Skip to main content

Compressible Plastic Deformation of Porous Metals

  • Chapter
Advances in Continuum Mechanics
  • 162 Accesses

Abstract

This paper describes some theoretical and practical aspects in formulating of basic equations of compressible metal-plasticity mainly in view of sintered materials. The yield condition for anisotropic and isotropic material behaviour is discussed, and a modified isotropic yield condition which is in good agreement for stress states with high triaxiality is introduced. Using the associated flow rule and the modified yield condition the constitutive law and evolutional equations are derived. The FEM implementation based on a weak formulation in a MIMD multiprocessing system is mentioned. Finally some numerical results of the deformation of a sintered component are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. GURSON, A.L.: Continuum theory of ductile rupture by void nucleation and growth–1. Yield criteria and flow rules for porous ductile media. J. Eng. Mat. Technol. 99 (1977) 2–55

    Article  Google Scholar 

  2. DORAIVELU, S.M. et. al.: A new yield Function for compressible P/M Materials. Int. J. Mech. Sci. 26 (1984) 9 /10 527–535

    Google Scholar 

  3. GÜNTHER, H.: Finite Deformationen. Wissenschaftliche Beiträge, III Zwickau 1983

    Google Scholar 

  4. PREDELEANU, M.: Finite Strain Plasticity Analysis of Damage Effects in Metal Forming Processes.In:Predeleanu,M. (ed.),Computat. Meth. for Predict. Mat. Processes Defects,295–307, Amsterdam: Elsevier 1987

    Google Scholar 

  5. LAMMERING, R.: Beiträge sur Theorie and Numerik großer plastischer and kleiner elastischer Deformationen mit Schâdigungseinfluß. Diss. TU Hannover 1987

    Google Scholar 

  6. KEIFE, H.; STÄHLBERG, U.: Influence of internal pressure in voids on the yield stress of metals. Int. J. Mech. Sci. 22 (1980) 441–446

    Article  Google Scholar 

  7. KUBIK, J.; MIELNICZUK,J.: Yield condition of oriented porous solid. Ing. Arch. 53 (1983) 53–60

    Article  MATH  Google Scholar 

  8. NEEDLEMAN, A.: Void Growth in an Elastic-plastic Medium., Trans. ASME Ser. E (J. Appl. Mech.) 39 (1972) 964–970

    Google Scholar 

  9. NEEDLEMAN, A.: On Finite Element Formulations for large Elastic-plastic Deformations. Comp. & Struct. 20 (1985) 247–257

    Article  Google Scholar 

  10. SHIMA, S.; OYANE, M.: Plasticity theory for porous metals. Int. J. Mech. Sci. 18 (1976) 285–291

    Article  Google Scholar 

  11. TVERGAARD, V.: Material failure by void coalescence in localised shear bands. Int. J. Solids Struc. 18 (1982) 659–672

    Article  MATH  Google Scholar 

  12. LITEWKA, A.;SAWCZUK, A.: A yield criterion for preforated sheet. Ing.Arch. 50 (1981) 393–400

    Article  MATH  Google Scholar 

  13. HU, L. W.; PAE, K.D.: Inclusion of the hydrostatic stress component in formulation of the yield condition. J.Franklin Inst. 6 (1963) 491–502

    Article  Google Scholar 

  14. ABOUAF, M.; CHENOT, J.L.: Finite Element Simulation of Hot Isostatic Pressing of Metal Powders. Int.J.Num.Meth.Eng. 25 (1988) 191–212

    Article  MATH  Google Scholar 

  15. HOM, C.L.; McMEEKING, R.M.: Void Growth in Plastic Materials. J.Appl.Mech. 56 (1989) 309–317

    Article  ADS  Google Scholar 

  16. KITAGAWA, H.; HONKE, K.: Anisotropy and Softening Induced by Void Growth:A Numerical Simulation of Micro- Structural Process. Comp.Struct. 30 (1988) 909–913

    Article  MATH  Google Scholar 

  17. BOEHLER, J.P.(ed.): Applications of Tensor Functions in Solid Mechanics.CISM Courses and Lectures No. 292. Wien,New York: Springer 1987

    Google Scholar 

  18. ARAVAS, N.: On the numerical Integration of a Class of pressure-dependent Plasticity Models. Int.J.Num.Meth.Eng. 24 (1987) 1395–1416

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Günther, H. (1991). Compressible Plastic Deformation of Porous Metals. In: Brüller, O.S., Mannl, V., Najar, J. (eds) Advances in Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48890-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48890-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53988-9

  • Online ISBN: 978-3-642-48890-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics