Advertisement

Reflective and refractive components

  • Ph. Lalanne
  • P. Chavel
Chapter
  • 48 Downloads
Part of the ESPRIT Basic Research Series book series (ESPRIT BASIC)

Abstract

The previous chapter has described a few basic architecture usable for interconnects through free space. However, no details about the optical components were given. In this chapter, we study the classical elements encountered in optical setups, which permit a flexible shaping of waves thanks to refraction and reflection.

Keywords

Focal Length Spherical Aberration Zone Plate Microlens Array Output Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Born, M., Wolf, E.: Principles of Optics. Pergamon Press, Oxford, fifth edition 1975.Google Scholar
  2. 2.
    Goodmann, J.W.: Introduction to Fourier Optics. Wiley liu Sons Editors 1976.Google Scholar
  3. 3.
    Chrétien, H.: Calcul des combinaisons optiques. Edition Masson, sections number 627 and 628, 1959, pp 588–590.Google Scholar
  4. 4.
    Glaser, I., Friesem, A.A.:in Applications of Holography and Optical Data Processing, E. Marom ed., Pergamon Press, 1977, p 467.Google Scholar
  5. 5.
    Toyama, M., Takami, M.: Luminous intensity of a gradient-index lens array. Appl. Opt. 21, 1982, pp 1013–1016.CrossRefGoogle Scholar
  6. 6.
    Akiba, A., Iga, K.: Image multiplexer using a planar microlens array. Appl. Opt. 29, 1990, pp 4092–97.CrossRefGoogle Scholar
  7. 7.
    Hamanaka, K., Nemoto, H., Oikawa, M., Okuda, E., Kishimoto, T.: Multiple imaging and multiple Fourier transformation using planar microlens arrays. Appl. Opt. 29, 1990, pp 4064–70.CrossRefGoogle Scholar
  8. 8.
    Agu, M., Akiba, A., Mochizuki, T., Kamemaru, S.I.: Multimatched filtering using a microlens array for an optical-neural pattern recognition system. Appl. Opt. 29, 1990, pp 4087–91.CrossRefGoogle Scholar
  9. 9.
    Ozerov, I.N., Petrov, V.M., Shishkina, V.A., Shor, V.M.: Shaping the contours of dies for manufacturing lens arrays having spherical elements. Sov. Journ. Opt. Technol. 48, 1981, pp 49–50.Google Scholar
  10. 10.
    Product Book: “MRP Miniature lens array, series MRP-110”, Aeroflex Lab. Inc., Photo optical science division, 35 south service road, NY 11803.Google Scholar
  11. 11.
    Oikawa, M., Iga, K., Sanada, T.: A distributed index planar microlens made of plastics. Jap. J. Appl. Phys. 20, 1981, pp 51–54.CrossRefGoogle Scholar
  12. 12.
    Oikawa, M., Iga, K.: Distributed index planar microlens. Appl. Opt. 21, 1982 pp 1052–56.CrossRefGoogle Scholar
  13. 13.
    Oikawa, M., Okuda, E., Hamanaka, K., Nemoto, H.: Integrated planar microlens and its application. SPIE Vol. 898 Miniature Optics and Lasers, 1988, pp 3–11.Google Scholar
  14. Oikawa, M., Nemoto, H., Hamanaka, K., Okuda, E,: High numerical aperture planar microlens with swelled structure. Appl. Opt. 29, 1990, pp 4077–80.CrossRefGoogle Scholar
  15. 14.
    Nippon Sheet Glass Co, Shimbashi Sumitomo Bldg, 11–3 Shimbashi 5 Chome, Minato-Ku, Tokyo, Japan.Google Scholar
  16. 15.
    Franck, M., Kufner, M., Kufner, S. and Testorf, M.: Microlenses in polymethyl methacrylate with high relative aperture. Appl. Opt. 30, 1991 pp 2666–67.CrossRefGoogle Scholar
  17. 16.
    Liau, Z.L., Diadiuk, V., Walpole, J.N., Mull, D.E.: Large numerical aperture InP lenslets by mass transport. Appl. Phys. Lett. 52, 1988, pp 1859–61.CrossRefGoogle Scholar
  18. 17.
    Yap, D., Liau, Z.L., Walpole, J.N., Diadiuk, V.: Fabrication of miniature lenses and mirrors for InGaAsP/InP lasers. SPIE Vol. 898 Miniature Optics and Lasers, 1988, pp 18–22.Google Scholar
  19. 18.
    Popovic, Z.D., Sprague, R.A., Connell, G.A.N.: A Process for Monolithic Fabrication of Microlenses on Integrated Circuits. SPIE Vol. 898 Miniature Optics and Lasers, 1988, pp 23–25.Google Scholar
  20. 19.
    Popovic, Z.D., Sprague, R.A., Connell, G.A.N.: Technique for monolithic fabrication of microlens arrays. Appl. Opt. 27, 1988, pp 1281–86.CrossRefGoogle Scholar
  21. 20.
    Daly, D., Stevens, R.F., Hutley M.C., Davies, N.: The manufacture of microlenses by melting photoresist. Meas. Sci. Technol. 1, 1990, pp 759–766.CrossRefGoogle Scholar
  22. 21.
    Hutley, M.C.: Optical techniques for the generation of microlens arrays. Jour. of Mod. Opt. 37, 1990, pp 253–265.Google Scholar
  23. 22.
    Artzner, G.: Microlens arrays for Shack-Hartmann Wavefront Sensors. Opt. Eng. 31, pp 1311–1322 (1992).CrossRefGoogle Scholar
  24. 23.
    Eisenberg, N., Abitbol, M.: A New Process for Manufacturing Arrays of Microlenses. Sixth Meeting in Israel on Optical Engineering, proc. SPIE Vol. 1038, 1988.Google Scholar
  25. 24.
    Köppers, D., Schelhas, K.H., Biermann, U., Khoe G.D., Kock, H.G.: Microlenses prepared by the plasma-actived chemical vapor deposition technique. Advances in Low-Temperature Chemistry, Technology, Application, Ed. H.V. Boenig, vol.1, 1984, pp 92–107.Google Scholar
  26. 25.
    Borrelli, N.F., Morse, D.L., Bellman R.H., Morgan, W.L.: Photolythic technique for producing microlenses in photosensitive glass. Appl. Opt. 24, 1985, pp 2520–2525.CrossRefGoogle Scholar
  27. Borrelli, N.F., Morse, D.L., Bellman R.H., Morgan, W.L.: Information on products can be obtained from Corning Incorporated Advanced Materials, MP 21–3–5, Corning, New York 14831.Google Scholar
  28. 26.
    Catalog: “Micro-optics”, United Technology, Adaptative Associates, 54 CambridgePark Drive, Cambridge, MA 02140–1348.Google Scholar
  29. 27.
    Lohmann, A.W.: Image formation of dilute arrays for optical information processing. Opt. Communications 86, 1991, pp 365–370.CrossRefGoogle Scholar
  30. 28.
    M.C. Hutley, P. Savander, M. Schrader: the use of microlenses for making spatially variant optical interconnections, J. Eur. Opt. Soc. A, 2, 1992, pp 337–340.CrossRefGoogle Scholar
  31. 29.
    M.R. Taghizadeh, B. Robertson, P. Blair, K.J. Hughes, N. Ross: Applications of refractive lenslet arrays within an optical crossbar, Topical Meeting on Microlens Arrays, Teddington, May 1993, EOS Topical Meetings Digest Series, vol 2, p 92, 1993.Google Scholar
  32. 30.
    M. Eisner, S. Haselbeck, H. Schreiber, J. Schwider: Reactive ion etching of microlens arrays into fused silica, Topical Meeting on Microlens Arrays, Teddington, May 1993, EOS Topical Meetings Digest Series, vol 2, p 17–19, 1993.Google Scholar
  33. 31.
    Meeting Digest, Topical Meeting on Microlens Arrays, Teddington, May 1993, organised by the Institute of Physics and the European Optical Society, EOS Topical Meetings Digest Series, vol 2, p 17–19, 1993.Google Scholar

Copyright information

© ECSC — EEC — EAEC, Brussels — Luxembourg 1993

Authors and Affiliations

  • Ph. Lalanne
    • 1
  • P. Chavel
    • 1
  1. 1.Institut d’OptiqueCNRSOrsayFrance

Personalised recommendations