Skip to main content

Algebraic Structure of Infinite Dimensional Linear Systems in Hilbert Space

  • Conference paper
Mathematical Systems Theory

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 131))

Abstract

A module structure for a class of infinite dimensional linear systems in Hilbert space is described. The theory of invariant subspaces and of the Banach algebra H are the fundamental mathematical results used. Several results are derived which demonstrate that for this class of distributed systems, a detailed structure theory can be developed which resembles the corresponding theory for lumped systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baras, J.S. and Brockett, R.W., “H functions and infinite dimensional realization theory”, SIAM J. of Control, Vol. 13, No. 1, 221, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  2. Baras, J.S., Brockett, R.W. and Fuhrmann, P.A., “State space models for infinite dimensional systems”, IEEE Trans. on Autom. Control, Special issue on identification and time series analysis, Vol. AC-19, No. 6, 693, 1974.

    Article  MathSciNet  Google Scholar 

  3. Baras, J.S., “On canonical realizations with unbounded infinitesimal generators”, Proceedings of 11 th Annual Allerton Conference on Circuit and System Theory, 1, 1973.

    Google Scholar 

  4. Baras, J.S., “Natural models for infinite dimensional systems and their structural properties”, Proc. of the 8 th Annual Princeton Conf. on Information Science and Systems, 195, 1974.

    Google Scholar 

  5. Baras, J.S. and Dewilde, P., “Invariant subspace methods in linear multi-variable distributed systems and lumped distributed network synthesis”, to appear in IEEE Proc. Special Issue on Recent Trends in System Theory, Jan. 76.

    Google Scholar 

  6. Dewilde, P., “Roomy scattering matrix synthesis”, Technical Report, Dept. of Mathematics, University of California, Berkeley, 1971.

    Google Scholar 

  7. Dewilde, P., “Input-output description of roomy systems”, Technical Report, Kath. Univ. te Leuven, 1974.

    Google Scholar 

  8. Dewilde, P., “Coprime decomposition in roomy system theory”, Technical Report, Kath, Univ. te Leuven, 1974.

    Google Scholar 

  9. Dewilde, P., “On the finite unitary embedding theorem for lossy scattering matrices”, Proc. 1974 European Conf. on Circuit Theory and Design — IEE, London.

    Google Scholar 

  10. Fuhrmann, P.A., “On realization of linear systems and applications to some questions of stability”, Math. Sys. The., Vol. 8, No. 2, 132, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  11. Fuhrmann, P.A., “Exact controllability and observability and realization theory in Hilbert space”, to appear J. Math. Anal. Appl.

    Google Scholar 

  12. Fuhrmann, P.A., “Realization theory in Hilbert space for a class of transfer functions”, J. of Functional Analysis, Vol. 18, No. 4, 338, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  13. Fuhrmann, P. A., “On spectral minimality of the shift realization”, to appear.

    Google Scholar 

  14. Fuhrmann, P. A., “On series and parallel coupling of a class of discrete time infinite dimensional systems”, to appear SIAM J. of Control.

    Google Scholar 

  15. Helton, J.W., “Discrete time systems operator models and scattering theory”, J. Functional Analysis, Vol. 16, 15, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  16. Douglas, R. G. and Helton, J.W., “Inner dilations of analytic matrix functions and Darlington synthesis”, Acta Sci. Math. Sz. 34, 301, 1973.

    MathSciNet  Google Scholar 

  17. Nagy, B.Sz. and Foias, C., Harmonic analysis of operators on Hilbert space, North Holland, 1970.

    MATH  Google Scholar 

  18. Desoer, C.A. and Vidyasagar, M., Feedback systems: input-output properties, Academic Press, New York, 1975.

    MATH  Google Scholar 

  19. Hoffman, K., Banach spaces of analytic functions, Prentice Hall, Englewood Cliffs, New Jersey, 1962.

    Google Scholar 

  20. Kaiman, R. E., Falb, P. L. and Arbib, M.A., Topics in mathematical system theory, McGraw-Hill, New York, 1969.

    Google Scholar 

  21. Bochner, S. and Chandrasekharan, K., Fourier transforms, Princeton University Press, Princeton, 1949.

    MATH  Google Scholar 

  22. Lang, S., Algebra, Addison-Wesley, Reading, 1971.

    Google Scholar 

  23. Duren, P. L., Theory of H spaces, Academic Press, New York, 1970.

    MATH  Google Scholar 

  24. Sarason, D., “Generalized interpolation in H”, Trans. A. M. S., Vol. 127, No. 2, 179, 1967.

    MathSciNet  MATH  Google Scholar 

  25. Carleson, L., “Interpolations by bounded analytic functions and the corona problem”, Ann. Math., Vol. 76, No. 3, 547, 1962.

    Article  MathSciNet  MATH  Google Scholar 

  26. Helson, H., Lectures on invariant subspaces, Academic Press, New York, 1964.

    MATH  Google Scholar 

  27. Lax, P.D., “Translation invariant subspaces”, Acta, Math. 101, 163, 1959.

    Article  MathSciNet  MATH  Google Scholar 

  28. Rosenbrock, H.H., Statespace and multivariable theory, John Wiley, New York, 1970.

    Google Scholar 

  29. Lax, P.D. and Phillips, R.S., Scattering theory, Academic Press, New York, 1967.

    MATH  Google Scholar 

  30. Kaiman, R. E. and Hautus, M., “Realization of continuous-time linear dynamical systems”, Proc. Conf. Diff. Equ., NRL Math. Research Center, (L. Weiss editor), 151, 1972.

    Google Scholar 

  31. Kamen, E., “A distributional-module theoretic representation of linear continuous-time systems”, Rept. SEL-71–044 (TR No. 6560–24), Stanford Electronics Lab., Stanford, Calif., 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Baras, J.S. (1976). Algebraic Structure of Infinite Dimensional Linear Systems in Hilbert Space. In: Marchesini, G., Mitter, S.K. (eds) Mathematical Systems Theory. Lecture Notes in Economics and Mathematical Systems, vol 131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48895-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48895-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07798-5

  • Online ISBN: 978-3-642-48895-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics