Skip to main content

Diffractive components: computer-generated elements

  • Chapter
Perspectives for Parallel Optical Interconnects

Part of the book series: ESPRIT Basic Research Series ((ESPRIT BASIC))

Abstract

Highly efficient diffractive optical elements (DOEs) can also be realized using modern microfabrication technologies. Computer-generated data for arbitrary phase profiles can be transformed into optical elements. These elements offer optimum design freedom and established fabrication technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Dammann, K. Görtler: High-efficiency in-line multiple imaging by means of multiple phase holograms, Opt. Commun. 3, 312–315 (1971)

    Article  Google Scholar 

  2. G. J. Swanson: Binary optics technology: the theory and design of multilevel diffractive optical elements, MIT Lincoln Lab, Technical Report 854 (1989)

    Google Scholar 

  3. M. T. Gale, G. K. Lang, J. M. Raynor, H. Schütz, D. Prongué: Fabrication of kinoform structures for optical computing, Appl. Opt. 31, 5712–5715 (1992)

    Google Scholar 

  4. M. T. Gale, K. Knop: The fabrication of fine lens arrays by laser beam writing, Proc. SPIE 398, 347–353 (1983)

    Google Scholar 

  5. H. P. Herzig, D. Prongué, R. Dändliker: Design and fabrication of highly efficient fan-out elements, Jpn. J. Appl. Phys. 29, L1307 - L1309 (1990)

    Article  Google Scholar 

  6. E. Hecht: Optics ( Addison-Wesley, Reading, 1987 ).

    Google Scholar 

  7. G. J. Swanson, W. B. Veldkamp: Diffractive optical elements for use in infrared systems, Opt. Eng. 28, 605–608 (1989)

    Google Scholar 

  8. S. Aoyama, S. Ogata, T. Inoue, T. Yamashita: Laser diode source integrating a high-diffraction-efficiency micro-Fresnel lens with 0.5 N.A. fabricated by electron-beam lithography, in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1988), paper THM49

    Google Scholar 

  9. H. Hosokawa, T. Yamashita: ZnS micro-Fresnel lens and its uses, Appl. Opt. 29, 5106–5110 (1990)

    Google Scholar 

  10. M. Rossi, R. E. Kunz, M. T. Gale: Phase-matched Fresnel reflectors, Proc. Applied Optics and Opto-Electronics, Leeds, England, 145–147 (1992)

    Google Scholar 

  11. M. Haruna, M. Takahashi, K. Wakahayashi, H. Nishihara: Laser beam lithographed micro-Fresnel lenses, Appl. Opt. 29, 5120–5126 (1990)

    Google Scholar 

  12. H. P. Herzig, R. Dändliker: Holographic optical elements for use with semiconductor lasers, in International Trends in Optics, J. W. Goodman, ed. ( Academic Press, New York, 1991 ), pp. 57–75

    Google Scholar 

  13. J. Kedmi, A. A. Friesem: Optimized holographic optical elements, J. Opt. Soc. Am. A 3, 2011–2018 (1986)

    Article  Google Scholar 

  14. J. N. Cederquist, J. R. Fienup: Analytic design of optimum holographic optical elements, J. Opt. Soc. Am. A 4, 699–705 (1987)

    Article  Google Scholar 

  15. E. Hasman, A. A. Friesem: Analytic optimization for holographic optical elements, J. Opt. Soc. Am. A 6, 62–72 (1989)

    Article  Google Scholar 

  16. H. P. Herzig, R. Dändliker: Holographic optical scanning elements: Analytical method for determining the phase function, J. Opt. Soc. Am. A 4, 1063–1070 (1987)

    Article  Google Scholar 

  17. J. Fagerholm, J. Turunen, E. Byckling: Optimization of holographic optical systems by damped least squares and wavefront matching techniques, Proc. SPIE 883, 20–27 (1988)

    Google Scholar 

  18. R. W. Gerchberg, W. O. Saxton: A practical algorithm for the determination of phase from image and diffraction plane pictures, Optik 35, 237–246 (1972)

    Google Scholar 

  19. M. T. Eismann, A. M. Tai, J. N. Cederquist: Iterative design of a holographic beamformer, Appl. Opt. 28, 2641–2650 (1989)

    Google Scholar 

  20. F. Wyrowski, O. Bryngdahl: Iterative Fourier-transform algorithm applied to computer holography, J. Opt. Soc. Am. A 5, 1058–1065 (1988)

    Article  Google Scholar 

  21. F. Wyrowski: Diffractive optical elements: iterative calculation of quantized, blazed phase structures, J. Opt. Soc. Am. A 7, 961–969 (1990)

    Article  Google Scholar 

  22. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling: Numerical Recipes ( Cambridge University Press, Cambridge, 1986 )

    Google Scholar 

  23. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi: Optimization by simulated annealing, Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Turunen, A. Vasara, J. Westerholm, G. Jin, A. Salin: Optimization and fabrication of grating beamsplitters, J. Phys. D: Appl. Phys. 21, S102 - S105 (1988)

    Article  Google Scholar 

  25. J. N. Mait: Design of binary-phase and multiphase Fourier gratings for array generation, J. Opt. Soc. Am. A 7, 1514–1528 (1990)

    Article  Google Scholar 

  26. J. Turunen, A. Vasara, J. Westerholm: Kinoform phase relief synthesis: a stochastic method, Opt. Eng. 28, 1162–1167 (1989)

    Google Scholar 

  27. M. P. Dames, R. J. Dowling, P. McKee, D. Wood: Efficient optical elements to generate intensity weighted spot arrays: design and fabrication, Appl. Opt. 30, 2685–2691 (1991)

    Google Scholar 

  28. A. Vasara et al.: Binary surface-relief gratings for array illumination in digital optics, Appl. Opt. 31, 3320–3336 (1992)

    Google Scholar 

  29. D. Prongué, H. P. Herzig, R. Dändliker, M. T. Gale: Optimized kinoform structures for highly efficient fan-out elements, Appl. Opt. 31, 5706–5711 (1992)

    Google Scholar 

  30. J. W. Goodman: Introduction to Fourier Optics ( McGraw-Hill, San Francisco, 1968 )

    Google Scholar 

  31. G. J. Swanson: Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements, MIT Lincoln Lab, Technical Report 914 (1991)

    Google Scholar 

  32. R. R. A. Syms: Optical Volume Holography ( Oxford University Press, Oxford, 1990 )

    Google Scholar 

  33. T. K. Gaylord, M. G. Moharam: Analysis and applications of optical diffraction by gratings, Proc. IEEE 73, 894–937 (1985)

    Article  Google Scholar 

  34. R. Petit, ed.: Electromagnetic Theory of Gratings ( Springer-Verlag, Berlin, 1980 )

    Google Scholar 

  35. A. Vasara, E. Noponen, J. Turunen, J. M. Miller, M. R. Taghizadeh: Rigorous diffraction analysis of Dammann gratings, Opt. Commun. 81, 337–342 (1991)

    Article  Google Scholar 

  36. D. Maystre: Integral methods, in 34., pp. 63–100

    Google Scholar 

  37. P. Vincent: Differential methods, in 34., pp. 101–121

    Google Scholar 

  38. R. Magnusson, T. K. Gaylord: Equivalence of multiwave coupled wave theory and modal theory for periodic-media diffraction, J. Opt. Soc. Am. 68, 1777–1779 (1978)

    Article  Google Scholar 

  39. M. G. Moharam, T. K. Gaylord: Diffraction analysis of dielectric surface-relief gratings, J. Opt. Soc. Am. 72, 1385–1392 (1982)

    Article  Google Scholar 

  40. K. Knop: Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves, J. Opt. Soc. Am. 68, 1206–1210 (1978)

    Article  Google Scholar 

  41. L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha: The finitely conducting lamellar diffraction grating, Optica Acta 28, 10871102 (1981)

    Google Scholar 

  42. L. C. Botten, M. S. Craig, R. C. McPhedran: Highly conducting lamellar diffraction gratings, Optica Acta 28, 1103–1106 (1981)

    Article  MathSciNet  Google Scholar 

  43. W. Moreau: Semiconductor Lithography: Principles, Practices and Materials ( Plenum, New York, 1988 )

    Book  Google Scholar 

  44. Proc. ME’90, Microelectronic Engineering 13 (1991)

    Google Scholar 

  45. J. L. Vossen, W. Kern, eds.: Thin Film Processes II ( Academic Press Inc., San Diego, 1991 )

    Google Scholar 

  46. J. Jahns, A. Huang: Planar integration of free-space optical components, Appl. Opt. 28, 1602–1605 (1989)

    Google Scholar 

  47. H. C. Pfeiffer, T. R. Groves: Progress in e-beam masks making for optical and X-ray lithography, ME’90, Microelectronic Engineering 13, 141–149 (1991)

    Article  Google Scholar 

  48. J. Meingailis: Focused ion beam technology and applications, J. Vac. Sci. Technol. B 5, 469–495 (1987)

    Article  Google Scholar 

  49. J. M. Stauffer, Y. Oppliger, F. Vasey: Fabrication of optoelectronic devices on AlGaAs using electron beam lithography, Proc. ME’90, Microelectronic Engineering 13, 193–196 (1991)

    Article  Google Scholar 

  50. For example, Laser Pattern Generator Systems CORE-2000 (ATEQ Corp., Oregon, USA) or Micronic LRS-10 (Micronic Laser Systems AB, Täby, Sweden)

    Google Scholar 

  51. H. Nishihara, M. Haruna, T. Suhara: Optical Integrated Circuits ( McGraw-Hill, New York 1987 )

    Google Scholar 

  52. D. C. Flanders, A. E. White: Application of ~100A linewidth structures fabricated by shadowing techniques, J. Vac. Sci. Technol. 19, 892–896 (1981)

    Article  Google Scholar 

  53. M. C. Hutley: Diffraction gratings ( Academic Press, London, 1982 )

    Google Scholar 

  54. K. E. Bean: Anisotropic etching of Silicon, IEEE Trans. Electron Dev. ED-25, 1185 (1978)

    Google Scholar 

  55. H.W. Lehmann: Plasma-assisted etching, in 45., pp. 673–748

    Google Scholar 

  56. J. C. Matthews, M. G. Ury, A. D. Birch, M. A. Lashmann: Microlithography techniques using a microwave powered deep UV source, Proc. SPIE 394, 172–183 (1983)

    Google Scholar 

  57. J. L. Vossen, J. Appl. Phys. 47, 544–546 (1976)

    Article  Google Scholar 

  58. R. E. Lee: Inhibition of chemical sputtering of organics and C by trace amounts of Cu-surface contamination, in Plasma Processing for VLSI, VLSI Electronics Microstructure Science 8, N. G. Einspruch, D. M. Brown, eds. ( Academic Press, Orlando, 1984 ) p. 34

    Google Scholar 

  59. P. R. Puckett, S. L. Michel, W. E. Hughes: Ion beam etching, in 45., p. 749

    Google Scholar 

  60. S. Matsui, T. Yamato, H. Aritome, S. Namba: Fabrication of SiO2 blazed holographic gratings by reactive ion-etching, Jap. J. Appl. Phys. 19, L126 - L128 (1980)

    Article  Google Scholar 

  61. E. H. Anderson, C. M. Horowitz, H. I. Smith: Holographic lithography with thick photoresist, Appl. Phys. Lett. 43, 874–875 (1983)

    Google Scholar 

  62. J. Turunen, J. Fagerholm, A. Vasara, M. R. Taghizadeh: Detour-phase kinoform interconnects: the concept and fabrication considerations, J. Opt. Soc. Am. A. 7, 1202–1208 (1990)

    Article  Google Scholar 

  63. M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden: Fabricating binary optics: Process variables critical to optical efficiency, J. Vac. Sci. Technol. B 9, 3117–3121 (1992)

    Article  Google Scholar 

  64. J. Jahns, S. J. Walker: Two-dimensional array of diffractive microlenses fabricated by thin film deposition, Appl. Opt. 29, 931–936 (1990)

    Google Scholar 

  65. M. Hatzakis, B. Canavello, J. Shaw: Single-step optical lift-off process, IBM J. Res. Dev. 24, 452 (1980)

    Google Scholar 

  66. P. Buchmann, V. Graf, Th. O. Mohr, P. Vettiger: High-temperature-stable Si3N4 dumy T-gate and lift-off mask, ME’86, Proc. of the Internat. Conference on Microlithography, Interlaken, 395 (1986)

    Google Scholar 

  67. M. T. Gale, R. E. Kunz, B. J. Curtis, O. Parriaux, G. Voirin: Waveguide grating fabrication and optimization for integrated optic polarization interferometry, Proc. IOOC’89, Kobe, Japan, 1, 54–55 (1989)

    Google Scholar 

  68. H. W. Lehmann, R. Widmer: Limitations of a single level lift-off process, Proc. ME’84, Berlin ( North Holland, Amsterdam, 1985 ), pp. 493–500

    Google Scholar 

  69. W. Windbracke, H. Betz, H.-L. Huber, W. Pilz, S. Pongratz: Critical dimension control in X-ray masks with electroplated gold absorbers, Proc. ME’86, Interlaken, ( North Holland, Amsterdam, 1986 ) p. 73

    Google Scholar 

  70. J. M. Stauffer, Y. Oppliger, P. Regnault, L. Baraldi, M. T. Gale: Electron beam writing of continuous resist profiles for optical applications, Proc. EIPB92, Orlando, USA (1992)

    Google Scholar 

  71. N. Feldstein, T. S. Lancsek: A technique for selective electroless plating, RCA Rev. 32, 306–310, (1971)

    Google Scholar 

  72. B. Kluepfel, F. Ross, eds., Holography Market Place ( Ross books, Berkeley, CA, USA, 1991 )

    Google Scholar 

  73. N. Streibl: Beam shaping with optical array generators, J. Mod. Opt. 36, 1559–1573 (1989)

    Article  Google Scholar 

  74. J. R. Leger, M. L. Scott, W. B. Veldkamp: Coherent addition of AIGaAs lasers using microlenses and diffractive coupling, Appl. Phys. Lett. 52, 1771–1773 (1988)

    Article  Google Scholar 

  75. T. Shino, K. Setsune, O. Yamazaki, K. Wasa: Rectangular-apertured micro-Fresnel lens arrays fabricated by electron-beam lithography, Appl. Opt. 26, 587–591 (1987)

    Google Scholar 

  76. S. J. Walker, J. Jahns: Array generation with multilevel phase gratings, J. Opt. Soc. Am. A 7, 1509–1513 (1990)

    Article  Google Scholar 

  77. M. R. Taghizadeh, J. I. B. Wilson, J. Turunen, A. Vasara, J. Westerholm: Optimization and fabrication of grating beamsplitters in silicon nitride, Appl. Phys. Lett. 54, 1492–1494 (1989)

    Google Scholar 

  78. P. Ehbets, H. P. Herzig, D. Prongué, M. T. Gale: High efficiency continuous surface-relief gratings for two-dimensional array generation, Opt. Lett. 17, 908–910 (1992)

    Article  Google Scholar 

  79. M. Chen: “Is phase-shift mask technology production worthy?”, Proc. SPIE 1463, 2–5 (1991)

    Article  Google Scholar 

  80. S. V. Babin, A. I. Erko: Fabrication of diffraction X-ray elements, Nucl. Instrum. and Meth. in Phys. Res. A282, 529–531 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 ECSC — EEC — EAEC, Brussels — Luxembourg

About this chapter

Cite this chapter

Herzig, H.P., Gale, M.T., Lehmann, H.W., Morf, R. (1993). Diffractive components: computer-generated elements. In: Lalanne, P., Chavel, P. (eds) Perspectives for Parallel Optical Interconnects. ESPRIT Basic Research Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49264-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49264-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49266-2

  • Online ISBN: 978-3-642-49264-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics