Skip to main content

Funktion

  • Chapter
  • 89 Accesses

Zusammenfassung

Die Erbsubstanz ist nicht nur in der Lage, sich identisch zu verdoppeln (Replikation: autokatalytische Funktion, S. 129ff.), sondern sie besitzt auch die Fähigkeit, die in ihr gespeicherte genetische Information zu realisieren (heterokatalytische Funktion). Beide Funktionen beruhen auf der Tatsache, daß die DNS als Matrize für die Synthese hochmolekularer Verbindungen aus niedermolekularen Bausteinen zu dienen vermag. Unter Funktion im engeren Sinne verstehen wir hier die heterokatalytische Funktion der DNS, d.h. ihre Fähigkeit zur phänogenetischen Expression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abel, P., and T. A. Trautner: Formation of an animal virus within a bacterium. Z. Vererbungsl. 95, 66–72 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Abelson, P. H., and H. J. Vogel: Amino acid biosynthesis in Torulopsis utilis and Neurospora crassa. Biol. Chem. 213, 355–364 (1955).

    CAS  Google Scholar 

  • Abrams, R.: Nucleic acid metabolism and biosynthesis. Ann. Rev. Biochem. 30, 165–188 (1961).

    Article  CAS  Google Scholar 

  • Adelberg, E. A.: Isoleucine biosynthesis from threonine. J. Amer. chem. Soc. 76, 4241 (1954).

    Article  CAS  Google Scholar 

  • Adelberg, E. A.: The biosynthesis of isoleucine, valine and leucine. In: W. D. McElroy and B. Glass (edits.), Amino acid metabolism, p. 419–429. Baltimore 1955a.

    Google Scholar 

  • Adelberg, E. A.: The biosynthesis of isoleucine and valine. III. Tracer experiments with L-threonine. J. biol. Chem. 216, 431–437 (1955b).

    PubMed  CAS  Google Scholar 

  • Adelberg, E. A., D. Bonner, and E. L. Tatum: A precursor of isoleucine obtained from a mutant strain of Neurospora crassa. J. biol. Chem. 190, 837–841 (1951).

    PubMed  CAS  Google Scholar 

  • Adelberg, E. A., C. A. Coughlin, and R. W. Barratt: The biosynthesis of isoleucine and valine. II. Independence of the biosynthetic pathways in Neurospora. J. biol. Chem. 216, 425–433 (1955).

    PubMed  CAS  Google Scholar 

  • Adelberg, E. A., and E. L. Tatum: Characterization of a valine analog accumulated by a mutant strain of Neurospora crassa. Arch. Biochem. 29, 235–236 (1950).

    PubMed  CAS  Google Scholar 

  • Ahmad, M., and D. G. Catcheside: Physiological diversity amongst tryptophan mutants in Neurospora crassa. Heredity 15, 55–64 (1960).

    Article  Google Scholar 

  • Ahmad, M., M.D. Khalil, N. A. Khan, and A. Mozmadar: Structural and functional complexity at the tryptophan-1 locus in Neurospora crassa. Genetics 49, 925–933 (1964).

    PubMed  CAS  Google Scholar 

  • Allen, K. M., and C. Yanofsky: A biochemical and genetic study of reversion with the A-gene A-protein system of Escherichia coli tryptophan synthetase. Genetics 48, 1065–1083 (1963).

    PubMed  CAS  Google Scholar 

  • Ames, B. N.: The biosynthesis of histidine. In: W. D. McElroy and B. Glass (edits.), McCollum Pratt Symp. on amino acid metabolism. p. 357–372. Baltimore 1955.

    Google Scholar 

  • Ames, B. N.: The biosynthesis of histidine: L-histidinol phosphate phosphatase. J. biol. Chem. 226, 583–593 (1957a).

    PubMed  CAS  Google Scholar 

  • Ames, B. N.: The biosynthesis of histidine: D-erythro-imidazole-glycerol phosphate dehydrase. J. biol. Chem. 228, 131–143 (1957b).

    PubMed  CAS  Google Scholar 

  • Ames, B. N., and B. L. Horecker: The biosynthesis of histidine: Imidazole-acetol phosphate-transaminase. J. biol. Chem. 220, 113–128 (1956).

    PubMed  CAS  Google Scholar 

  • Ames, B. N., and H. K. Mitchell: The biosynthesis of histidine: Imidazole-glycerol phosphate, imidazole-acetol phosphate and histidinol phosphate. J. biol. Chem. 212, 687–696 (1955).

    PubMed  CAS  Google Scholar 

  • Ames, B. N., and H. K. Mitchell and M. B. Mitchell: Some new naturally occurring imidazoles related to the biosynthesis of histidine. J. Amer. chem. Soc. 75, 1015–1018 (1953).

    Article  CAS  Google Scholar 

  • Anderer, F. A., H. Uhlig, E. Weber, and G. Schramm: Primary structure of the protein of tobacco mosaic virus. Nature (Lond.) 186, 922–925 (1960).

    Article  CAS  Google Scholar 

  • Andersson-Kottö, J., G. Ehrensvärd, G. Högström, L. Reio, and E. Saluste: Amino acid formation and utilization in Neurospora. J. biol. Chem. 210, 455–463 (1954).

    PubMed  Google Scholar 

  • Aranoff, S.: Technics of radiobiochemistry. Ames (Iowa): Iowa State College Press 1957.

    Google Scholar 

  • Arnstein, H. R. V., R. A. Cox, and J. A. Hunt: Function of polyuridylic acid and ribonucleic acid in protein biosynthesis by ribosomes from mammalian reticulocytes. Nature (Lond.) 194, 1042–1044 (1962).

    Article  CAS  Google Scholar 

  • Atwood, K. C., and F. Mukai: Indispensable gene functions in Neurospora. Proc. nat. Acad. Sci. (Wash.) 39, 1027–1035 (1953).

    Article  CAS  Google Scholar 

  • Barratt, R. W., and W. N. Strickland: Purification and characterization of a TPN-specific glutamic-acid dehydrogenase from Neurospora crassa. Arch. Biochem. 102, 66–76 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Barron, G. L.: The parasexual cycle and linkage relationship in the storage root fungus Penicillium expansum. Canad. J. Bot. 40, 1603–1613 (1962).

    Article  Google Scholar 

  • Beadle, G. W.: Biochemical genetics. Chem. Rev. 37, 15–96 (1945 a).

    CAS  Google Scholar 

  • Beadle, G. W.: Genetics and metabolism in Neurospora. Physiol. Rev. 25, 643–663 (1945b).

    PubMed  CAS  Google Scholar 

  • Beadle, G. W.: Genes and the chemistry of the organism. Amer. Scientist 34, 31–75 (1945 c).

    Google Scholar 

  • Beadle, G. W.: Physiological aspects of genetics. Ann. Rev. Physiol. 10, 17–42 (1948).

    Article  CAS  Google Scholar 

  • Beadle, G. W.: Gene structure and gene action. Fortschr. Chem. organ. Naturstoffe 12, 366–384 (1955).

    Google Scholar 

  • Beadle, G. W.: Some recent advances in Neurospora genetics. Proc. Internat. Genet. Symp. Cytologia (Tokyo), Suppl. Vol., 142–145 (1956).

    Google Scholar 

  • Beadle, G. W.: The role of nucleus in heredity. In: W. D. McElroy and B. Glass (edits.), The chemical basis of heredity, p. 3–22. Baltimore 1957.

    Google Scholar 

  • Beadle, G. W.: Genes and chemical reactions in Neurospora. Stockholm: Nobel Lecture 1959a.

    Google Scholar 

  • Beadle, G. W.: Genes and chemical reactions in Neurospora. The concepts of biochemical genetics with Garrod’s “inborn errors” and have evolved gradually. Science 129, 1715–1719 (1959b).

    Article  PubMed  CAS  Google Scholar 

  • Beadle, G. W.: Physiological aspects of genetics. Ann. Rev. Physiol. 22, 45–74 (1960a).

    Article  CAS  Google Scholar 

  • Beadle, G. W.: Evolution in microorganisms with special reference to the fungi. Proc. Internat. Colloq. Evoluzione e Genet., Acad. Nazi. Linnei, Rome 47, 301–319 (1960b).

    Google Scholar 

  • Beadle, G. W.: The language of the genes. Advanc. Sci. 17, 511–521 (1961).

    Google Scholar 

  • Beadle, G. W., and V. L. Coonradt: Heterocaryosis in Neurospora crassa. Genetics 29, 291 – 308 (1944).

    PubMed  CAS  Google Scholar 

  • Beadle, G. W., and B. Ephrussi: The differentiation of eye pigments in Drosophila as studied by transplantation. Genetics 21, 225–247 (1936).

    PubMed  CAS  Google Scholar 

  • Beadle, G. W., H. K. Mitchell, and J. F. Nyc: Kynurenine as an intermediate in the formation of nicotinic acid from tryptophane by Neurospora. Proc. nat. Acad. Sci. (Wash.) 33, 155–158 (1947).

    Article  CAS  Google Scholar 

  • Beadle, G. W.:, and E. L. Tatum: Neurospora. II. Methods of producing and detecting mutations concerned with nutritional requirements. Amer. J. Bot. 32, 678–686 (1945).

    Article  Google Scholar 

  • Benzer, S., and S. P. Champe: Ambivalent rII mutants of phage T4. Proc. nat. Acad. Sci. (Wash.) 47, 1025–1038 (1961).

    Article  CAS  Google Scholar 

  • Benzer, S., and S. P. Champe: A change form nonsense to sense in the genetic code. Proc. nat. Acad. Sci. (Wash.) 48, 1114–1121 (1962).

    Article  CAS  Google Scholar 

  • Benzer, S., and B. Weisblum: On the species specificity of acceptor RNA and attachment enzymes. Proc. nat. Acad. Sci. (Wash.) 47, 1149–1154 (1961).

    Article  CAS  Google Scholar 

  • Bernstein, H., and A. Miller: Complementation studies with isoleucinevaline mutants of Neurospora crassa. Genetics 46, 1039–1052 (1961).

    PubMed  CAS  Google Scholar 

  • Bevan, E. A., and R. A. Woods: Complementation between adenin requiring mutants in yeast. Heredity 17, 141 (1962).

    Article  Google Scholar 

  • Black, S., and N. M. Gray: Enzymatic phosphorylation of L-aspartate. J. Amer. chem. Soc. 75, 2271–2272 (1953).

    Article  CAS  Google Scholar 

  • Black, S., and N. G. Wright: Intermediate steps in the biosynthesis of threonine. In: W. D. McElroy and B. Glass (edits.), Amino acid metabolism, p. 591–600. Baltimore 1955 a.

    Google Scholar 

  • Black, S., and N. G. Wright: β-aspartokinase and β-aspartyl phosphate. J. biol. Chem. 213, 27–38 (1955b).

    PubMed  CAS  Google Scholar 

  • Black, S., and N. G. Wright: Aspartic β-semialdehyde dehydrogenase and aspartic β-semialdehyde. J. biol. Chem. 213, 39–50 (1955c).

    PubMed  CAS  Google Scholar 

  • Black, S., and N. G. Wright: Homoserine dehydrogenase. J. biol. Chem. 213, 51–60 (1955d).

    PubMed  CAS  Google Scholar 

  • Bishop, J., J. Leahy, and R. Schweet: Formation of the peptide chain of hemoglobin. Proc. nat. Acad. Sci. (Wash.) 46, 1030–1038 (1960).

    Article  CAS  Google Scholar 

  • Bonner, D. M.: Production of biochemical mutations in Penicillium. Amer. J. Bot. 33, 788–791 (1946a).

    Article  CAS  Google Scholar 

  • Bonner, D. M.: Further studies of mutant strains of Neurospora requiring isoleucine and valine. J. biol. Chem. 166, 545–554 (1946b).

    PubMed  CAS  Google Scholar 

  • Bonner, D. M.: The identification of a natural precursor of nicotinic acid. Proc. nat. Acad. Sci. (Wash.) 34, 5–9 (1948).

    Article  CAS  Google Scholar 

  • Bonner, D. M.: Gene-enzyme relationship in Neurospora. Cold Spr. Harb. Symp. quant. Biol. 16, 143–157 (1951).

    Article  CAS  Google Scholar 

  • Bonner, D. M.: The genetic control of enzyme formation. In: W. D. McElroy and B. Glass (edits.), Phosphorus metabolism, vol. II, p. 153–163. Baltimore 1952.

    Google Scholar 

  • Bonner, D. M.: Aspects of enzyme formation. In: W. D. McElroy and B. Glass (edits.), Amino acid metabolism, p. 193–197. Baltimore 1955.

    Google Scholar 

  • Bonner, D. M.: The genetic unit. Cold Spr. Harb. Symp. quant. Biol. 21, 163–170 (1956).

    Article  CAS  Google Scholar 

  • Bonner, D. M.: Gene action. In: Genetics and Cancer, p. 207–225. Univ. of Texas 1959.

    Google Scholar 

  • Bonner, D. M.: Gene-enzyme relationship in micro-organisms. Proc. XI. Internat. Congr. of Genetics, vol. 2, p. 141–149. The Hague 1964 a.

    Google Scholar 

  • Bonner, D. M.: Correlation of the gene and protein structure. J. exp. Zool. 157, 9–20 (1964b).

    Article  PubMed  CAS  Google Scholar 

  • Bonner, D. M., and G. W. Beadle: Mutant strains of Neurospora requiring nicotine amide or related compounds for growth. Arch. Biochem. 11, 319–328 (1946).

    PubMed  CAS  Google Scholar 

  • Bonner, D. M., Y. Suyama, and J. A. DeMoss: Genetic fine structure and enzyme formation. Fed. Proc. 19, 926–930 (1960).

    CAS  Google Scholar 

  • Bonner, D. M., E. L. Tatum, and G. W. Beadle: The genetic control of biochemical reactions in Neurospora: A mutant strain requiring isoleucine and valine. Arch. Biochem. 3, 71–91 (1943).

    CAS  Google Scholar 

  • Bonner, D. M., and C. Yanofsky: Quinolinic acid accumulation in the conversion of 3-hydroxyanthranilic acid to niacin in Neurospora. Proc. nat. Acad. Sci. (Wash.) 35, 576–581 (1949).

    Article  CAS  Google Scholar 

  • Bonner, D. M., and C. Yanofsky and C. W. H. Partridge: Incomplete genetic blocks in biochemical mutants of Neurospora. Proc. nat. Acad. Sci. (Wash.) 38, 25–34 (1952).

    Article  CAS  Google Scholar 

  • Braunitzer, G., R. Gehring-Müller, N. Hillschmann, K. Hilse, G. Hobam, V. Rudloff u. B. Wittmann-Liebold: Die Konstitution des normalen adulten Humanhämoglobins. Hoppe-Seylers Z. physiol. Chem. 325, 283–286 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Brenner, S.: On the impossibility of all overlapping triplet codes in information transfer from nucleic acids to proteins. Proc. nat. Acad. Sci. (Wash.) 43, 687–694 (1957).

    Article  CAS  Google Scholar 

  • Brenner, S.: The mechanism of gene action. In: G. E. W. Wolstenholme and C. M. O’Connor (edits.), Symp. on Biochemistry of human genetics. Ciba Found, and internat. Union of Biol. Sci., p. 304–317. London 1959.

    Google Scholar 

  • Bresch, C.: Klassische und molekulare Genetik. Berlin-Göttingen-Heidelberg: Springer 1964.

    Google Scholar 

  • Broda, E.: Radioaktive Isotope in der Biochemie. Wien: Franz Deuticke 1958.

    Google Scholar 

  • Brody, S., and C. Yanofsky: Suppressor gene alteration of protein primary structure. Proc. nat. Acad. Sci. (Wash.) 50, 9–16 (1963).

    Article  CAS  Google Scholar 

  • Brown, G. L.: Ribonucleic acid and bacterial genetics. Brit. med. Bull. 18, 10–13 (1962).

    PubMed  CAS  Google Scholar 

  • Buchanan, J. M., J. G. Flaks, S. C. Hartman, B. Levenberg, L. N. Lukens, and L. Warren: The enzymatic synthesis of inosinic acid de novo. Ciba Found. Symp. on Chem. and Biol. of Purines, G. E. W. Wolstenholme and C. M. O’Connor (edits.), p. 233–255. London 1957.

    Chapter  Google Scholar 

  • Bürk, R. R., and J.A. Pateman: Glutamic and alanine dehydrogenase determined by one gene in Neurospora crassa. Nature (Lond.) 196, 450–451 (1962).

    Article  Google Scholar 

  • Butenandt, A., u. G. Hallmann: Neue Synthesen des d,1-Kynurenins und d,1–3-Oxy-kynurenins. Z. Naturforsch. 5b, 444–446 (1950).

    Google Scholar 

  • Butenandt, A., P. Karlson u. W. Zillig: Über das Vorkommen von Kynurenin in Seidenspinnerpuppen. Hoppe-Seylers Z. physiol. Chem. 288, 125–132 (1951).

    PubMed  CAS  Google Scholar 

  • Butenandt, A., W. Weidel u. E. Becker: Kynurenin als Augenpigmentbildung auslösendes Agens bei Insekten. Naturwissenschaften 28, 63–64 (1940).

    Article  CAS  Google Scholar 

  • Butenandt, A., W. Weidel u. W. v. Derjugin: Zur Konstitution des Kynurenins. Naturwissenschaften 30, 51 (1942).

    Article  CAS  Google Scholar 

  • Butenandt, A., W. Weidel u. H. Schlossberger: 3-Oxy-kynurenin als CN+-Gen, abhängiges Glied im intermediären Tryptophan-Stoffwechsel. Naturforsch. Z. 4b, 242–244 (1949).

    Google Scholar 

  • Butenandt, A., W. Weidel, R. Weichert u. W. v. Derjugin: Über Kynurenin. Physiologie, Konstitutionsermittlung und Synthese. Hoppe-Seylers Z. physiol. Chem. 279, 27–43 (1943).

    Article  CAS  Google Scholar 

  • Cabet, D., C. Anagnostopoulos et M. Gans: Contribution à l’étude de la biosynthèse du tryptophane chez le Coprinus radiatus. C. R. Acad. Sci. (Paris) 255, 1007–1009 (1962).

    CAS  Google Scholar 

  • Campbell, J. J. R.: Metabolism of microorganisms. Ann. Rev. Microbiol. 8, 71–104 (1954).

    Article  CAS  Google Scholar 

  • Capecchi, M. R.: Initiation of E. coli proteins. Proc. nat. Acad. Sci. (Wash.) 55, 1517–1524 (1966).

    Article  CAS  Google Scholar 

  • Carlton, B. C., and C. Yanofsky: The amino terminal sequence of the A protein of tryptophan synthetase of E. coli. J. biol. Chem. 237, 1531–1534 (1962).

    PubMed  CAS  Google Scholar 

  • Case, M. E., and N. H. Giles: Recombination mechanism at the pan-2 locus in Neurospora crassa. Cold Spr. Harb. Symp. quant. Biol. 23, 119–135 (1958).

    Article  CAS  Google Scholar 

  • Case, M. E., and N. H. Giles: Comparative complementation and genetic maps of the pan-2 locus in Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 46, 659–676 (1960).

    Article  CAS  Google Scholar 

  • Catcheside, D. G.: Relation of genotype to enzyme content. Microbiol. Genetics, vol. 10, Symp. Soc. gen. Microbiol. Cambridge 1960a, p. 181–207.

    Google Scholar 

  • Catcheside, D. G.: Complementation among histidine mutants of Neurospora crassa. Proc. roy. Soc. B 153, 179–194 (1960b).

    Article  CAS  Google Scholar 

  • Catcheside, D. G.: Functional structure of genes. The scientific basis of Medicine annual Rev. 1962, p. 140–151.

    Google Scholar 

  • Catcheside, D. G.: Gene action and interaction. Biol. J. 2, 35–47 (1964).

    Google Scholar 

  • Catcheside, D. G., and A. Overton: Complementation between alleles in heterocaryons. Cold Spr. Harb. Symp. quant. Biol. 23, 137–140 (1958).

    Article  CAS  Google Scholar 

  • Cavallieri, L. F., and B. H. Rosenberg: Nucleic acids: Molecular biology of DNA. Ann. Rev. Biochem. 31, 247–270 (1963).

    Article  Google Scholar 

  • Chamberlin, M., and P. Berg: Deoxyribonucleic acid-directed synthesis ribonucleic acid by an enzyme from Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 48, 81–94 (1962).

    Article  CAS  Google Scholar 

  • Champe, S. P., and S. Benzer: An active cistron fragment. J. molec. Biol. 4, 288–292 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Chantrenne, H.: Aspects of the biosynthesis of enzymes. In: F. F. Nord (edit.), Advances in enzymology and related subjects of biochemistry, vol. 24, p. 1–34. New York and London 1962.

    Google Scholar 

  • Cohn, M., and A. M. Torriani: Immunological studies with the β-galactosidase and structurally related proteins of Escherichia coli. J. Immunol. 69, 471–491 (1952).

    PubMed  CAS  Google Scholar 

  • Cohn, M., and A. M. Torriani: The relationship in biosynthesis of the β-galactosidase- and Pz-proteins in Escherichia coli. Biochim. biophys. Acta (Amst.) 10, 280–289 (1953).

    Article  CAS  Google Scholar 

  • Colburn, R. W., and E. L. Tatum: Studies of a phenylalanine-tyrosine requiring mutant of Neurospora crassa. Biochim. biophys. Acta (Amst.) 97, 442–448 (1965).

    Article  CAS  Google Scholar 

  • Combépine, G., et G. Turian: Recherches sur la biosynthèse de la glycine chez Neurospora crassa, type sauvage et mutants. Path. Microbiol. 28, 1018–1030 (1965).

    Google Scholar 

  • Costello, W. P., and E. A. Bevan: Complementation between ad 5/7 alleles in yeast. Genetics 50, 1219–1230 (1964).

    PubMed  CAS  Google Scholar 

  • Cotton, R. G. H., and F. Gibson: The biosynthesis of phenylalanine and tyrosine; enzymes converting chorismic acid into prephenic acid and their relationships to prephenate dehydratase and prephenate dehydrogenase. Biochim. biophys. Acta (Amst.) 100, 76–88 (1965).

    Article  CAS  Google Scholar 

  • Cove, D. J., and J. A. Pateman: Independently segregating genetic loci concerned with nitrate reductase activity in Aspergillus nidulans. Nature (Lond.) 198, 262–263 (1963).

    Article  CAS  Google Scholar 

  • Crawford, I. P., and C. Yanofsky: On the separation of tryptophan synthetase of Escherichia coli into two protein components. Proc. nat. Acad. Sci. (Wash.) 44, 1161–1170 (1958).

    Article  CAS  Google Scholar 

  • Crawford, I. P., and C. Yanofsky: The formation of a new enzymatically active protein as a result of suppression. Proc. nat. Acad. Sci. (Wash.) 45, 1280–1288 (1959).

    Article  CAS  Google Scholar 

  • Crick, F. H. C.: The recent excitement in the coding problem. Progr. in Nucl. Ac. Res. 1, 163–217 (1963).

    Article  CAS  Google Scholar 

  • Crick, F. H. C., L. Barnett, S. Brenner, and R. J. Watts-Tobin: General nature of the genetic code for proteins. Nature (Lond.) 192, 1227–1232 (1961).

    Article  CAS  Google Scholar 

  • Danneel, R.: Die Wirkungsweise der Grundfaktoren für Haarfärbung beim Kaninchen. Naturwissenschaften 26, 505 (1938).

    Article  CAS  Google Scholar 

  • Davis, B. D.: Aromatic biosynthesis. I. The role of shikimic acid. J. biol. Chem. 191, 315–325 (1951).

    PubMed  CAS  Google Scholar 

  • Davis, B. D.: Biosynthesis of the aromatic acids. In: W. D. McElroy and B. Glass (edits.), Amino acid metabolism, p. 799–811. Baltimore 1955.

    Google Scholar 

  • Davis, B. D., and E. S. Mingioli: Aromatic biosynthesis. VII. Accumulation of two derivatives of shikimic acid by bacterial mutants. J. Bact. 66, 129 (1953).

    PubMed  CAS  Google Scholar 

  • Davis, R. H.: An enzymatic difference among pyr-3 mutants of Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 46, 677–682 (1960).

    Article  CAS  Google Scholar 

  • Davis, R. H.: Suppressor of pyrimidine-3 mutants of Neurospora and it relation to arginine synthesis. Science 134, 470–471 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Davis, R. H.: Consequences of a suppressor gene effect with pyrimidine and proline mutants of Neurospora. Genetics 47, 351–360 (1962a).

    PubMed  CAS  Google Scholar 

  • Davis, R. H.: A mutant form of ornithine transcarbamylase found in a strain of Neurospora carrying a pyrimidine-proline suppressor gene. Arch. Biochem. 97, 185–191 (1962 b).

    Article  PubMed  CAS  Google Scholar 

  • Davis, R. H.: Neurospora mutant lacking an arginine-specific carbamyl Phosphokinase. Science 142, 1652–1654 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Davis, R. H., and L. M. Thwaites: Structural gene for ornithine transcarbamylase in Neurospora. Genetics 48, 1551–1558 (1963).

    PubMed  CAS  Google Scholar 

  • Davis, R. H., and V. W. Woodward: The relationship between gene suppression and aspartate transcarbamylase activity in pyr-3 mutants of Neurospora. Genetics 47, 1075–1083 (1962).

    PubMed  CAS  Google Scholar 

  • Day, P. R.: The structure of the A mating type locus in Coprinus lagopus. Genetics 45, 641–650 (1960).

    PubMed  CAS  Google Scholar 

  • Day, P. R.: The structure of the A mating type factor in Coprinus lagopus wild alleles. Genet. Res. 4, 323–325 (1963).

    Article  Google Scholar 

  • De Busk, A. G., and R. P. Wagner: p-Hydroxyphenylpyruvic acid function in Neurospora crass a. J. Amer. chem. Soc. 75, 5131 (1953).

    Article  Google Scholar 

  • De Deken, R. H.: Pathway of arginine biosynthesis in yeast. Biochem. biophys. Res. Commun. 8, 462–466 (1962).

    Article  Google Scholar 

  • Delbrück, M.: Die Vererbungschemie. Naturwiss. Rdsch. 16, 85–89 (1963).

    Google Scholar 

  • Demerec, M., and P. E. Hartman: Complex loci in microorganisms. Ann. Rev. Microbiol. 13, 377–406 (1959).

    Article  Google Scholar 

  • De Moss, J. A.: Studies on the mechanism of the tryptophan synthetase reaction. Biochim. biophys. Acta (Amst.) 62, 279–293 (1962).

    Article  Google Scholar 

  • De Moss, J. A.: The conversion of shikimic acid to anthranillic acid by extracts of Neurospora crassa. J. biol. Chem. 240, 1231–1235 (1965).

    Google Scholar 

  • De Moss, J. A.: Biochemical diversity in the tryptophan pathway. Biochem. and Biophys. Res. Comm. 18, 850 (1965).

    Article  Google Scholar 

  • De Moss, J. A., and D. M. Bonner: Studies on normal and genetically altered tryptophan synthetase from Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 45, 1405–1412 (1959).

    Article  Google Scholar 

  • De Moss, J. A., M. Imai, and D. M. Bonner: Studies on tryptophan biosynthesis in Neurospora crassa. Bact. Proc. 112 (1958).

    Google Scholar 

  • De Moss, J. A., and Wegman: An enzyme aggregate in the tryptophan pathway of Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 54, 241–247 (1965).

    Article  Google Scholar 

  • Dintzis, H. M.: Assembly of the peptide chains of hemoglobin. Proc. nat. Acad. Sci. (Wash.) 47, 247–261 (1961).

    Article  CAS  Google Scholar 

  • Dorfman, B.: Allelic complementation at the ad 5/7 locus in yeast. Genetics 50, 1231–1243 (1964).

    PubMed  CAS  Google Scholar 

  • Douglas, H. C., and D. C. Hawthorne: Enzymatic expression and genetic linkage of genes controlling galactose utilization in Saccharomyces. Genetics 49, 837–844 (1964).

    PubMed  CAS  Google Scholar 

  • Eberhart, B., D. F. Cross, and L. R. Chase: β-Glucosidase system of Neurospora crassa. I. β-Glucosidase and cellulase activities of mutant and wild type strains. J. Bact. 87, 761–770 (1964).

    PubMed  CAS  Google Scholar 

  • Eberhart, B. M., and E. L. Tatum: Thiamine metabolism in wild-type and mutant strains of Neurospora crassa. Arch. Biochem. 101, 378–387 (1963).

    Article  CAS  Google Scholar 

  • Edmonds, M., A. M. Delluva, and D.W. Wilson: The metabolism of purines and pyrimidines by growing yeast. J. biol. Chem. 197, 251–259 (1952).

    PubMed  CAS  Google Scholar 

  • Edwards, J. M., and L. M. Jackman: Chorismic acid. A branch point intermediate in aromatic biosynthesis. Aust. J. Chem. 18, 1227–1239 (1965).

    Article  CAS  Google Scholar 

  • Egelhaaf, A.: Genphysiologie: Biochemische Genwirkungen. Fortschr. Zool. 15, 378–423 (1962).

    Google Scholar 

  • Ehrenstein, G. v., and F. Lipman: Experiments on hemoglobin biosynthesis. Proc. nat. Acad. Sci. (Wash.) 47, 941–950 (1961).

    Article  CAS  Google Scholar 

  • Ehrensvärd, G.: Metabolism of amino acids and proteins. Ann. Rev. Biochem. 24, 275–310 (1955).

    Article  PubMed  Google Scholar 

  • Ehrensvärd, G., L. Reio, E. Saluste, and R. Stjernholm: Acetic acid metabolism in Torulopsis utilis. III. Metabolic connection between acetic acid and various amino acids. J. biol. Chem. 189, 93–108 (1951).

    PubMed  Google Scholar 

  • Ehrensvärd, G., E. Sperber, E. Saluste, L. Reio, and R. Stjernholm: Metabolic connection between proline and glycine in the amino acid utilization of Torulopsis utilis. J. biol. Chem. 169, 759–760 (1947).

    PubMed  Google Scholar 

  • El-Ani, A. S.: Self-sterile auxotrophs and their relation to heterothallism in Sordaria fimicola. Science 145, 1067–1068 (1964).

    Article  PubMed  CAS  Google Scholar 

  • El-Ani, A. S., L. S. Olive, and Y. Kitani: Genetics of Sordaria fimicola. IV. Linkage group I. Amer. J. Bot. 48, 716–723 (1961).

    Article  Google Scholar 

  • Ellingboe, A. H., and J. R. Raper: Somatic recombination in Schizophyllum commune. Genetics 47, 85–98 (1962).

    PubMed  CAS  Google Scholar 

  • Ephrussi, B.: Chemistry of “eye color hormones” of Drosophila. Quart. Rev. Biol. 17, 327–338 (1942).

    Article  CAS  Google Scholar 

  • Esser, K.: Quantitatively and qualitatively altered phenoloxidases in Podospora anserina, due to mutations at non-linked loci. Proc. of the XI. internat. Congr. of Genetics, vol. 1, p. 51–52. The Hague 1963.

    Google Scholar 

  • Esser, K.: Die Phenoloxydasen des Ascomyceten Podospora anserina. III. Quantitative und qualitative Enzymunterschiede nach Mutation an nicht gekoppelten Loci. Z.Vererbungsl. 97, 327–344 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Esser, K., J. A. De Moss, and D. M. Bonner: Reverse mutations and enzyme heterogeneity. Z. Vererbungsl. 91, 291–299 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Fincham, J. R. S.: Transaminases in Neurospora crassa. Nature (Lond.) 168, 957–958 (1951a).

    Article  CAS  Google Scholar 

  • Fincham, J. R. S.: The occurrence of glutamic dehydrogenase in Neurospora and its apparent absence in certain mutant strains. J. gen. Microbiol. 5, 793–806 (1951b).

    PubMed  CAS  Google Scholar 

  • Fincham, J. R. S.: Ornithine transaminase in Neurospora and its relation to the biosynthesis of proline. Biochem. J. 53, 313–320 (1953).

    PubMed  CAS  Google Scholar 

  • Fincham, J. R. S.: Effects of gene mutation in Neurospora crassa relating to glutamic dehydrogenase formation. J. gen. Microbiol. 11, 236–246 (1954).

    PubMed  CAS  Google Scholar 

  • Fincham, J. R. S.: A modified glutamic acid dehydrogenase as a result of gene mutation in Neurospora crassa. Biochem. J. 65, 721–728 (1957).

    PubMed  CAS  Google Scholar 

  • Fincham, J. R. S.: The biochemistry of genetic factors. Ann. Rev. Biochem. 28, 343–364 (1959a).

    Article  PubMed  CAS  Google Scholar 

  • Fincham, J. R. S.: On the nature of glutamic dehydrogenase produced by interallele complementation at the am locus of Neurospora crassa. J. gen. Microbiol. 21, 600–611 (1959b).

    PubMed  CAS  Google Scholar 

  • Fincham, J. R. S.: The role of chromosomal loci in enzyme formation. Proc. X. Internat. Congr. of Genetics, vol. I, p. 335–363, Montreal 1958. University of Toronto Press 1959c

    Google Scholar 

  • Fincham, J. R. S.: Genetically controlled differences in enzyme activity. Advanc. Enzymol. 22, 1–43 (1960).

    CAS  Google Scholar 

  • Fincham, J. R. S.: Genes and enzymes in micro-organisms. Brit. med. Bull. 18, 14–18 (1962a).

    PubMed  CAS  Google Scholar 

  • Fincham, J. R. S.: Genetically determined multiple forms of glutamic dehydrogenase in Neurospora crassa. J. molec. Biol. 4, 257–274 (1962b).

    Article  PubMed  CAS  Google Scholar 

  • Fincham, J. R. S., and P. A. Bond: A further genetic variety of glutamic acid dehydrogenase in Neurospora crassa. Biochem. J. 77, 96–105 (1960).

    PubMed  CAS  Google Scholar 

  • Fincham, J. R. S., and A. B. Boulter: Effects of amino acids on transaminase production in Neurospora crassa: Evidence for four different enzymes. Biochem. J. 62, 72–77 (1956).

    PubMed  CAS  Google Scholar 

  • Fincham, J. R. S., and J. B. Boylen: A block in arginine synthesis in Neurospora crassa, due to gene mutation. Biochem. J. 61 (Proc. Biochem. Soc.) XXIII–XXIV (1955).

    Google Scholar 

  • Fincham, J. R. S., and A. Coddington: Complementation at the am locus of Neurospora crassa: A reaction between different mutant forms of glutamate dehydrogenase. J. molec. Biol. 6, 361–373 (1963a).

    Article  PubMed  CAS  Google Scholar 

  • Fincham, J. R. S., and A. Coddington: The mechanism of complementation between am mutants of Neurospora crassa. Cold Spr. Harb. Symp. quant. Biol. 28, 517–527 (1963b).

    Article  CAS  Google Scholar 

  • Fincham, J. R. S., and P. R. Day: Fungal genetics. Oxford: Blackwell 1963.

    Google Scholar 

  • Fincham, J. R. S., and J. A. Pateman: A new allele at the am locus in Neurospora crassa. J. Genet. 55, 456–466 (1957a).

    Article  Google Scholar 

  • Fincham, J. R. S., and J. A. Pateman: Formation of an enzyme through complementary action of mutant “alleles” in separate nuclei in a heterocaryon. Nature (Lond.) 179, 741–742 (1957b).

    Article  CAS  Google Scholar 

  • Fink, G. R.: Gene-enzyme in histidine biosynthesis in yeast. Science 146, 525–527 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Fischer, G. A.: Genetic and biochemical studies of the cysteine-methionine series of mutants of Neurospora crassa. Thesis. Pasadena: California Institute of Technology 1954.

    Google Scholar 

  • Fischer, G. A.: The cleavage and synthesis of cystathionine in wild type and mutant strains of Neurospora crassa. Biochim. biophys. Acta (Amst.) 25, 50–55 (1957).

    Article  CAS  Google Scholar 

  • Fisher, K. W.: Regulation of bacterial metabolism. Brit. med. Bull. 18, 19–23 (1962).

    PubMed  CAS  Google Scholar 

  • Flavin, M., and C. Slaughter: Purification and properties of threonine synthetase of Neurospora. J. biol. Chem. 235, 1103–1108 (1960).

    PubMed  CAS  Google Scholar 

  • Fling, M., and N. H. Horowitz: Threonine and homoserine in extracts of a methionineless mutant of Neurospora. J. biol. Chem. 190, 277–285 (1951).

    PubMed  CAS  Google Scholar 

  • Fling, M., and N. H. Horowitz and S. F. Heinemann: The isolation and properties of crystalline tyrosinase from Neurospora. J. biol. Chem. 238, 2045–2053 (1963).

    PubMed  CAS  Google Scholar 

  • Fox, A. S., and J.B. Burnett: Tyrosinases of diverse thermostabilities and their interconversion in Neurospora crassa. Biochim. biophys. Acta (Amst.) 61, 108–120 (1962).

    CAS  Google Scholar 

  • Fling, M., and N. H. Horowitz and M. S. Fuchs: Tyrosinase as a model for genetic control of protein synthesis. Ann. N.Y. Acad. Sci. 100, 840–856 (1963).

    Google Scholar 

  • Fries, N.: Experiments with different methods of isolating physiological mutations of filamentous fungi. Nature (Lond.) 159, 199 (1947).

    Article  CAS  Google Scholar 

  • Fries, N., and B. Kihlman: Fungal mutations obtained with methyl xanthins. Nature (Lond.) 162, 573–574 (1948).

    Article  CAS  Google Scholar 

  • Gardner, R. S., A. J. Wahba, C. Basilio, R. S. Miller, P. Lengyel, and J. F. Speyer: Synthetic polynucleotides and the amino acid code. VII. Proc. nat. Acad. Sci. (Wash.) 48, 2087–2094 (1962).

    Article  CAS  Google Scholar 

  • Garen, A.: Genetic control of the specificity of the bacterial enzyme, alkaline phosphatase. In: W. Hayes and R. C. Clowes (edits.), Microbiol Genetics, p. 239–247. London 1960.

    Google Scholar 

  • Garrick, M. D., and S. R. Suskind: Trypsin treated Neurospora tryptophan synthetase. I. Enzymic properties. J. molec. Biol. 9, 70–82 (1964a).

    Article  PubMed  CAS  Google Scholar 

  • Garrick, M. D., and S. R. Suskind: Trypsin treated Neurospora tryptophan synthetase. II. Antigenic properties. J. molec. Biol. 9, 83–99 (1964b).

    Article  PubMed  CAS  Google Scholar 

  • Garrod, A. E.: Inborn errors of metabolism, 1st edit. London: Oxford University Press 1909.

    Google Scholar 

  • Garrod, A. E.: Inborn errors of metabolism, 2nd edit., London: Oxford University Press 1923.

    Google Scholar 

  • Geiduschek, E. P.: “Reversible” DNA. Proc. nat. Acad. Sci. (Wash.) 47, 950–955 (1961).

    Article  CAS  Google Scholar 

  • Geiduschek, E. P., J. W. Moohr, and S. B. Weiss: The secondary structure of complementary RNA. Proc. nat. Acad. Sci. (Wash.) 48, 1078–1086 (1962).

    Article  CAS  Google Scholar 

  • Geiduschek, E. P., T. Nakamoto, and S. B. Weiss: The enzymatic synthesis of RNA: complementary interaction with DNA. Proc. nat. Acad. Sci. (Wash.) 47, 1405–1415 (1961).

    Article  CAS  Google Scholar 

  • Gierer, A.: Molekulare Grundlagen der Vererbung. Naturwissenschaften 48, 283–289 (1961).

    Article  Google Scholar 

  • Gilbert, W., and B. Müller-Hill: Isolation of the lac repressor. Proc. nat. Acad. Sci. (Wash.) 56, 1891–1898 (1966).

    Article  CAS  Google Scholar 

  • Giles, N. H.: Studies on the mechanism of reversion in biochemical mutants of Neurospora crassa. Cold Spr. Harb. Symp. quant. Biol. 16, 283–313 (1951).

    Article  Google Scholar 

  • Giles, N. H.: Studies on reverse mutation in Neurospora crassa. Trans. N.Y. Acad. Sci., Ser. II, 15, 251–253 (1953).

    CAS  Google Scholar 

  • Giles, N. H.: Mutations at specific loci in Neurospora. Proc. X. Internat. Congr. of Genetics, vol. 1, p. 261–279- Montreal 1958.

    Google Scholar 

  • Giles, N. H.: Genetic fine structure in relation to function in Neurospora. Proc. XI. Intern. Congr. of Genetics, vol. 2, p. 17–30. The Hague 1964.

    Google Scholar 

  • Giles, N. H., and E. Z. Lederberg: Induced reversion of biochemical mutants in Neurospora crassa. Amer. J. Bot. 35, 150–157 (1948).

    Article  CAS  Google Scholar 

  • Giles, N. H., and C. W. H. Partridge: The effect of a suppressor on allelic inositoleless mutants in Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 39, 479–488 (1953).

    Article  CAS  Google Scholar 

  • Giles, N. H., C. W. H. Partridge, and N. J. Nelson: The genetic control of adenylosuccinase in Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 43, 305–317 (1957a).

    Article  CAS  Google Scholar 

  • Giles, N. H., C. W. H. Partridge, and N. J. Nelson: Genetic control of adenylosuccinase in Neurospora crassa. Proc. Internat. Genetics Symp. Cytologia (Tokyo), Suppl. Vol., 543–546 (1957b).

    Google Scholar 

  • Gilliland, R. B.: Identification of the genes for maltose fermentation in Saccharomyces distaticus. Nature (Lond.) 173, 409 (1954).

    Article  Google Scholar 

  • Glassman, E., and H. K. Mitchell: Mutants of Drosophila melanogaster deficient in xanthine dehydrogenase. Genetics 44, 153–162 (1959).

    PubMed  CAS  Google Scholar 

  • Good, N., R. Heilbronner, and H. K. Mitchell: ε-Hydroxynorleucine as a substitute for lysine for Neurospora. Arch. Biochem. 28, 264–265 (1950).

    Google Scholar 

  • Gordon, M., F. A. Haskins, and H. K. Mitchell: The growth-promoting properties of quinic acid. Proc. nat. Acad. Sci. (Wash.) 36, 427–430 (1950).

    Article  CAS  Google Scholar 

  • Gots, J. S., and E. G. Gollub: Sequential blockade in adenine biosynthesis by genetic loss of an apparent bifunctional deacylase. Proc. nat. Acad. Sci. (Wash.) 43, 826–834 (1957).

    Article  CAS  Google Scholar 

  • Greenberg, D.M.: Metabolic pathways. New York and London: Academic Press, vol. I 1960, vol. II 1961.

    Google Scholar 

  • Griffin, A. C., and M. A. O’Neal: Effect of polyuridylic acid upon incorporation in vitro of (14C) phenylalanine by ascites tumor components. Biochim. biophys. Acta (Amst.) 61, 469–471 (1962).

    CAS  Google Scholar 

  • Gross, S. R.: The enzymatic conversion of 5-dehydroshikimic acid to protocatechuic acid. J. biol. Chem. 233, 1146–1151 (1958).

    PubMed  CAS  Google Scholar 

  • Gross, S. R.: On the mechanism of complementation at the leu-2 locus of Neurospora. Proc. nat. Acad. Sci. (Wash.) 48, 922–930 (1962).

    Article  CAS  Google Scholar 

  • Gross, S. R., and A. Fein: Linkage and function in Neurospora. Genetics 45, 885–904 (1960).

    PubMed  CAS  Google Scholar 

  • Halvorson, H. O., S. Winderman, and J. Gorman: Comparison of the glucosidases of Saccharomyces produced in response to five non-allelic maltose genes. Biochim. biophys. Acta (Amst.) 67, 42–53 (1963).

    Article  CAS  Google Scholar 

  • Hartman, P. E., Z. Hartman, D. Serman, and J. C. Loper: Genetic complementarity in histidineless Salmonella typhimurium. Proc. X. internat. Congr. of Genetics, vol. 2, p. 115. Montrai 1958.

    Google Scholar 

  • Haskins, F. A., and H.K. Mitchell: Evidence for a tryptophane cycle in Neurospora. Proc. nat. Acad. Sci. (Wash.) 35, 500–506 (1949).

    Article  CAS  Google Scholar 

  • Hatanaka, M., E. A. White, K. Horibata, and I. P. Crawford: A study of catalytic properties of Escherichia coli tryptophan synthetase, a two component enzyme. Arch. Biochem. 97, 596–606 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Hawthorne, D. C., and R. K. Mortimer: Supersuppressors in yeast. Genetics 48, 716–620 (1963).

    Google Scholar 

  • Hayes, W.: The genetics of bacteria and their viruses. Oxford 1964.

    Google Scholar 

  • Helinski, D. R., and C. Yanofsky: Correspondence between genetic data on the position of amino acid alteration in a protein. Proc. nat. Acad. Sci. (Wash.) 48, 173–182 (1962a).

    Article  CAS  Google Scholar 

  • Helinski, D. R., and C. Yanofsky: Peptide pattern studies on the wild protein of the tryptophan synthetase of Escherichia coli. Biochim. biophys. Acta (Amst.) 63, 10–19 (1962b).

    Article  CAS  Google Scholar 

  • Helinski, D. R., and C. Yanofsky: A genetic and biochemical analysis of second site reversion. J. biol. Chem. 238, 1043–1048 (1963).

    PubMed  CAS  Google Scholar 

  • Hellmann, H., u. F. Lingens: Aufklärung biologischer Syntheseketten an Mikroorganismen. Angew. Chem. 73, 107–113 (1961).

    Article  CAS  Google Scholar 

  • Henderson, L. M.: Quinolinic acid excretion by the rat receiving tryptophan. J. biol. Chem. 178, 1005–1006 (1949).

    PubMed  CAS  Google Scholar 

  • Henning, U., D. R. Helinski, F. C. Chao, and C. Yanofsky: The A protein of the tryptophan synthetase in E. coli. J. biol. Chem. 237, 1523–1530 (1962).

    PubMed  CAS  Google Scholar 

  • Henning, U., and C. Yanofsky: An alteration in the primary structure of a protein predicted on the basis of genetic recombination data. Proc. nat. Acad. Sci. (Wash.) 48, 183–190 (1962a).

    Article  CAS  Google Scholar 

  • Henning, U., and C. Yanofsky: Amino acid replacements associated with reversion and recombination within the A gene. Proc. nat. Acad. Sci. (Wash.) 48, 1497–1504 (1962 b).

    Article  CAS  Google Scholar 

  • Heslot, H.: Schizosaccharomyces pombe: un nouvel organisme pour l’étude de la mutagénèse chimique. Abh. dtsch. Akad. Wiss., Berlin, Kl. Medizin 1, 98–105 (1960).

    Google Scholar 

  • Heslot, H.: Etude quantitative de réversions biochemiques induites chez la levure Schizosaccharomyces pombe par des radiations et des substances radio-métriques. Abh. dtsch. Akad. Wiss., Berlin, Kl. Medizin 1, 192–228 (1962).

    Google Scholar 

  • Hirs, C. H. W., S. Moore, and W. H. Stein: The sequence of amino acid residues in performic acid-oxidized ribonuclease. J. biol. Chem. 235, 633–647 (1960).

    PubMed  CAS  Google Scholar 

  • Hogness, D. S., and H. K. Mitchell: Genetic factors influencing the activity of tryptophan desmolase in Neurospora crassa. J. gen. Microbiol. 11, 401–411 (1954).

    PubMed  CAS  Google Scholar 

  • Holliday, R.: The genetics of Ustilago maydis. Genet. Res. 2, 204–230 (1961).

    Article  Google Scholar 

  • Horowitz, N. H.: The isolation and identification of a natural precursor of choline. J. biol. Chem. 162, 413–419 (1946).

    PubMed  CAS  Google Scholar 

  • Horowitz, N. H.: Methionine synthesis in Neurospora. The isolation of cystathionine. J. biol. Chem. 171, 255–264 (1947).

    CAS  Google Scholar 

  • Horowitz, N. H.: Biochemical genetics of Neurospora. Advanc. Genet. 3, 33–71 (1950).

    Article  CAS  Google Scholar 

  • Horowitz, N. H.: Genetic and non-genetic factors in the production of enzymes by Neurospora. Growth Symp. 10, 47–62 (1951).

    Google Scholar 

  • Horowitz, N. H., D. M. Bonner, and M. B. Houlahan: The utilization of choline analogs by cholineless mutants of Neurospora. J. biol. Chem. 159, 145–151 (1945).

    CAS  Google Scholar 

  • Horowitz, N. H., and M. Fling: Genetic determination of tyrosinase thermostability in Neurospora. Genetics 4, 360–374 (1953).

    Google Scholar 

  • Horowitz, N. H., and M. Fling: Studies of tyrosinase production by a heterocaryon of Neurospora. Proc. nat. Acad. Sci. (Wash.) 42, 498–501 (1956).

    Article  CAS  Google Scholar 

  • Horowitz, N. H., M. Fling, H. L. MacLeod, and N. Sueoka: Genetic determination and enzymatic induction of tyrosinase in Neurospora. J. molec. Biol. 2, 96–104 (1960).

    Article  CAS  Google Scholar 

  • Horowitz, N. H., M. Fling, H. L. MacLeod, and N. Sueoka: A genetic study of two new structural forms of tyrosinase in Neurospora. Genetics 46, 1015–1024 (1961 a).

    PubMed  CAS  Google Scholar 

  • Horowitz, N. H., M. Fling, H. L. MacLeod and Y. Watanabe: Structural and regulative genes controlling tyrosinase synthesis in Neurospora. Cold Spr. Harb. Symp. quant. Biol. 26, 233–238 (1961b).

    Article  CAS  Google Scholar 

  • Horowitz, N. H., and U. Leupold: Some recent studies bearing on the one gene one enzyme hypothesis. Cold Spr. Harb. Symp. quant. Biol. 16, 65–74 (1951).

    Article  CAS  Google Scholar 

  • Horowitz, N. H., and R. L. Metzenberg: Biochemical aspects of genetics. Ann. Rev. Biochem. 34, 527–564 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Horowitz, N. H., and S. C. Shen: Neurospora tyrosinase. J. biol. Chem. 197, 513–520 (1952).

    PubMed  CAS  Google Scholar 

  • Houlahan, M. B., and H. K. Mitchell: A suppressor in Neurospora and its use as evidence for allelism. Proc. nat. Acad. Sci. (Wash.) 33, 223–229 (1947).

    Article  CAS  Google Scholar 

  • Houlahan, M. B., and H. K. Mitchell: Evidence for an interrelation in the metabolism of lysine, arginine and pyrimidine in Neurospora. Proc. nat. Acad. Sci. (Wash.) 34, 465–470 (1948).

    Article  CAS  Google Scholar 

  • Huang, R. C., N. Maheswari, and J. Bonner: Enzymatic synthesis of RNA. Biochem. biophys. Res. Commun. 3, 689–694 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Ingram, V.: Hemoglobin and its abnormalities. Springfield (Ill.): Ch. C. Thomas 1961.

    Google Scholar 

  • Ingram, V. M.: The hemoglobins in genetics and evolution. New York and London 1963.

    Google Scholar 

  • Ishikawa, T.: Complementation and genetic maps of the ad-8 locus in Neurospora crassa. Genetics 45, 993 (1960).

    Google Scholar 

  • Ishikawa, T.: Genetic studies of ad-8 mutants in Neurospora crassa. I. Genetic fine structure of the ad-8 locus. Genetics 47, 1147—H61 (1962a).

    Google Scholar 

  • Ishikawa, T.: Genetic studies of ad-8 mutants in Neurospora crassa. II. Interallelic complementation at the ad-8 locus. Genetics 47, 1755–1770 (1962b).

    PubMed  CAS  Google Scholar 

  • Jacob, F., and J. Monod: Genetic regulatory mechanism in the synthesis of proteins. J. molec. Biol. 3, 318–356 (1961a).

    Article  PubMed  CAS  Google Scholar 

  • Jacob, F., and J. Monod: On the regulation of gene action. Cold Spr. Harb. Symp. quant. Biol. 26, 193–211 (1961b).

    Article  CAS  Google Scholar 

  • Jakoby, W. B.: Kynurenine formamidase from Neurospora. J. biol. Chem. 207, 657–663 (1954).

    PubMed  CAS  Google Scholar 

  • Jakoby, W. B.: An interrelationship between tryptophan, tyrosine and phenylalanine in Neurospora. In: W. D. McElroy and B. Glass (edits.), Amino acid metabolism, p. 909–913. Baltimore 1955.

    Google Scholar 

  • Jakoby, W. B., and D. M. Bonner: Kynureninase from Neurospora: Purification and properties. J. biol. Chem. 205, 699–707 (1953a).

    PubMed  CAS  Google Scholar 

  • Jakoby, W. B., and D. M. Bonner: Kynureninase from Neurospora: Interaction of enzyme with substrates, coenzyme, and amines. J. biol. Chem. 205, 709–715 (1953b).

    PubMed  CAS  Google Scholar 

  • Joly, P.: Données récentes sur la génétique des champignons supérieurs (Ascomycètes et Basidiomycètes). Rev. Mycol. (Paris) 29, 115–186 (1964).

    Google Scholar 

  • Jones, E. E., and H. P. Broquist: Saccharopine, an intermediate of the aminoadipic acid pathway of lysine biosynthesis. J. biol. Chem. 240, 2531–2536 (1965).

    PubMed  CAS  Google Scholar 

  • Jones, M. E.: Carbamyl phosphate. Many forms of life use this molecule to synthesize arginine, uracil, and adenosine triphosphate. Science 140, 1373–1379 (1963).

    Article  CAS  Google Scholar 

  • Jones Jr., O. W., and M. W. Nirenberg: Qualitative survey of RNA codewords. Proc. nat. Acad. Sci. (Wash.) 48, 2115–2123 (1962).

    Article  CAS  Google Scholar 

  • Jukes, T. H.: Possible base sequences in the amino acid code. Biochem. biophys. Res. Commun. 7, 497–502 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Jukes, T. H., and A. C. Dornbush: Growth stimulation of Neurospora cholineless mutant by dimethylaminoethanol. Proc. Soc. exp. Biol. (N.Y.) 58, 142–143 (1945).

    CAS  Google Scholar 

  • Jungwirth, C., S. R. Gross, P. Margolin, and H. E. Umbarger: The biosynthesis of leucine. I. The accumulation of β-carboxy-β-hydroxy-isocaproate by leucine auxotrophs of Salmonella typhimurium and Neurospora crassa. Biochemistry 2, 1–6 (1963).

    Article  CAS  Google Scholar 

  • Kägi, J. H. R., and B. L. Vallee: The role of zinc in alcohol dehydrogenase. V. The effect of metal binding agents on the structure of yeast alcohol dehydrogenase molecule. J. biol. Chem. 235, 3188–3192 (1960).

    PubMed  Google Scholar 

  • Kano-Sueoka, T., and S. Spiegelman: Evidence for a nonrandom reading of the genome. Proc. nat. Acad. Sci. (Wash.) 48, 1942–1949 (1962).

    Article  CAS  Google Scholar 

  • Kaplan, M. M., and M. Flavin: Threonine biosynthesis. On the pathway in fungi and bacteria and the mechanism of the isomerization reaction. J. biol. Chem. 240, 3928–3933 (1965).

    PubMed  CAS  Google Scholar 

  • Kaplan, S., S. Ensign, D.M. Bonner, and S.E. Mills: Gene products of CRM-mutants at the td locus. Proc. nat. Acad. Sci. (Wash.) 51, 372–378 (1964 a).

    Article  CAS  Google Scholar 

  • Kaplan, S., St. E. Mills, St. Ensign, and D.M. Bonner: Genetic determination of the antigenic specificity of tryptophan synthetase. J. molec. Biol. 8, 801–813 (1964b).

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, S., Y. Suyama, and D. M. Bonner: Fine structure analysis at the td locus of Neurospora crassa. Genetics 49, 145–158 (1964c).

    PubMed  CAS  Google Scholar 

  • Kapuler, A.M., and H. Bernstein: A molecular model for an enzyme based on a correlation between genetic and complementation maps of the locus specifying enzyme. J. molec. Biol. 6, 443–451 (1963).

    Article  CAS  Google Scholar 

  • Karlson, P.: Biochemische Wirkungen der Gene. Ergebn. Enzymforsch. 13, 85–206 (1954).

    CAS  Google Scholar 

  • Kasha, M., and B. Pullman (edits.): Horizons in biochemistry. New York and London 1962.

    Google Scholar 

  • Kaudewitz, F.: Ausgewählte Beispiele biochemisch genetischer Forschung. Z. menschl. Vererb.- u. Konstit.-Lehre 36, 242–257 (1962).

    CAS  Google Scholar 

  • Khorana, H. G., H. Büchi, H. Ghosh, N. Gupta, T. M. Jacob, H. Kössel, R. Morgan, S. A. Narang, E. Ohtsuka and R. D. Wells: Polynucleotide synthesis and the genetic code. Cold Spr. Harb. Symp. quant. Biol. 31, 39–49 (1966).

    Article  CAS  Google Scholar 

  • Kiritani, K. S., S. Narise, and R. P. Wagner: The dihydroxy dehydratase of Neurospora crassa. J. biol. Chem. 241, 2042–2046 (1966a).

    PubMed  CAS  Google Scholar 

  • Kiritani, K. S., S. Narise, and R. P. Wagner: The reductoisomerase of Neurospora crassa. J. biol. Chem. 241, 2047–2051 (1966b).

    CAS  Google Scholar 

  • Klopotowski, T., and D. Hulanicka: Imidazol-glycerol accumulation by yeast resulting from inhibition of histidine biosynthesis by 3-amino-1,2,4-triacole. Acta biochim. pol. 10, 209–218 (1963).

    PubMed  CAS  Google Scholar 

  • Kølmark, G., and M. Westergaard: Further studies on chemically induced reversions at the adenine locus of Neurospora. Hereditas (Lund) 39, 209–224 (1953).

    Article  Google Scholar 

  • Kühn, A.: Über eine Gen-Wirkkette der Pigmentbildung bei Insekten. Nachr. Akad. Wiss. Göttingen, Math.-physik. Kl. 1941 231–261.

    Google Scholar 

  • Kühn, A.: Neue Mutationen und Phänogenetik bei Tieren. In: Naturforschung und Medizin in Deutschland 1939–1946, E. Bünning U. A. Kühn (Hrsg.), Bd. 53, S. 77–93. Wiesbaden 1948.

    Google Scholar 

  • Kurahashi, K.: Enzyme formation in galactose negative mutants of Escherichia coli. Science 125, 114–116 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Lacy, A. M., and D. M. Bonner: Complementarity between alleles at the td locus in Neurospora crassa. Proc. X. Internat. Congr. of Genet., vol. 2, p. 157. Montreal 1958.

    Google Scholar 

  • Lacy, A. M., and D. M. Bonner: Complementation between alleles of the td locus in Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 47, 72–77 (1961).

    Article  CAS  Google Scholar 

  • Lamey, H. A., D. M. Boone, and G. W. Keitt: Venturia inaequalis (Cke.) Wint. Growth responses of biochemical mutants. Amer. J. Bot. 43, 828–834 (1956).

    Article  CAS  Google Scholar 

  • Landman, O. E.: Formation of lactose in mutants and parental strains of Neurospora. Genetics 35, 673–674 (1950).

    Google Scholar 

  • Lanni, F.: Biological validity of amino acid codes deduced with synthetic ribonucleotide polymers. Proc. nat. Acad. Sci. (Wash.) 48, 1623–1630 (1962).

    Article  CAS  Google Scholar 

  • Lederberg, J., E. M. Lederberg, N. Zinder, and E. Lively: Recombination analysis of bacterial heredity. Cold Spr. Harb. Symp. quant. Biol. 16, 413–443 (1951).

    Article  CAS  Google Scholar 

  • Lester, G.: Some aspects of tryptophan synthetase formation in Neurospora crassa. J. Bact. 81, 964–973 (1961 a).

    PubMed  CAS  Google Scholar 

  • Lester, G.: Repression and inhibition of indole synthesizing activity in Neurospora crassa. J. Bact. 82, 215–223 (1961 b).

    PubMed  CAS  Google Scholar 

  • Lester, G.: Regulation of early reactions in the biosynthesis of tryptophan in Neurospora crassa. J. Bact. 85, 468–475 (1963).

    PubMed  CAS  Google Scholar 

  • Leupold, U.: Physiologisch-genetische Studien an adenin-abhängigen Mutanten von Schizosaccharomyces pombe. Schweiz. Z. Path. Bakt. 20, 535–544 (1957).

    CAS  Google Scholar 

  • Leupold, U.: Intragene Rekombination und allele Komplementierung. Arch. Klaus-Stift. Vererb.-Forsch. 36, 89–117 (1961).

    CAS  Google Scholar 

  • Levinthal, C., and P. F. Davidson: Biochemistry of genetic factors. Amer. Rev. Biochem. 30, 641–668 (1961).

    Article  CAS  Google Scholar 

  • Lewis, D.: Genetical analysis of methionine suppressors in Coprinus. Genet. Res. 2, 141–155 (1961).

    Article  Google Scholar 

  • Lewis, R. W.: Mutants of Neurospora requiring succinic acid or a biochemically related acid for growth. Amer. J. Bot. 35, 292–295 (1948).

    Article  CAS  Google Scholar 

  • Liebermann, I., A. Kornberg, and E. S. Simms: Enzymatic synthesis of pyrimidine nucleotides. Orotidine-5-phosphate and uridine-5-phosphate. J. biol. Chem. 215, 403–415 (1955).

    Google Scholar 

  • Lindegren, C. C.: The yeast cell, its genetics and cytology. St. Louis (Missouri): Educational publishers 1949.

    Google Scholar 

  • Lindegren, C. C.: Gene control of fermentation in Saccharomyces without control of permeability. J. Bact. 74, 689–690 (1957).

    PubMed  CAS  Google Scholar 

  • Lindegren, C. C.: The biological function of deoxyribonucleic acid. J. theor. Biol. 1, 107–119 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Lindegren, C. C., and G. Lindegren: Asci in Saccharomyces with more than four spores. Genetics 38, 73–78 (1953).

    PubMed  CAS  Google Scholar 

  • Lindegren, C. C., and G. Lindegren: Eight genes controlling the presence or absence of carbohydrate fermentation in Saccharomyces. J. gen. Microbiol. 15, 19–28 (1956).

    PubMed  CAS  Google Scholar 

  • Lindegren, C. C., M. A. Williams, and D. O. McClary: The distribution of chromatin in budding yeast cells. Antonie v. Leeuwenhoek 22, 1–20 (1956).

    Article  CAS  Google Scholar 

  • Lingens, F., u. W. Goebel: Untersuchungen an biochemischen Mangelmutanten von Saccharomyces cerevisiae mit genetischem Block hinter einer Verzweigungsstelle in der Biosynthese der aromatischen Aminosäuren. Hoppe-Seylers Z. physiol. Chem. 342, 1–12 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Lingens, F., u. W. Goebel u. H. Uesseler: Regulation der Biosynthese der aromatischen Aminosäuren in Saccharomyces cerevisiae. I. Hemmung der Enzymaktivitäten (Feedback-Wirkung). Biochem. Z. 346, 357–367 (1966).

    CAS  Google Scholar 

  • Lingens, F., u. H. Hellmann: Isolierung von Shikimisäure aus dem Medium einer Saccharomyces cerevisiae-Mutante. Z. Naturforsch. 13b, 462–463 (1958).

    CAS  Google Scholar 

  • Lingens, F., u. W. Lück: Über die Biosynthese des Tryptophans in Saccharomyces cerevisiae. Hoppe-Seylers Z. physiol. Chem. 333, 190–198 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Lingens, F., u. W. Lück u. G. Müller: Über die Wirkung von 5-Oxo-6-diazonorleucin und Albizziin auf die Biosynthese der Anthranilsäure in Saccharomyces cerevisiae. Hoppe-Seylers Z. physiol. Chem. 343, 282–289 (1966).

    Article  CAS  Google Scholar 

  • Lingens, F., B. Sprössler u. W. Goebel: Zur Biosynthese der Anthranilsäure in Saccharomyces cerevisiae. Biochim. biophys. Acta(Amst.) 121, 164–166 (1966).

    Article  CAS  Google Scholar 

  • Lingens, F., u. P. Vollprecht: Zur Biosynthese der Nicotinsäure in Streptomyceten, Algen, Phycornyceten und Hefe. Hoppe-Seylers Z. physiol. Chem. 339, 64–74 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Loring, H. S., and J. L. Fairley: Growth-promoting activity of guanine for the purine-deficient Neurospora 28610. J. biol. Chem. 172, 843–844 (1948).

    PubMed  CAS  Google Scholar 

  • Maas, W. K., and B. D. Davis: Production of an altered panthothenate-synthesizing enzyme by a temperature sensitive mutant of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 38, 785–797 (1952).

    Article  CAS  Google Scholar 

  • Madsen, N. B., and F. R. N. Gurd: The interaction of muscle Phosphorylase with p-chloromercuribenzoate. III. The reversible dissociation of Phosphorylase. J. biol. Chem. 223, 1055–1065 (1956)

    PubMed  CAS  Google Scholar 

  • Marcker, K.: The formation of N-formyl-methionyl-sRNA. J. mol. Biol. 14, 63–70 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Markert, C. L.: The effects of genetic changes on tyrosinase activity in Glomerella. Genetics 35, 60–75 (1950).

    PubMed  CAS  Google Scholar 

  • Markert, C. L.: Radiation-induced nutritional and morphological mutants of Glomerella. Genetics 37, 339–352 (1952).

    PubMed  CAS  Google Scholar 

  • Markert, C. L., and R.D. Owen: Immunogenetic studies of tyrosinase specificity. Genetics 39, 818–835 (1954).

    PubMed  CAS  Google Scholar 

  • Matchett, W. D., and J. A. DeMoss: Factors affecting increased production of tryptophan synthetase by a td mutant of Neurospora crass a. J. Bact. 83, 1294–1300 (1962).

    PubMed  CAS  Google Scholar 

  • Matthaei, J. H., O. W. Jones, R. G. Martin, and M. W. Nirenberg: Characteristics and composition of RNA coding units. Proc. nat. Acad. Sci. (Wash.) 48, 666–677 (1962).

    Article  CAS  Google Scholar 

  • Matthaei, J. H., H. P. Voigt, G. Heller, R. Neth, G. Schöch, H. Kübler, F. Amelunxen, G. Sander, and A. Parmeggiani: Specific interactions of ribosomes in decoding. Cold Spr. Harb. Symp. quant. Biol. 31, 25–38 (1966).

    Article  CAS  Google Scholar 

  • Maxwell, E. S.: Stimulation of amino acid incorporation into protein by natural and synthetic polyribonucleotides in a mammalian cell-free system. Proc. nat. Acad. Sci. (Wash.) 48, 1639–1643 (1962).

    Article  CAS  Google Scholar 

  • McElroy, W. D., and B. Glass (edits.): Amino acid metabolism. Baltimore 1955.

    Google Scholar 

  • McElroy, W. D., and B. Glass (edits.): The chemical basis of heredity. Baltimore 1957.

    Google Scholar 

  • McElroy, W. D., and H. K. Mitchell: Enzyme studies on a temperature sensitive mutant of Neurospora. Fed. Proc. 5, 376–379 (1946).

    PubMed  CAS  Google Scholar 

  • McElroy, W. D., and D. Spencer: Normal pathways of assimilation of nitrate and nitrite. In: W. D. McElroy and B. Glass (edits.), Inorganic nitrogen metabolism, p. 137–152. Baltimore 1956.

    Google Scholar 

  • McManus, I. R.: The biosynthesis of valine by Saccharomyces cerevisiae. J. biol. Chem. 208, 639–644 (1954).

    PubMed  CAS  Google Scholar 

  • Medveden, Z. A.: A hypothesis concerning the way of coding interaction between transfer RNA and messenger RNA at the later stages of protein synthesis. Nature (Lond.) 195, 38–39 (1962).

    Article  Google Scholar 

  • Megnet, R.: Untersuchungen über die Biosynthese von Uracil bei Schizosaccharomyces pombe. Arch. Klaus-Stift. Vererb.-Forsch. 33, 299–334 (1959).

    Google Scholar 

  • Meister, A., A. N. Radhakrishnan, and S. D. Buckley: Enzymatic synthesis of l-pipecolic acid and 1-proline. J. biol. Chem. 229, 789–800 (1958).

    Google Scholar 

  • Melchers, G.: Viruses and genetics. Plant Virology. Proc. 5th Conf. Czech. Plant Virologists, p. 101–109. Prague 1962.

    Google Scholar 

  • Metzenberg, R. L.: A gene affecting the repression of invertase and trehalase in Neurospora. Arch. Biochem. 96, 468–474 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Metzenberg, R. L., and H.K. Mitchell: Isolation of prephenic acid from Neurospora. Arch. Biochem. 64, 51–56 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Meyers, J. W., and E. A. Adelberg: The biosynthesis of isoleucine and valine. I. Enzymatic transformation of the dihydroxy acid precursors to the keto acid precursors. Proc. nat. Acad. Sci. (Wash.) 40, 493–499 (1954).

    Article  Google Scholar 

  • Michelson, M., W. Drell, and H. K. Mitchell: A new ribose nucleoside from Neurospora: “Orotidine”. Proc. nat. Acad. Sci. (Wash.) 37, 396–399 (1951).

    Article  CAS  Google Scholar 

  • Middelhoven, W. J.: The ornithine pathway in the yeast Candida utilis. Biochim. biophys. Acta (Amst.) 77, 152–154 (1963).

    Article  CAS  Google Scholar 

  • Mitchell, H. K., and M. B. Houlahan: Adenine requiring mutants of Neurospora crassa. Fed. Proc. 5, 370–375 (1946a).

    PubMed  CAS  Google Scholar 

  • Mitchell, H. K., and M. B. Houlahan: Neurospora. IV. A temperature-sensitive riboflavinless mutant. Amer. J. Bot. 33, 31–35 (1946b).

    Article  CAS  Google Scholar 

  • Mitchell, H. K., and M. B. Houlahan: Investigations on the biosynthesis of pyrimidine nucleosides in Neurospora. Fed. Proc. 6, 506–509 (1947).

    PubMed  CAS  Google Scholar 

  • Mitchell, H. K., and M. B. Houlahan: An intermediate in the biosynthesis of lysine in Neurospora. J. biol. Chem. 174, 883–887 (1948).

    PubMed  CAS  Google Scholar 

  • Mitchell, H. K., and M. B. Houlahan and J. F. Nyc: The accumulation of orotic acid by a pyrimidineless mutant of Neurospora. J. biol. Chem. 172, 525–529 (1948).

    PubMed  CAS  Google Scholar 

  • Mitchell, H. K., and J. Lein: A Neurospora mutant deficient in the enzymatic synthesis of tryptophan. J. biol. Chem. 175, 481–482 (1948).

    PubMed  CAS  Google Scholar 

  • Mitchell, H. K., and J. F. Nyc: Hydroxyanthranilic acid as a precursor of nicotinic acid in Neurospora. Proc. nat. Acad. Sci. (Wash.) 34, 1–5 (1948).

    Article  CAS  Google Scholar 

  • Mitchell, M. B., and H. K. Mitchell: Observations on the behavior of suppressors in Neurospora. Proc. nat. Acad. Sci. (Wash.) 38, 205–214 (1952).

    Article  CAS  Google Scholar 

  • Mitchell, M. B., and H. K. Mitchell: Test for non-allelism at the pyrimidine-3 locus of Neurospora. Genetics 41, 319–326 (1956).

    PubMed  CAS  Google Scholar 

  • Mohler, W. C., and S. R. Suskind: The similar properties of tryptophan synthetase and a mutationally altered enzyme in Neurospora crass a. Biochim. biophys. Acta (Amst.) 43, 288–299 (1960).

    Article  CAS  Google Scholar 

  • Monod, J., and M. Cohn: La biosynthèse induite des enzymes (adaption enzymatique). Advanc. Enzymol. 13, 67–119 (1952).

    CAS  Google Scholar 

  • Monod, J., and F. Jacob: Telenomic mechanism in cellular metabolism, growth and differentiation. Cold Spr. Harb. Symp. quant. Biol. 26, 389–411 (1961).

    Article  CAS  Google Scholar 

  • Morrow, J.: Dispensable and indispensable genes in Neurospora. Science 144, 307–308 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Murray, N. E.: Complementation and recombination between methionine-2 alleles in Neurospora crassa. Heredity 15, 207–217 (1960).

    Article  Google Scholar 

  • Newmeyer, D.: Arginine synthesis in Neurospora crassa: Genetic studies. J. gen. Microbiol. 16, 449–462 (1957).

    PubMed  CAS  Google Scholar 

  • Newmeyer, D.: Genes influencing the conversion of citrulline to arginino-succinate in Neurospora crassa. J. gen. Microbiol. 28, 215–230 (1962).

    PubMed  CAS  Google Scholar 

  • Newton, W. A., and E. E. Snell: An inducible tryptophan synthetase in tryptophan auxotrophs of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 48, 1431–1439 (1962).

    Article  CAS  Google Scholar 

  • Nirenberg, M. W., and O. W. Jones Jr.: The current status of the RNA code. In: H. J. Vogel, V. Bryson and J. O. Lampen (edits.), Informational Macromolecules, p. 451–465. New York and London 1963.

    Google Scholar 

  • Nirenberg, M. W., T. Caskey, R. Marshall, R. Brimacombe, D. Kellogg, B. Doctor, D. Hatfield, J. Levin, F. Rottman, S. Pestka, M. Wilcox and F. Anderson: The RNA code and protein synthesis. Cold Spr. Harb. Symp. quant. Biol. 31, 11–24 (1966).

    Article  CAS  Google Scholar 

  • Novelli, G. D.: Protein synthesis in microorganisms. Ann. Rev. Microbiol. 14, 65–82 (1960).

    Article  Google Scholar 

  • Nultsch, W.: Allgemeine Botanik. Stuttgart 1964.

    Google Scholar 

  • Nyc, J. F., H K Mitchell, E Leifer, and W. H. Langham: Use of iso-topic carbon in a study of the metabolism of anthranilic acid in Neurospora. J. biol. Chem. 179, 783–787 (1949).

    PubMed  CAS  Google Scholar 

  • Ochoa, S.: Synthetic polynucleotides and the genetic code. In: H. J. Vogel, V. Bryson and J. O. Lampen (edits.), Informational Macromolecules, p. 437–449. New York and London 1963.

    Google Scholar 

  • Ohnishi, E., H. MacLeod, and N.H. Horowitz: Mutants of Neurospora crassa deficient in D-amino acid oxidase. J. biol. Chem. 237, 138–142 (1962).

    PubMed  CAS  Google Scholar 

  • Owen, R. D., and C. L. Markert: Effects of antisera on tyrosinase in Glomerella extracts. J. Immunol. 74, 257–269 (1955).

    PubMed  CAS  Google Scholar 

  • Paigen, K.: On the regulation of DNA transcription. J. theor. Biol. 3, 268–282 (1962).

    Article  CAS  Google Scholar 

  • Palleroni, N.J., and C. C. Lindegren: A single adaptive enzyme in Saccharomyces elicited by several related substrates. J. Bact. 65, 122–130 (1953).

    PubMed  CAS  Google Scholar 

  • Partridge, C. W. H.: Altered properties of the enzyme, adenylosuccinase, produced by interallelic complementation at the ad-4 locus in Neurospora crassa. Biochem. biophys. Res. Commun. 3, 613–619 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Partridge, C. W. H., D. M. Bonner, and C. Yanofsky: A quantitative study of the relationship between tryptophan and niacin in Neurospora. J. biol. Chem. 194, 269–278 (1952).

    PubMed  CAS  Google Scholar 

  • Partridge, C. W. H., and N. H. Giles: Identification of major accumulation products of adenine-specific mutants of Neurospora. Arch. Biochem. 67, 237–258 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Pateman, J. A.: Back-mutation studies at the am-locus in Neurospora crassa. J. Genet. 55, 444–455 (1957).

    Article  Google Scholar 

  • Pateman, J. A.: Inter-relationship of alleles at the am locus in Neurospora crassa. J. gen. Microbiol. 23, 393–399 (1960).

    PubMed  CAS  Google Scholar 

  • Pateman, J. A., D. J. Cove, B. M. Rever, and D. B. Roberts: A common co-factor for nitrate reductase and xanthine dehydrogenase which also regulates the synthesis of nitrate reductase. Nature (Lond.) 201, 58–60 (1964).

    Article  CAS  Google Scholar 

  • Pateman, J. A., and J. R. S. Fincham: Gene-enzyme relationship at the am locus in Neurospora crassa. Heredity 12, 317–332 (1958).

    Article  Google Scholar 

  • Perkins, D. D.: Biochemical mutants in the smut fungus Ustilago maydis. Genetics 34, 607–626 (1949).

    CAS  Google Scholar 

  • Perutz, M. F.: Proteins and nucleic acids. Structure and function. Amsterdam-London-New York 1962.

    Google Scholar 

  • Pierce, J. G., and H. S. Loring: Growth requirements of a purine deficient strain of Neurospora. J. biol. Chem. 160, 409–415 (1945).

    PubMed  CAS  Google Scholar 

  • Pomper, S., and P. R. Burkholder: Studies on the biochemical genetics of yeast. Proc. nat. Acad. Sci. (Wash.) 35, 456–464 (1949).

    Article  CAS  Google Scholar 

  • Pontecorvo, G.: The genetics of Aspergillus nidulans. Advanc. Genet. 5, 142–239 (1953).

    Google Scholar 

  • Pontecorvo, G.: Trends in genetic analysis. New York 1958.

    Google Scholar 

  • Rachmeler, M., and C. Yanofsky: Biochemical and genetic studies with a new td mutant type in Neurospora crassa. Bact. Proc. 30 (1959).

    Google Scholar 

  • Rachmeler, M., and C. Yanofsky: Biochemical, immunological and genetic studies with a new type tryptophan synthetase mutant of Neurospora crassa. J. Bact. 81, 955–963 (1961).

    PubMed  CAS  Google Scholar 

  • Radhakrishnan, A. N., R. P. Wagner, and E. E. Snell: Biosynthesis of valine and isoleucine. III. α-Keto-β-hydroxy acid reductase and α-hydroxy-β-keto- acid reductoisomerase. J. biol. Chem. 235, 2322–2331 (1960).

    CAS  Google Scholar 

  • Raper, J. R., and P. G. Miles: The genetics of Schizophyllum commune. Genetics 43, 530–546 (1958).

    PubMed  CAS  Google Scholar 

  • Ratner, S.: Arginine metabolism and interrelationships between the citric acid and urea cycles. In: W. D. McElroy and B. Glass (edits.), Amino acid metabolism, p. 231–257. Baltimore 1955.

    Google Scholar 

  • Regnery, D. C.: A leucineless mutant strain of Neurospora crassa. J. biol. Chem. 154, 151–160 (1944).

    CAS  Google Scholar 

  • Reichard, P., and G. Hanshoff: Aspartate carbamyl transferase from Escherichia coli. Acta chem. Scand. 10, 548–566 (1956).

    Article  CAS  Google Scholar 

  • Reissig, J. L.: Forward and back mutation in the pyr-S region of Neurospora. I. Mutations from arginine dependence to prototrophy. Genet. Res. 1, 356–374 (1960).

    Article  Google Scholar 

  • Rhinesmith, H. S., W. A. Schroeder, and N. J. Martin: The N-terminal sequence of the β chain of normal adult human hemoglobin. J. Amer. chem. Soc. 80, 3358–3361 (1958).

    Article  CAS  Google Scholar 

  • Riley, M., and A. B. Pardee: Gene expression: its specificity and regulation. Ann. Rev. Microbiol. 16, 1–34 (1962).

    Article  CAS  Google Scholar 

  • Robertson, J. J., and H. O. Halvorson: The components of maltozymase in yeast and their behavior during deadaption. J. Bact. 73, 186–198 (1957).

    PubMed  CAS  Google Scholar 

  • Robichon-Szulmajster, H. de: Induction of enzymes of the galactose pathway in mutants of Saccharomyces cerevisiae. Science (Lancaster) 127, 28–29 (1958).

    Google Scholar 

  • Roman, H.: Studies of gene mutation in Saccharomyces. Cold Spr. Harb. Symp. quant. Biol. 21, 175–185 (1956).

    Article  CAS  Google Scholar 

  • Roman, H.: Sur les récombinaisons nonréciproques chez Saccharomyces cerevisiae et sur les problèmes posés par ces phénomènes. Ann. Génét. 1, 11–17(1958).

    Google Scholar 

  • Rosen, R.: An hypothesis of Freese and the DNA-protein coding problem. Bull. math. Biophys. 23, 305–318 (1961).

    Article  Google Scholar 

  • Rothman, F., and R. Byrne: Fingerprint analysis of alkaline phosphatase of Escherichia coli K 12. J. molec. Biol. 6, 330–340 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Rudert, F., and H. O. Halvorson: The effect of gene dosage on the level of α-glucosidase in yeast. Bull. Res. Coun. Israel A 4, 11, 337–344 (1963).

    CAS  Google Scholar 

  • Sagisaka, S., and K. Shimura: Enzymic reduction of α-aminoadipic acid by yeast enzyme. Nature (Lond.) 184, 1709–1710 (1959).

    Article  CAS  Google Scholar 

  • Sakami, W.: The biochemical relationship between glycine and serine. In: W. D. McElroy and B. Glass (edits.), Amino acid metabolism, p. 658–683. Baltimore 1955.

    Google Scholar 

  • Sanger, F., and L.F. Smith: The structure of insulin. Endeavour 16, 48–53 (1957).

    CAS  Google Scholar 

  • Sanwal, B. D., and M. Lata: Glutamic dehydrogenase in single-gene mutants of Neurospora crass a deficient in amination. Nature (Lond.) 190, 286–287 (1961).

    Article  CAS  Google Scholar 

  • Schaeffer, P.: A black mutant of Neurospora crassa. Mode of action of the mutant allele and action of light on melanogenesis. Arch. Biochem. 47, 359–379 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger, M. J., and C. Levinthal: Hybrid protein formation of E. coli alkaline phosphatase leading to in vitro complementation. J. molec. Biol. 7, 1–12 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Schulman, H. M., and D.M. Bonner: A naturally occurring DNA-RNA complex from Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 48, 53–63 (1962).

    Article  CAS  Google Scholar 

  • Searashi, T.: Genetical and biochemical studies on amylase in A spergillus oryzae. Jap. J. Genet. 37, 10–23 (1962).

    Article  Google Scholar 

  • Serres, F. J. de: Studies with purple adenin mutants in Neurospora crassa. I. Structural and functional complexity in the ad-3 region. Genetics 41, 668–676 (1956).

    PubMed  Google Scholar 

  • Serres, F. J. de: Heterokaryon-incompatibility factor interaction tests between Neurospora mutants. Science 138, 1342–1343 (1962).

    Article  PubMed  Google Scholar 

  • Serres, F. J. de: Studies with purple adenine mutants in Neurospora crassa. V. Evidence for allelic complementation among ad-3 B mutants. Genetics 48, 351–360 (1963).

    Google Scholar 

  • Silver, W. S., and W. D. McElroy: Enzyme studies on nitrate and nitrite mutants of Neurospora. Arch. Biochem. 51, 379–394 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Speyer, J. F., P. Lengyel, C. Basilio, and S. Ochoa: Synthetic polynucleotides and the amino acid code. IV. Proc. nat. Acad. Sci. (Wash.) 48, 441–448 (1962).

    Article  CAS  Google Scholar 

  • Spiegelman, S.: The relation of information RNA to DNA. Cold Spr. Harb. Symp. quant. Biol. 26, 75–90 (1961).

    Article  CAS  Google Scholar 

  • Spiegelman, S.: Information transfer from the genome. Fed. Proc. 22, 36–54 (1963).

    PubMed  CAS  Google Scholar 

  • Srb, A. M.:, and N. H. Horowitz The ornithine cycle in Neurospora and its genetic control. J. biol. Chem. 154, 129–139 (1944).

    CAS  Google Scholar 

  • Stadler, J., and C. Yanofsky: Studies on a series of tryptophan-independent strains derived from a tryptophan requiring mutant of Escherichia coli. Genetics 44, 105–123 (1959).

    PubMed  CAS  Google Scholar 

  • Strassman, M., A.J. Thomas, L.A. Locke, and S. Weinhouse: Intramolecular migration and isoleucine biosynthesis. J. Amer. chem. Soc. 76, 4241–4242 (1954).

    Google Scholar 

  • Strassman, M., A.J. Thomas, L.A. Locke, and S. Weinhouse: A study of leucine biosynthesis in Torulopsis utilis. J. Amer. chem. Soc. 78, 1599–1602 (1956).

    Article  CAS  Google Scholar 

  • Strassman, M., A.J. Thomas and S. Weinhouse: Valine biosynthesis in Torulopsis utilis. J. Amer. chem. Soc. 75, 5135 (1953).

    Article  CAS  Google Scholar 

  • Strassman, M., and S. Weinhouse: Biosynthetic pathways. III. The biosynthesis of lysine by Torulopsis utilis. J. Amer. chem. Soc. 75, 1680–1684 (1953).

    Article  CAS  Google Scholar 

  • Strassman, M., and S. Weinhouse: Isotope studies on biosynthesis of valine and isoleucine. In: W. D. McElroy and B. Glass (edits.), Amino acid metabolism, p. 452–457. Baltimore 1955.

    Google Scholar 

  • Strauss, B. S.: Properties of mutants of Neurospora crassa with low pyruvic carboxylase activity. Arch. Biochem. 44, 200–210 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Strauss, B. S.: Oxalacetic carboxylase deficiency of the succinate-requiring mutants of Neurospora crassa. J. biol. Chem. 225, 535–544 (1957).

    PubMed  CAS  Google Scholar 

  • Strauss, B. S., and S. Pierog: Gene interaction: The mode of action of the suppressor of acetate requiring mutants of Neurospora crassa. J. gen. Microbiol. 10, 221–235 (1954).

    PubMed  CAS  Google Scholar 

  • Stubbe, H. (Hrsg.): Struktur und Funktion des genetischen Materials. Erwin-Baur-Gedächtnisvorlesungen III, 1963. Abh. dtsch. Akad. Wiss. Berlin, Kl. Medizin 4, Berlin 1964.

    Google Scholar 

  • Sueoka, N.: Compositional correlation between deoxyribonucleic acid and protein. Cold Spr. Harb. Symp. quant. Biol. 26, 35–43 (1961).

    Article  CAS  Google Scholar 

  • Sueoka, N., and T. Yamane: Fractionation of amino acyl-acceptor RNA on a methylated albumin column. Proc. nat. Acad. Sci. (Wash.) 48, 1454–1461 (1962).

    Article  CAS  Google Scholar 

  • Suskind, S. R.: Properties of a protein antigenically related to tryptophan synthetase in Neurospora crassa. J. Bact. 74, 308–318 (1957).

    PubMed  CAS  Google Scholar 

  • Suskind, S. R., and E. Jordan: Enzymatic activity of a genetically altered tryptophan synthetase in Neurospora crassa. Science 129, 1614–1615 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Suskind, S. R., and L. I. Kurek: On a mechanism of suppressor gene regulation of tryptophan synthetase activity in Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 45, 193–196 (1959).

    Article  CAS  Google Scholar 

  • Suskind, S. R., C. Yanofsky, and D. M. Bonner: Allelic strains of Neurospora lacking tryptophan synthetase: A preliminary immuno-chemical characterization. Proc. nat. Acad. Sci. (Wash.) 41, 577–582 (1955).

    Article  CAS  Google Scholar 

  • Sussman, A. S.: A comparison of the properties of two forms of tyrosinase from Neurospora crassa. Arch. Biochem. 95, 407–415 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Sussman, A. S., P. Coughey, and J. C. Strain: Effect of environmental conditions upon tyrosinase activity in Glomerella cingulata. Amer. J. Bot. 42, 810–815 (1955).

    Article  CAS  Google Scholar 

  • Sussman, A. S., and C. L. Markert: The development of tyrosinase and cytochrome oxidase activity in mutants of Glomerella cingulata. Arch. Biochem. 45, 31–40 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Sutton, H. E.: Genetics. Genetic information and the control of protein structure and function. New York 1960.

    Google Scholar 

  • Suyama, Y.: In vitro complementation in the tryptophan synthetase system of Neurospora. Biophys. biochem. Res. Commun. 10, 144–149 (1963).

    CAS  Google Scholar 

  • Suyama, Y., and D.M. Bonner: Complementation between tryptophan synthetase mutants of Neurospora crassa. Biochim. biophys. Acta (Amst.) 81, 565–575 (1964).

    CAS  Google Scholar 

  • Suyama, Y., A. M. Lacy, and D. M. Bonner: A genetic map of the td locus in Neurospora crassa. Genetics 49, 135–144 (1964).

    PubMed  CAS  Google Scholar 

  • Suyama, Y., K. D. Munkers, and V. W. Woodward: Genetic analysis of the pyr-3 locus of Neurospora crassa. Genetics 30, 293–311 (1959).

    CAS  Google Scholar 

  • Tatum, E. L.: Amino acid metabolism in mutant strains of microorganisms. Fed. Proc. 8, 511–517 (1949).

    PubMed  CAS  Google Scholar 

  • Tatum, E. L.: Genetic aspects of growth responses in fungi. In: F. Skoog (edit.), Plant growth substances, p. 447–461. Madison: Univ. Wisconsin Press 1951.

    Google Scholar 

  • Tatum, E. L.: A case history in biological research. Chance and the exchange of ideas played roles in the discovery that genes control biochemical events. Science 129, 17H—1715 (1959).

    Article  Google Scholar 

  • Tatum, E. L., R. W. Barratt, N. Fries, and D. M. Bonner: Biochemical mutant strains of Neurospora produced by physical and chemical treatment. Amer. J. Bot. 37, 38–46 (1950).

    Article  CAS  Google Scholar 

  • Tatum, E. L., and G. W. Beadle: Genetic control of biochemical reactions in Neurospora. An “aminobenzoicless” mutant. Proc. nat. Acad. Sci. (Wash.) 28, 234–243 (1942).

    Article  CAS  Google Scholar 

  • Tatum, E. L., and G. W. Beadle: Biochemical genetics of Neurospora. Ann. Missouri Botan. Garden 32, 125–129 (1945).

    Article  CAS  Google Scholar 

  • Tatum, E. L., and T. T. Bell: Neurospora. III. Biosynthesis of thiamin. Amer. J. Bot. 33, 15–20 (1946).

    Article  CAS  Google Scholar 

  • Tatum, E. L., and D.M. Bonner: Synthesis of tryptophan from indole and serine by Neurospora. J. biol. Chem. 151, 349 (1943).

    CAS  Google Scholar 

  • Tatum, E. L., and D.M. Bonner: Indole and serine in the biosynthesis and breakdown of tryptophan. Proc. nat. Acad. Sci. (Wash.) 30, 30–37 (1944).

    Article  CAS  Google Scholar 

  • Tatum, E. L., and D.M. Bonner and G. W. Beadle: Anthranilic acid and the biosynthesis of indole and tryptophan by Neurospora. Arch. Biochem. 3, 477–478 (1944).

    CAS  Google Scholar 

  • Tatum, E. L., and S. R. Gross: Incorporation of carbon atoms 1 and 6 of glucose into protocatechuic acid by Neurospora. J. biol. Chem. 219, 797–807 (1956).

    PubMed  CAS  Google Scholar 

  • Tatum, E. L., and S. R. Gross, G. Ehrensvärd, and L. Garnjobst: Synthesis of aromatic compounds by Neurospora. Proc. nat. Acad. Sci. (Wash.) 40, 271–276 (1954).

    Article  CAS  Google Scholar 

  • Tatum, E. L., and D. D. Perkins: Genetics of microorganisms. Ann. Rev. Microbiol. 4, 129–150 (1950).

    Article  CAS  Google Scholar 

  • Tatum, E. L., and D. Shemin: Mechanism of tryptophan synthesis in Neurospora. J. biol. Chem. 209, 671–675 (1954).

    PubMed  CAS  Google Scholar 

  • Tavlitzki, J.: Sur la réalisation, chez une souche de Saccharomyces cerevisiae, du caractère «besoin en thiamine». C. R. Acad. Sci. (Paris) 238, 2016–2018 (1954).

    CAS  Google Scholar 

  • Taylor, J.H. (edit.): Molecular genetics. Part 1. New York and London 1963.

    Google Scholar 

  • Teas, H. J., N. H. Horowitz, and M. Fling: Homoserine as a precursor of threonine and methionine in Neurospora. J. biol. Chem. 172, 651–658 (1948).

    PubMed  CAS  Google Scholar 

  • Tinline, R. D.: Cochliobolus sativus. V. Heterokaryosis and parasexuality. Canad. J. Bot. 40, 425–437 (1962).

    Article  CAS  Google Scholar 

  • Trupin, J. S., and H. P. Broquist: Saccharopine, an Intermediate ov the aminoadipic acid pathway of lysine biosynthesis. J. biol. Chem. 240, 2524–2530 (1965).

    PubMed  CAS  Google Scholar 

  • Tsugita, A., and H. Fraenkel-Conrat: The composition of proteins of chemically evoked mutants of TMV RNA. J. molec. Biol. 4, 73–82 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Umbreit, W. W., W. A. Woodward, and I. C. Gunsalus: The activity of pyridoxal phosphate in tryptophan formation by cell-free enzyme preparations. J. biol. Chem. 165, 731–732 (1946).

    PubMed  CAS  Google Scholar 

  • Vogel, H. J.: On the glutamate-proline-ornithine interrelation in various microorganisms. In: W. D. McElroy and B. Glass (edits.), Amino acid metabolism, p. 335–346. Baltimore 1955.

    Google Scholar 

  • Vogel, H. J., and D. M. Bonner: On the glutamate-proline-ornithine interrelation in Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 40, 688–694 (1954).

    Article  CAS  Google Scholar 

  • Vogel, H. J., and D. M. Bonner: The use of mutants in the study of metabolism. In: W. Ruhland (Hrsg.), Handbuch der Pflanzenphysiologie, vol. XI, p. 1–32. Berlin-Göttingen-Heidelberg: Springer 1958.

    Google Scholar 

  • Vogel, H. J., and B.D. Davis: Glutamatic gamma-semialdehyde and delta-1-pyrroline-5-carboxylic acid, intermediates in the biosynthesis of proline. J. Amer. chem. Soc. 74, 109–112 (1952).

    Article  CAS  Google Scholar 

  • Vogel, R. H., and M. J. Kopac: Glutamic-γ-semialdehyde in arginine and proline synthesis in Neurospora. A mutant-tracer analysis. Biochim. biophys. Acta (Amst.) 36, 505–510 (1959).

    Article  CAS  Google Scholar 

  • Vogel, R. H., and M. J. Kopac: Some properties of ornithine-transaminase from Neurospora. Biochim. biophys. Acta (Amst.) 37, 539–540 (1960).

    Article  CAS  Google Scholar 

  • Vogel, R. H., and H. J. Vogel: Evidence for acetylated intermediates of arginine synthesis in Neurospora crassa. Genetics 48, 914 (1963).

    Google Scholar 

  • Volkin, E.: Biosynthesis of RNA in relation to genetic coding problems. In: J. H. Taylor, Molecular Genetics, part I, p. 271–289. New York and London 1963.

    Google Scholar 

  • Wagner, R. P.: The in vitro synthesis of pantothenic acid by pantothenicless wild type Neurospora. Proc. nat. Acad. Sci. (Wash.) 35, 185–189 (1949).

    Article  CAS  Google Scholar 

  • Wagner, R. P., and A. Bergquist: Synthesis of valine and isoleucine in the presence of a particulate cell fraction of Neurospora. Proc. nat. Acad. Sci. (Wash.) 49, 892–897 (1963).

    Article  CAS  Google Scholar 

  • Wagner, R. P., and A. Bergquist, T. Barbee, and K. Kiritani: Genetic blocks in the isoleucine-valine pathway of Neurospora crassa. Genetics 49, 865–882 (1964).

    PubMed  CAS  Google Scholar 

  • Wagner, R. P., and B. M. Guirard: A gene-controlled reaction in Neurospora involving the synthesis of pantothenic acid. Proc. nat. Acad. Sci. (Wash.) 34, 398–402 (1948).

    Article  CAS  Google Scholar 

  • Wagner, R. P., and C. H. Haddox: A further analysis of the pantothenicless mutants of Neurospora. Amer. Naturalist 85, 319–330 (1951).

    Article  CAS  Google Scholar 

  • Wagner, R. P., and H. K. Mitchell: Genetics and metabolism, 2. edit. New York 1964.

    Google Scholar 

  • Wagner, R. P., C. E. Somers, and A. Bergquist: Gene structure and function in Neurospora. Proc. nat. Acad. Sci. (Wash.) 46, 708–717 (1960).

    Article  CAS  Google Scholar 

  • Wahba, A. J., C. Basilio, J. F. Speyer, P. Lengyel, R. S. Miller, and S. Ochoa: Synthetic polynucleotides and the amino acid code. VI. Proc. nat. Acad. Sci. (Wash.) 48, 1683–1686 (1962).

    Article  CAS  Google Scholar 

  • Wainwright, S. D.: On the development of increased tryptophan synthetase enzyme activity by cell-free extracts of Neurospora crassa. Canad. J. Biochem. 37, 1417–1430 (1959).

    CAS  Google Scholar 

  • Wainwright, S. D.: On the formation of tryptophan synthetase enzyme by cell-free extracts of mycelium of Neurospora crassa. Canad. J. Biochem. 41, 1327–1329 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Wainwright, S. D., and E. S. McFarlane: Partial purification of the “messenger RNA” of Neurospora crassa controlling formation of tryptophan synthetase enzyme. Biophys. biochem. Res. Commun. 9, 529–533 (1962).

    CAS  Google Scholar 

  • Webber, B. B.: Genetical and biochemical studies of histidine-requiring mutants of Neurospora crassa. II. Evidence concerning heterogeneity among hist-3 mutants. Genetics 45, 1617–1625 (1960).

    PubMed  CAS  Google Scholar 

  • Wainwright, S. D., and M. E. Case: Genetical and biochemical studies of histidine-requiring mutants of Neurospora crassa. I. Classification of mutants and characterization of mutant groups. Genetics 45, 1605–1615 (1960).

    Google Scholar 

  • Wegman, J., and J. A. DeMoss: The enzymatic conversion of anthranilate to indolylglycerol phosphate in Neurospora crassa. J. biol. Chem. 240, 3781–3788 (1965).

    PubMed  CAS  Google Scholar 

  • Weinstein, I. B., and A. N. Schechter: Polyuridylic acid stimulation of phenylalanine incorporation in animal cell extracts. Proc. nat. Acad. Sci. (Wash.) 48, 1686–1691 (1962).

    Article  CAS  Google Scholar 

  • Weisblum, B., S. Benzer, and R. W. Holley: A physical basis for degeneracy in the amino acid code. Proc. nat. Acad. Sci. (Wash.) 48, 1449–1454 (1962).

    Article  CAS  Google Scholar 

  • Weiss, S. B., and L. Gladstone: A mammalian system for the incorporation of cytidine triphosphate into ribonucleic acid. J. Amer. Chem. Soc. 81, 4118–4119 (1959).

    Article  CAS  Google Scholar 

  • Weygand, F.: Anwendungen der stabilen und radioaktiven Isotope in der Biochemie. Angew. Chem. 61, 285–296 (1949).

    Article  CAS  Google Scholar 

  • Weygand, F., u. H. Simon: Herstellung isotopenhaltiger organischer Verbindungen. In: Houben-Weyl (E. Müller Hrsg.), Methoden der organischen Chemie, Bd. 4/2, S. 539–727. Stuttgart 1955.

    Google Scholar 

  • Wheeler, H. E.: Linkage groups in Glomerella. Amer. J. Bot. 43, 1–6 (1956).

    Article  Google Scholar 

  • Wheldale 1903: Zit. bei Beadle 1959a.

    Google Scholar 

  • Winge, Ö., and C. Roberts: Inheritance of enzymatic characters in yeast and the phenomenon of longterm adaption. C. R. Lab. Carlsberg, Sér. physiol. 24, 263–315 (1948).

    Google Scholar 

  • Winge, Ö., and C. Roberts: The polymeric genes for maltose fermentation in yeasts and their mutability. C. R. Lab. Carlsberg, Sér. Physiol. 25, 35–83 (1950).

    CAS  Google Scholar 

  • Winkler, U., u. R.W. Kaplan: Genetik der Mikroorganismen: Phänogenetik. Fortschr. Bot. 25, 341–363 (1963).

    Google Scholar 

  • Wittmann, H. G.: Comparison of the tryptic peptides of chemically induced and spontaneous mutants of tobacco mosaic virus. Virology 12, 609–612 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Wittmann, H. G.: Ansätze zur Entschlüsselung des genetischen Codes. Naturwissenschaften 48, 729–734 (1961).

    Article  Google Scholar 

  • Wittmann, H. G.: Proteinuntersuchungen an Mutanten des Tabakmosaikvirus als Beitrag zum Problem des genetischen Codes. Z. Vererbungsl. 93, 491–530 (1962).

    Article  Google Scholar 

  • Wittmann, H. G.: Übertragung der genetischen Information. Naturwissenschaften 50, 76–88 (1963).

    Article  CAS  Google Scholar 

  • Wittmann, H. G., and B. Wittmann-Liebold: Tobacco mosaic virus mutants end the genetic coding problem. Cold Spr. Harb. Symp. quant. Biol. 28, 589–595 (1963).

    Article  CAS  Google Scholar 

  • Wittmann, H. G., and B. Wittmann-Liebold: Untersuchungen über Mutanten und Stämme des Tabakmosaikvirus. Abh. dtsch. Akad. Wiss. Berlin, Kl. Med. 4, 141–146 (1964).

    Google Scholar 

  • Wittmann-Liebold, B., u. H. G. Wittmann: Die primäre Proteinstruktur von Stämmen des Tabakmosaikvirus. Aminosäuresequenzen des Proteins des Tabakmosaikvirusstammes dahlemense. Teil III. Z. Vererbungsl. 94, 427–435 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Wittmann-Liebold, B., u. H. G. Wittmann: Die primäre Proteinstruktur von Stämmen des Tabakmosaikvirus. Aminosäuresequenzen des Proteins des Tabakmosaikvirusstammes dahlemense. Teil I. Hoppe-Seylers Z. physiol. Chem. 335, 69–116 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Woese, C. R.: Nature of the biological code. Nature (Lond.) 194, 1114–1115 (1962).

    Article  CAS  Google Scholar 

  • Wood, B. W., and P. Berg: The effect of enzymatically synthesized ribonucleic acid on amino acid incorporation by a soluble protein-ribosome system from Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 48, 94–104 (1962).

    Article  CAS  Google Scholar 

  • Woodward, D. O.: Enzyme complementation in vitro between adenylo-succinaseless mutants of Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 45, 846–850 (1959).

    Article  CAS  Google Scholar 

  • Woodward, D. O.: A gene concept based on genetic and chemical studies in Neurospora. Quart. Rev. Biol. 35, 313–323 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Woodward, D. O., C. W. H. Partridge, and N. H. Giles: Complementation at the ad-4 locus in Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 44, 1237–1244 (1958).

    Article  CAS  Google Scholar 

  • Woodward, D. O., C. W. H. Partridge, and N. H. Giles: Studies of adenylosuccinase in mutants and revertants of Neurospora crassa. Genetics 45, 535–554 (1960).

    PubMed  CAS  Google Scholar 

  • Woodward, V. W.: Complementation and recombination among pyr-3 hetero-alleles of Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 48, 348–356 (1962).

    Article  CAS  Google Scholar 

  • Woodward, V. W., and R. H. Davis: Co-ordinate changes in complementation, suppression and enzyme phenotypes of a pyr-3 mutant of Neurospora crassa. Heredity 18, 21–25 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Woodward, V. W., and P. Schwarz: Neurospora mutants lacking ornithine transcarbamylase. Genetics 49, 845–853 (1964).

    PubMed  CAS  Google Scholar 

  • Work, E.: Some comparative aspects of lysine metabolism. In: W. D. McElroy and B. Glass (edits.), Amino acid metabolism, p. 462–492. Baltimore 1955.

    Google Scholar 

  • Wust, C. J.: Inactivation of tryptophan synthetase from Neurospora crassa during dialysis. Biochim. biophys. Res. Commun. 5, 35–39 (1961).

    Article  CAS  Google Scholar 

  • Yanofsky, C.: The effect of gene change on tryptophan desmolase formation. Proc. nat. Acad. Sci. (Wash.) 38, 215–226 (1952a).

    Article  CAS  Google Scholar 

  • Yanofsky, C.: Tryptophan desmolase of Neurospora. Partial purification and properties J. biol. Chem. 194, 279–286 (1952b).

    PubMed  CAS  Google Scholar 

  • Yanofsky, C.: Tryptophan and niacin synthesis in various organisms. In: W. D. McElroy and B. Glass (edits.), Amino acid metabolism, p. 930–939. Baltimore 1955.

    Google Scholar 

  • Yanofsky, C.: The enzymatic conversion of anthranilic acid to indole. J. biol. Chem. 223, 171–184 (1956).

    PubMed  CAS  Google Scholar 

  • Yanofsky, C.: Enzymatic studies with a series of tryptophan auxotrophs of Escherichia coli. J. biol. Chem. 224, 783–792 (1957).

    PubMed  CAS  Google Scholar 

  • Yanofsky, C.: Restoration of tryptophan synthetase activity in Escherichia coli by suppressor mutations. Science 128, 843 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky, C.: The tryptophan synthetase system. Bact. Rev. 24, 221–245 (1960).

    PubMed  CAS  Google Scholar 

  • Yanofsky, C., and D. M. Bonner: Evidence for the participation of kynurenine as a normal intermediate in the biosynthesis of niacin in Neurospora. Proc. nat. Acad. Sci. (Wash.) 36, 167–176 (1950).

    Article  CAS  Google Scholar 

  • Yanofsky, C., and D. M. Bonner: Studies on the conversion of 3-hydroxy-anthranilic acid to niacin in Neurospora. J. biol. Chem. 190, 211–218 (1951).

    PubMed  CAS  Google Scholar 

  • Yanofsky, C., and D. M. Bonner: Gene interaction in tryptophan synthetase formation. Genetics 40, 761–769 (1955a).

    PubMed  CAS  Google Scholar 

  • Yanofsky, C., and D. M. Bonner: Non-allelic suppressor genes affecting a single td-allele. Genetics 40, 602 (1955 b).

    Google Scholar 

  • Yanofsky, C., and I. P. Crawford: The effect of deletions, point mutations, reversions and suppressor mutations on the two components of tryptophan synthetase in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 45, 1016–1026 (1959).

    Article  CAS  Google Scholar 

  • Yanofsky, C., and P. St. Lawrence: Gene action. Ann. Rev. Microbiol. 14, 311–340 (1960).

    Article  CAS  Google Scholar 

  • Yanofsky, C., U. Henning, D. Helinski, and B. Carlton: Mutational alteration of protein structure. Fed. Proc. 22, 75–79 (1963).

    PubMed  CAS  Google Scholar 

  • Yanofsky, C., and C. Rachmeler: The exclusion of free indole as an intermediate in biosynthesis of tryptophan in Neurospora crassa. Biochim. biophys. Acta (Amst.) 40, 640–641 (1958)

    Article  Google Scholar 

  • Yanofsky, C., and J. L. Reissig: L-Serine dehydrase of Neurospora. J. biol. Chem. 202, 567–577 (1953).

    PubMed  CAS  Google Scholar 

  • Ycas, M.: The coding hypothesis. Int. Rev. Cytol. 13, 1–34 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Yura, T.: Genetic alteration of pyrroline-5-carboxylate reductase in Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 45, 197–204 (1959).

    Article  CAS  Google Scholar 

  • Yura, T., and H. J. Vogel: On the biosynthesis of proline in Neurospora crassa: enzymatic reduction of Δ 1-pyrroline-5-carboxylate. Biochim. biophys. Acta (Amst.) 17, 582 (1955).

    Article  CAS  Google Scholar 

  • Yu-Sun, C.: Nutritional studies of Ascobolus immersus. Amer. J. Bot. 51, 231–237 (1964).

    Article  CAS  Google Scholar 

  • Zinder, N. D.: The information content of an RNA-containing bacteriophage. In: H. J. Vogel, V. Bryson and J. O. Lampen (edits.), Informational Macromolecules, p. 229–237. New York and London 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1967 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Esser, K., Kuenen, R. (1967). Funktion. In: Genetik der Pilze. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49210-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49210-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-03286-1

  • Online ISBN: 978-3-642-49210-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics