Diffractive components: computer-generated elements

  • H. P. Herzig
  • M. T. Gale
  • H. W. Lehmann
  • R. Morf
Part of the ESPRIT Basic Research Series book series (ESPRIT BASIC)


Highly efficient diffractive optical elements (DOEs) can also be realized using modern microfabrication technologies. Computer-generated data for arbitrary phase profiles can be transformed into optical elements. These elements offer optimum design freedom and established fabrication technology.


Diffraction Efficiency Beam Shaping Pattern Transfer Diffractive Optical Element Phase Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Dammann, K. Görtler: High-efficiency in-line multiple imaging by means of multiple phase holograms, Opt. Commun. 3, 312–315 (1971)CrossRefGoogle Scholar
  2. 2.
    G. J. Swanson: Binary optics technology: the theory and design of multilevel diffractive optical elements, MIT Lincoln Lab, Technical Report 854 (1989)Google Scholar
  3. 3.
    M. T. Gale, G. K. Lang, J. M. Raynor, H. Schütz, D. Prongué: Fabrication of kinoform structures for optical computing, Appl. Opt. 31, 5712–5715 (1992)Google Scholar
  4. 4.
    M. T. Gale, K. Knop: The fabrication of fine lens arrays by laser beam writing, Proc. SPIE 398, 347–353 (1983)Google Scholar
  5. 5.
    H. P. Herzig, D. Prongué, R. Dändliker: Design and fabrication of highly efficient fan-out elements, Jpn. J. Appl. Phys. 29, L1307 - L1309 (1990)CrossRefGoogle Scholar
  6. 6.
    E. Hecht: Optics ( Addison-Wesley, Reading, 1987 ).Google Scholar
  7. 7.
    G. J. Swanson, W. B. Veldkamp: Diffractive optical elements for use in infrared systems, Opt. Eng. 28, 605–608 (1989)Google Scholar
  8. 8.
    S. Aoyama, S. Ogata, T. Inoue, T. Yamashita: Laser diode source integrating a high-diffraction-efficiency micro-Fresnel lens with 0.5 N.A. fabricated by electron-beam lithography, in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1988), paper THM49Google Scholar
  9. 9.
    H. Hosokawa, T. Yamashita: ZnS micro-Fresnel lens and its uses, Appl. Opt. 29, 5106–5110 (1990)Google Scholar
  10. 10.
    M. Rossi, R. E. Kunz, M. T. Gale: Phase-matched Fresnel reflectors, Proc. Applied Optics and Opto-Electronics, Leeds, England, 145–147 (1992)Google Scholar
  11. 11.
    M. Haruna, M. Takahashi, K. Wakahayashi, H. Nishihara: Laser beam lithographed micro-Fresnel lenses, Appl. Opt. 29, 5120–5126 (1990)Google Scholar
  12. 12.
    H. P. Herzig, R. Dändliker: Holographic optical elements for use with semiconductor lasers, in International Trends in Optics, J. W. Goodman, ed. ( Academic Press, New York, 1991 ), pp. 57–75Google Scholar
  13. 13.
    J. Kedmi, A. A. Friesem: Optimized holographic optical elements, J. Opt. Soc. Am. A 3, 2011–2018 (1986)CrossRefGoogle Scholar
  14. 14.
    J. N. Cederquist, J. R. Fienup: Analytic design of optimum holographic optical elements, J. Opt. Soc. Am. A 4, 699–705 (1987)CrossRefGoogle Scholar
  15. 15.
    E. Hasman, A. A. Friesem: Analytic optimization for holographic optical elements, J. Opt. Soc. Am. A 6, 62–72 (1989)CrossRefGoogle Scholar
  16. 16.
    H. P. Herzig, R. Dändliker: Holographic optical scanning elements: Analytical method for determining the phase function, J. Opt. Soc. Am. A 4, 1063–1070 (1987)CrossRefGoogle Scholar
  17. 17.
    J. Fagerholm, J. Turunen, E. Byckling: Optimization of holographic optical systems by damped least squares and wavefront matching techniques, Proc. SPIE 883, 20–27 (1988)Google Scholar
  18. 18.
    R. W. Gerchberg, W. O. Saxton: A practical algorithm for the determination of phase from image and diffraction plane pictures, Optik 35, 237–246 (1972)Google Scholar
  19. 19.
    M. T. Eismann, A. M. Tai, J. N. Cederquist: Iterative design of a holographic beamformer, Appl. Opt. 28, 2641–2650 (1989)Google Scholar
  20. 20.
    F. Wyrowski, O. Bryngdahl: Iterative Fourier-transform algorithm applied to computer holography, J. Opt. Soc. Am. A 5, 1058–1065 (1988)CrossRefGoogle Scholar
  21. 21.
    F. Wyrowski: Diffractive optical elements: iterative calculation of quantized, blazed phase structures, J. Opt. Soc. Am. A 7, 961–969 (1990)CrossRefGoogle Scholar
  22. 22.
    W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling: Numerical Recipes ( Cambridge University Press, Cambridge, 1986 )Google Scholar
  23. 23.
    S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi: Optimization by simulated annealing, Science 220, 671–680 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    J. Turunen, A. Vasara, J. Westerholm, G. Jin, A. Salin: Optimization and fabrication of grating beamsplitters, J. Phys. D: Appl. Phys. 21, S102 - S105 (1988)CrossRefGoogle Scholar
  25. 25.
    J. N. Mait: Design of binary-phase and multiphase Fourier gratings for array generation, J. Opt. Soc. Am. A 7, 1514–1528 (1990)CrossRefGoogle Scholar
  26. 26.
    J. Turunen, A. Vasara, J. Westerholm: Kinoform phase relief synthesis: a stochastic method, Opt. Eng. 28, 1162–1167 (1989)Google Scholar
  27. 27.
    M. P. Dames, R. J. Dowling, P. McKee, D. Wood: Efficient optical elements to generate intensity weighted spot arrays: design and fabrication, Appl. Opt. 30, 2685–2691 (1991)Google Scholar
  28. 28.
    A. Vasara et al.: Binary surface-relief gratings for array illumination in digital optics, Appl. Opt. 31, 3320–3336 (1992)Google Scholar
  29. 29.
    D. Prongué, H. P. Herzig, R. Dändliker, M. T. Gale: Optimized kinoform structures for highly efficient fan-out elements, Appl. Opt. 31, 5706–5711 (1992)Google Scholar
  30. 30.
    J. W. Goodman: Introduction to Fourier Optics ( McGraw-Hill, San Francisco, 1968 )Google Scholar
  31. 31.
    G. J. Swanson: Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements, MIT Lincoln Lab, Technical Report 914 (1991)Google Scholar
  32. 32.
    R. R. A. Syms: Optical Volume Holography ( Oxford University Press, Oxford, 1990 )Google Scholar
  33. 33.
    T. K. Gaylord, M. G. Moharam: Analysis and applications of optical diffraction by gratings, Proc. IEEE 73, 894–937 (1985)CrossRefGoogle Scholar
  34. 34.
    R. Petit, ed.: Electromagnetic Theory of Gratings ( Springer-Verlag, Berlin, 1980 )Google Scholar
  35. 35.
    A. Vasara, E. Noponen, J. Turunen, J. M. Miller, M. R. Taghizadeh: Rigorous diffraction analysis of Dammann gratings, Opt. Commun. 81, 337–342 (1991)CrossRefGoogle Scholar
  36. 36.
    D. Maystre: Integral methods, in 34., pp. 63–100Google Scholar
  37. 37.
    P. Vincent: Differential methods, in 34., pp. 101–121Google Scholar
  38. 38.
    R. Magnusson, T. K. Gaylord: Equivalence of multiwave coupled wave theory and modal theory for periodic-media diffraction, J. Opt. Soc. Am. 68, 1777–1779 (1978)CrossRefGoogle Scholar
  39. 39.
    M. G. Moharam, T. K. Gaylord: Diffraction analysis of dielectric surface-relief gratings, J. Opt. Soc. Am. 72, 1385–1392 (1982)CrossRefGoogle Scholar
  40. 40.
    K. Knop: Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves, J. Opt. Soc. Am. 68, 1206–1210 (1978)CrossRefGoogle Scholar
  41. 41.
    L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha: The finitely conducting lamellar diffraction grating, Optica Acta 28, 10871102 (1981)Google Scholar
  42. 42.
    L. C. Botten, M. S. Craig, R. C. McPhedran: Highly conducting lamellar diffraction gratings, Optica Acta 28, 1103–1106 (1981)MathSciNetCrossRefGoogle Scholar
  43. 43.
    W. Moreau: Semiconductor Lithography: Principles, Practices and Materials ( Plenum, New York, 1988 )CrossRefGoogle Scholar
  44. 44.
    Proc. ME’90, Microelectronic Engineering 13 (1991)Google Scholar
  45. 45.
    J. L. Vossen, W. Kern, eds.: Thin Film Processes II ( Academic Press Inc., San Diego, 1991 )Google Scholar
  46. 46.
    J. Jahns, A. Huang: Planar integration of free-space optical components, Appl. Opt. 28, 1602–1605 (1989)Google Scholar
  47. 47.
    H. C. Pfeiffer, T. R. Groves: Progress in e-beam masks making for optical and X-ray lithography, ME’90, Microelectronic Engineering 13, 141–149 (1991)CrossRefGoogle Scholar
  48. 48.
    J. Meingailis: Focused ion beam technology and applications, J. Vac. Sci. Technol. B 5, 469–495 (1987)CrossRefGoogle Scholar
  49. 49.
    J. M. Stauffer, Y. Oppliger, F. Vasey: Fabrication of optoelectronic devices on AlGaAs using electron beam lithography, Proc. ME’90, Microelectronic Engineering 13, 193–196 (1991)CrossRefGoogle Scholar
  50. 50.
    For example, Laser Pattern Generator Systems CORE-2000 (ATEQ Corp., Oregon, USA) or Micronic LRS-10 (Micronic Laser Systems AB, Täby, Sweden)Google Scholar
  51. 51.
    H. Nishihara, M. Haruna, T. Suhara: Optical Integrated Circuits ( McGraw-Hill, New York 1987 )Google Scholar
  52. 52.
    D. C. Flanders, A. E. White: Application of ~100A linewidth structures fabricated by shadowing techniques, J. Vac. Sci. Technol. 19, 892–896 (1981)CrossRefGoogle Scholar
  53. 53.
    M. C. Hutley: Diffraction gratings ( Academic Press, London, 1982 )Google Scholar
  54. 54.
    K. E. Bean: Anisotropic etching of Silicon, IEEE Trans. Electron Dev. ED-25, 1185 (1978)Google Scholar
  55. 55.
    H.W. Lehmann: Plasma-assisted etching, in 45., pp. 673–748Google Scholar
  56. 56.
    J. C. Matthews, M. G. Ury, A. D. Birch, M. A. Lashmann: Microlithography techniques using a microwave powered deep UV source, Proc. SPIE 394, 172–183 (1983)Google Scholar
  57. 57.
    J. L. Vossen, J. Appl. Phys. 47, 544–546 (1976)CrossRefGoogle Scholar
  58. 58.
    R. E. Lee: Inhibition of chemical sputtering of organics and C by trace amounts of Cu-surface contamination, in Plasma Processing for VLSI, VLSI Electronics Microstructure Science 8, N. G. Einspruch, D. M. Brown, eds. ( Academic Press, Orlando, 1984 ) p. 34Google Scholar
  59. 59.
    P. R. Puckett, S. L. Michel, W. E. Hughes: Ion beam etching, in 45., p. 749Google Scholar
  60. 60.
    S. Matsui, T. Yamato, H. Aritome, S. Namba: Fabrication of SiO2 blazed holographic gratings by reactive ion-etching, Jap. J. Appl. Phys. 19, L126 - L128 (1980)CrossRefGoogle Scholar
  61. 61.
    E. H. Anderson, C. M. Horowitz, H. I. Smith: Holographic lithography with thick photoresist, Appl. Phys. Lett. 43, 874–875 (1983)Google Scholar
  62. 62.
    J. Turunen, J. Fagerholm, A. Vasara, M. R. Taghizadeh: Detour-phase kinoform interconnects: the concept and fabrication considerations, J. Opt. Soc. Am. A. 7, 1202–1208 (1990)CrossRefGoogle Scholar
  63. 63.
    M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden: Fabricating binary optics: Process variables critical to optical efficiency, J. Vac. Sci. Technol. B 9, 3117–3121 (1992)CrossRefGoogle Scholar
  64. 64.
    J. Jahns, S. J. Walker: Two-dimensional array of diffractive microlenses fabricated by thin film deposition, Appl. Opt. 29, 931–936 (1990)Google Scholar
  65. 65.
    M. Hatzakis, B. Canavello, J. Shaw: Single-step optical lift-off process, IBM J. Res. Dev. 24, 452 (1980)Google Scholar
  66. 66.
    P. Buchmann, V. Graf, Th. O. Mohr, P. Vettiger: High-temperature-stable Si3N4 dumy T-gate and lift-off mask, ME’86, Proc. of the Internat. Conference on Microlithography, Interlaken, 395 (1986)Google Scholar
  67. 67.
    M. T. Gale, R. E. Kunz, B. J. Curtis, O. Parriaux, G. Voirin: Waveguide grating fabrication and optimization for integrated optic polarization interferometry, Proc. IOOC’89, Kobe, Japan, 1, 54–55 (1989)Google Scholar
  68. 68.
    H. W. Lehmann, R. Widmer: Limitations of a single level lift-off process, Proc. ME’84, Berlin ( North Holland, Amsterdam, 1985 ), pp. 493–500Google Scholar
  69. 69.
    W. Windbracke, H. Betz, H.-L. Huber, W. Pilz, S. Pongratz: Critical dimension control in X-ray masks with electroplated gold absorbers, Proc. ME’86, Interlaken, ( North Holland, Amsterdam, 1986 ) p. 73Google Scholar
  70. 70.
    J. M. Stauffer, Y. Oppliger, P. Regnault, L. Baraldi, M. T. Gale: Electron beam writing of continuous resist profiles for optical applications, Proc. EIPB92, Orlando, USA (1992)Google Scholar
  71. 71.
    N. Feldstein, T. S. Lancsek: A technique for selective electroless plating, RCA Rev. 32, 306–310, (1971)Google Scholar
  72. 72.
    B. Kluepfel, F. Ross, eds., Holography Market Place ( Ross books, Berkeley, CA, USA, 1991 )Google Scholar
  73. 73.
    N. Streibl: Beam shaping with optical array generators, J. Mod. Opt. 36, 1559–1573 (1989)CrossRefGoogle Scholar
  74. 74.
    J. R. Leger, M. L. Scott, W. B. Veldkamp: Coherent addition of AIGaAs lasers using microlenses and diffractive coupling, Appl. Phys. Lett. 52, 1771–1773 (1988)CrossRefGoogle Scholar
  75. 75.
    T. Shino, K. Setsune, O. Yamazaki, K. Wasa: Rectangular-apertured micro-Fresnel lens arrays fabricated by electron-beam lithography, Appl. Opt. 26, 587–591 (1987)Google Scholar
  76. 76.
    S. J. Walker, J. Jahns: Array generation with multilevel phase gratings, J. Opt. Soc. Am. A 7, 1509–1513 (1990)CrossRefGoogle Scholar
  77. 77.
    M. R. Taghizadeh, J. I. B. Wilson, J. Turunen, A. Vasara, J. Westerholm: Optimization and fabrication of grating beamsplitters in silicon nitride, Appl. Phys. Lett. 54, 1492–1494 (1989)Google Scholar
  78. 78.
    P. Ehbets, H. P. Herzig, D. Prongué, M. T. Gale: High efficiency continuous surface-relief gratings for two-dimensional array generation, Opt. Lett. 17, 908–910 (1992)CrossRefGoogle Scholar
  79. 79.
    M. Chen: “Is phase-shift mask technology production worthy?”, Proc. SPIE 1463, 2–5 (1991)CrossRefGoogle Scholar
  80. 80.
    S. V. Babin, A. I. Erko: Fabrication of diffraction X-ray elements, Nucl. Instrum. and Meth. in Phys. Res. A282, 529–531 (1989)CrossRefGoogle Scholar

Copyright information

© ECSC — EEC — EAEC, Brussels — Luxembourg 1993

Authors and Affiliations

  • H. P. Herzig
    • 1
  • M. T. Gale
    • 2
  • H. W. Lehmann
    • 2
  • R. Morf
    • 2
  1. 1.Institute of MicrotechnologyUniversity of NeuchâtelNeuchâtelSwitzerland
  2. 2.Paul Scherrer InstituteZürichSwitzerland

Personalised recommendations