP-Short-meeting on “Microlens arrays”, 1.May 1991 Teddington, Institute of Physics Series No. 30, p. 67–81

    Google Scholar 

  44. O’Neill, “Introduction to statistical optics”, 1963, Read. Mass.

    Google Scholar 

  45. K. Murata, “Instruments for the measuring of optical transfer functions”, Prog. in Optics vol. V, ed. E. Wolf, North Holland publ. House, 1966

    Google Scholar 

  46. D. Malacara, “Optical shop testing”, J. Wiley & Sons, 1978, New York

    Google Scholar 

  47. D. Prongue, H. P. Herzig, “Design and fabrication of HOE for clock distribution in integrated circuits”, Conference Proceedings “Holographic Systems, Components and Applications”, Bath, Sept. 1989

    Google Scholar 

  48. H.-P. Herzig; “Holographic optical elements (HOE) for semiconductor lasers”, Opt. Comm. 58, 1986, p. 144–148

    Google Scholar 

  49. K. Hamanaka, H. Nemoto, M. Oikawa, E. Okuda, T. Kishimoto, “Multiple imaging and multiple Fourier transformation using planar microlens arrays”, Appl. Opt. 29, 1990, p. 4064–4070

    Article  Google Scholar 

  50. R. R. A. Syms, “Practical volume holography”, Clarendon Press, Oxford 1990

    Google Scholar 

  51. H. Kogelnik, “Coupled wave theory for thick hologram gratings”, Bell Syst. Techn. Journ. 48, 1969, p. 2909

    Google Scholar 

  52. G.R. Chamberlin, D.E. Sheat, A.M. Hill, “Holographic transmission gratings for use in the 1250–1600 fibre window”, Conference Proceedings “Holographic Systems, Components and Applications”, Bath, Sept. 1989

    Google Scholar 

  53. G. Birnbaum, C.M. Vest, “Holographic nondestructive evaluation: status and future. Int. Adv. in Nondestr. Test. 9, 1983, p. 257–282

    Google Scholar 

  54. Y. Kokubun, K. Iga, “Index profiling of distributed-index lenses by a shearing interference method”, Appl. Opt. 21, 1982, p. 1030–1034

    Article  Google Scholar 

  55. Y. Kokubun, T. Usui, M. Oikawa, K. Iga, “Wave aberration testing system for micro-lenses by shearing interference method”, Jap. J. Appl. Phys. 23, 1984, p. 101–104.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 ECSC — EEC — EAEC, Brussels — Luxembourg

About this chapter

Cite this chapter

Schwider, J. (1993). Characterization of Interconnection Components. In: Lalanne, P., Chavel, P. (eds) Perspectives for Parallel Optical Interconnects. ESPRIT Basic Research Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49264-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49264-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49266-2

  • Online ISBN: 978-3-642-49264-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics