Skip to main content
  • 135 Accesses

Abstract

The world we live in consists of a great variety of coordination systems. A family, a nation or the human race are such entities. The units may differ in size, but all are composed of the same structural elements, i.e., individuals held together by bonds. The individual members can vary in size, status or sex, and ties between them can be weak or strong. The resulting structure determines the functional properties of the coordination complex. Social groups are programmed for change. Number, character and rank of members can alter and bonds will adjust accordingly. As a consequence, new structures and functions emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addison WE (1961) Structural Principles in Inorganic Compounds. New York, John Wiley & Sons, Inc, pp 176

    Google Scholar 

  • Allègre CJ, Shimizu N, Treuil M (1977) Comparative chemical history of the Earth, the Moon and parent body of a chondrite. Philos Trans R Soc Lond A 285: 55–67

    Google Scholar 

  • American Geological Institute (1975) Deep Sea Drilling Project. Legs 1–25. AGI Reprint Ser 1, pp 93

    Google Scholar 

  • American Geological Institute (1976) Deep Sea Drilling Project. Legs 26–44. AGI Reprint Ser 2, pp 82

    Google Scholar 

  • Ampferer 0 (1906) Über das Bewegungsbild von Faltengebirgen. Jahrb Geol R-A 56: 539–622

    Google Scholar 

  • Anders E (1977) Chemical compositions of the Moon, Earth, and eucrite parent body. Philos Trans R Soc Lond A 285: 2340

    Google Scholar 

  • Anderson DL (1977) Composition of the mantle and core. Annu Rev Earth Planet Sci 5: 179–202

    Google Scholar 

  • Anderson DL (1981) Hotspots, basalts, and the evolution of the mantle. Science 213: 82–89

    Google Scholar 

  • Anderson OL (1986) Properties of iron at the Earth’s core conditions. Geophys J R Astron Soc 84: 561–579

    Google Scholar 

  • Anderson RN, Honnorez J, Becker K et al. (1982) DSDP Hole 504B, the first reference section over 1 km through Layer 2 of the oceanic crust. Nature 300: 589–594

    Google Scholar 

  • Anhaeusser CR (1971) Cyclic volcanicity and sedimentation in the evolutionary development of Archaean greenstone belts of shield areas. Geol Soc Aust, Spec Publ 3: 57–70

    Google Scholar 

  • Anonymous (1984) Global Ocean Flux Study. Washington, DC, National Academy Press, pp 360

    Google Scholar 

  • Arndt NT (1977) Ultrabasic magmas and high degree of melting of the mantle. Contrib Miner Petrol 64: 205–221

    Google Scholar 

  • Arndt NT, Naldrett AJ, Pyke DR (1977) Komatiitic and iron-rich tholeiitic lavas of Munro Township, northeast Ontario. J Petrol 18: 319–369

    Google Scholar 

  • Aubouin J (1965) Geosynclines. Dev Geotectonics 1, Amsterdam, London, New York, Elsevier Publ Co, pp 335

    Google Scholar 

  • Baas Becking LGM, Kaplan IR, Moore D (1960) Limits of the natural environment in terms of pH and oxidation-reduction potentials. J Geol 68: 243–284

    Google Scholar 

  • Badgley C, Tauxe L, Bookstein F (1986) Estimating the error of age interpolation in sedimentary rocks. Nature 319: 139141

    Google Scholar 

  • Bäcker H (1976) Fazies und chemische Zusammensetzung rezenter Ausfällungen aus Mineralquellen im Roten Meer. Geol Jahrb D17: 151–172

    Google Scholar 

  • Bäcker H (1979) Metalliferous sediments in the Red Sea, occurrence, exploration and resource assessment. In Proceedings of the International Seminar of Offshore Mineral Resources, Germinal and BRGM, 319–338, Document BRGM No 7, Orléans

    Google Scholar 

  • Bäcker H, Lange K, Richter H (1975) Morphology of the Red Sea central graben between Subair Islands and Abul Kizaan. Geol Jahrb D13: 79–123

    Google Scholar 

  • Ballard RD (1979) Tauchfahrt ins Erzgebirge. Geo 12 (Dec 79): 6–32

    Google Scholar 

  • Ballard RD, Van Andel TN (1977) Morphology and tectonics of the inner rift valley at lat 36°50’N on the Mid-Atlantic Ridge. Geol Soc Am Bull 88: 507–530

    Google Scholar 

  • Bally AW (1983) Seismic expression of structural styles. Vols 1–3. Am Assoc Petrol Geol, Stud Geol Ser 15

    Google Scholar 

  • Bally AW, Snelson S (1980) Realms of subsidence. Can Soc Pet Geol Mem 6: 9–94

    Google Scholar 

  • Bally AW, Bernoulli D, Davis GA, Montadert L (1981) Listric normal faults. Proc 26th Intern Geol Congr Paris, July 7–17, Oceanologica Acta No SP: Geology of Continental Margins, 87–101

    Google Scholar 

  • Bardossy G (1981) Karst Bauxites. Bauxite Deposits on Carbonate Rocks. Amsterdam, Oxford, New York, Elsevier Publ Co, pp 441

    Google Scholar 

  • Barrow JD, Silk J (1980) The structure of the early universe. Sci Am 242 /4: 98–107

    Google Scholar 

  • Barth TFW, Newton CR (1982) Metamorphic Rocks. In “McGraw-Hill Encyclopedia of Science and Technology”, 5th ed, vol 8, New York, McGraw-Hill, Inc 426–431

    Google Scholar 

  • Basaltic Volcanism Study Project (1976–1979, 1981 ) Basaltic Volcanism on the Terrestrial Planets. New York, Pergamon Press, Inc, pp 1286

    Google Scholar 

  • Baumgartner A, Reichel E (1975) The World Water Balance. München, Wien, R Oldenbourg Verlag, pp 179

    Google Scholar 

  • Bédard JH (1985) The opening of the Atlantic, the Mesozoic New England igneous province, and mechanisms of continental breakup. Tectonophysics 113: 209–232

    Google Scholar 

  • Beloussov VV (1970) Against the hypothesis of ocean-floor spreading. Tectonophysics 9: 489–511

    Google Scholar 

  • Ben-Avraham Z, Nur A (1982) The emplacement of ophiolites by collision. J Geophys Res 87/B5: 3861–3867

    Google Scholar 

  • Ben-Avraham Z, Nur A, Jones D, Cox A (1981) Continental accretion: from oceanic plateaus to allochthonous terranes. Science 213: 47–54

    Google Scholar 

  • Berger WH (1978) Sedimentation of deep-sea carbonate: Maps and models of variations and fluctuations. J Foraminiferal Res 8: 281–302

    Google Scholar 

  • Berger WH, Winterer EL (1974) Plate stratigraphy and the fluctuating carbonate line. In “Pelagic Sediments: On Land and Under the Sea” (eds Hsü KJ, Jenkyns HC ), Oxford, Blackwell, 11–98

    Google Scholar 

  • Berggren WA, Hollister CD (1974) Paleogeography, paleobiogeography, and the history of circulation in the Atlantic Ocean. In “Studies in Paleo-Oceanography” (ed Hay WW), Soc Econ Paleontol Mineral Spec Publ 20: 126–186

    Google Scholar 

  • Berggren WA, Hollister CD (1977) Plate tectonics and paleocirculation–commotion in the ocean. Tectonophysics 38: 11–48

    Google Scholar 

  • Berggren WA, Van Couvering JA (1974) The late Neogene. Paleogeography, -climatology, -ecology 16: 1–216

    Google Scholar 

  • Berggren WA, Kent DV, Flynn JJ, Van Couvering JA (1985) Cenozoic geochronology. Bull Geol Soc Am 96: 1407–1418

    Google Scholar 

  • Blatt H, Middleton GV, Murray RC (1972) Origin of Sedimentary Rocks. Englewood Cliffs, New Jersey, Prentice-Hall Inc, pp 634

    Google Scholar 

  • Böger H (1983 a) Eine Lithostratigraphie des Unterdevons im Sauerlande und im östlichen Bergischen Lande (Rheinisches Schiefergebirge). I. Das Gebiet entlang dem Nordsaum des Siegerländer Sattels. N Jahrb Geol Paläont Abh 165: 185–227

    Google Scholar 

  • Böger H (1983 b) Eine Lithostratigraphie des Unterdevons im Sauerlande und im östlichen Bergischen Lande (Rheinisches Schiefergebirge). II. Das Ebbe-Antiklinorium. N Jahrb Geol Paläont Abh 166: 294–326

    Google Scholar 

  • Böttcher AL, Burnham CW, Windom KE, Bohlen SR (1982) Liquids, glasses, and the melting of silicates to high pressures. J Geol 90: 127–138

    Google Scholar 

  • Bolin B (1980) On the exchange of carbon dioxide between the atmosphere and the sea. Tellus 12: 274–281

    Google Scholar 

  • Borradaile GJ, Bayly MB, Powell CM (eds) (1982) Atlas of Deformational and Metamorphic Rock Fabrics. Berlin Heidelberg New York, Springer-Verlag, pp 551

    Google Scholar 

  • Borucki WJ, Pollack JE, Toon OB, Woodward HT, Wiedman DR (1980) The influence of solar UV variations on climate. In “The Ancient Sun” (eds Pepin RO, Eddy JA, Merrill RB ), Geochim Cosmochim Acta, Suppl 13: 513–522

    Google Scholar 

  • Bosworth W (1985) Geometry of propagating continental rifts. Nature 316: 625–627

    Google Scholar 

  • Brewer PG, Spencer DW (1974) Distribution of some trace elements in Black Sea and their flux between dissolved and particulate phases. In “The Black Sea–Geology, Chemistry, and Biology” (eds Degens ET, Ross DA ), Am Assoc Petrol Geol Mem 20: 137–143

    Google Scholar 

  • Brindley GW (1980) Crystal Structures of Clay Minerals and their X-Ray Identification. Mineral Society, London, pp 495

    Google Scholar 

  • Brinkmann R (ed) (1972) Lehrbuch der Allgemeinen Geologie, Bd 2, Tektonik. Stuttgart, Ferdinand Enke Verlag, pp 579

    Google Scholar 

  • Brinkmann R (1974) Geologic relations between Black Sea and Anatolia. In “The Black Sea–Geology, Chemistry, and Biology” (eds Degens ET, Ross DA ), Am Assoc Petrol Geol Mem 20: 63–76

    Google Scholar 

  • Broecker HC, Petermann J, Siems W (1978) The influence of wind on CO2-exchange in a wind-wave tunnel, including the effects of monolayers. J Mar Res 36: 595–610

    Google Scholar 

  • Broecker WS (1983) Tracers in the Sea. New York, Eldigio Press, pp 690

    Google Scholar 

  • Brosche P, Sündermann J (eds) (1982) Tidal Friction and the Earth’s Rotation. Berlin Heidelberg New York, Springer-Verlag, pp 345

    Google Scholar 

  • Brown C, Girdler RW (1982) Structure of the Red Sea at 20°N from gravity data and its implication for continental margins. Nature 298: 51–53

    Google Scholar 

  • Browne SE, Fairhead JD, Mohamed II (1985) Gravity study of the White Nile Rift, Sudan, and its regional tectonic setting. Tectonophysics 113: 123–137

    Google Scholar 

  • Bruneau L, Jerlov NG, Koczy F (1953) Red Sea. Natl Board Fish Inst Hydr Res, Göteborg, Rep Swedish deep-sea expedition, 3, 4 Appendix, Tab 2: 14–30

    Google Scholar 

  • Brunhes B (1906) Recherches sur la direction d’aimantation des roches volcaniques. J Phys 5: 705–724

    Google Scholar 

  • Bryan WB, Moore JG (1977) Compositional variations of young basalts in the Mid-Atlantic Ridge rift valley near lat 36°49’N. Geol Soc Am Bull 88: 556–570

    Google Scholar 

  • Bullen KE (1963) An introduction to the Theory of Seismology (3rd ed). Cambridge, pp 381

    Google Scholar 

  • Bullen KE (1975) The Earth’s Density. Chapman and Hall, London, pp 420

    Google Scholar 

  • Burke K (1977) Aulacogens and continental breakup. Annu Rev Earth Planet Sci 5: 371–396

    Google Scholar 

  • Burke KE, Dewey JF, Kidd WSF (1976) Precambrian paleomagnetic results compatible with contemporary operation of the Wilson Cycle. Tectonophysics 33: 287–299

    Google Scholar 

  • Cadée GC, Laane RWPM (1983) Behaviour of POC, DOC, and fluorescence in the freshwater tidal compartment of the River Ems. Mitt Geol-Paläont Inst Univ Hamburg 55: 331342

    Google Scholar 

  • Cameron W, Nisbet EG, Dietrich VJ (1979) Boninites, komatiites and ophiolitic basalts. Nature 280: 550–553

    Google Scholar 

  • Canuto VM, Levine JS, Augustsson TR, Imhoff CL, Giampapa MS (1983) The young Sun and the atmosphere and photochemistry of early Earth. Nature 305: 281–286

    Google Scholar 

  • Carroll D (1959) Ion exchange in clays and other minerals. Geol Soc Am Bull 70: 749–780

    Google Scholar 

  • Chapman DS, Pollack HN (1975) Global heat flow: A new look. Earth Planet Sci Lett 28: 23–32

    Google Scholar 

  • Charnock H (1964) Anomalous bottom water in the Red Sea. Nature 203: 591

    Google Scholar 

  • Clark BC, Baird AK (1979) Is the Martian lithosphere sulfur-rich? J Geophys Res 84: 8395–8403

    Google Scholar 

  • Clark SP, Ringwood AE (1964) Density distribution and constitution of the mantle. Rev Geophys 2: 35–88

    Google Scholar 

  • Clarke FW, Washington HW (1924) The Composition of the Earth’s Crust. US Geol Sury Prof Pap 127:pp 117

    Google Scholar 

  • Cloos H (1936) Einführung in die Geologie. Berlin, Gebr Borntraeger, pp 503

    Google Scholar 

  • Cloos H (1939) Hebung, Spaltung, Vulkanismus. Geol Rdsch 30: 401–527

    Google Scholar 

  • Cloos H (1955) Geologische Strukturkarte der Mittelgebirge. Geol Rdsch 44: 480

    Google Scholar 

  • Cochran JR (1981) The Gulf of Aden: Structure and evolution of a young ocean basin and continental margin. J Geophys Res 86 (B1): 263–287

    Google Scholar 

  • Coleman RG (1977) Ophiolites, ancient oceanic lithosphere? In “Minerals and Rocks” (eds Wyllie Pi, Engelhardt W v, Hahn T), vol 12, Berlin Heidelberg New York, Springer, pp 229

    Google Scholar 

  • Cox A (ed) (1973) Plate Tectonics and Geomagnetic Reversals. San Francisco, WH Freeman and Company, pp 702

    Google Scholar 

  • Cox A, Doell RR, Dalrymple GB (1963 a) Geomagnetic polarity epochs and Pleistocene geochronometry. Nature 198: 1049–1051

    Google Scholar 

  • Cox A, Doell RR, Dalrymple GB (1963b) Geomagnetic polarity epochs: Sierra Nevada II. Science 142: 302–305

    Google Scholar 

  • Cox A, Doell RR, Dalrymple GB (1964 a) Geomagnetic polarity epochs. Science 143: 351–352

    Google Scholar 

  • Cox A, Doell RR, Dalrymple GB (1964b) Reversals of the earth’s magnetic field. Science 144: 1537–1543

    Google Scholar 

  • Cox KG, Bell JD, Pankhurst RJ (1979) The Interpretation of Igneous Rocks. London, pp 450

    Google Scholar 

  • Craig H (1969) Abyssal carbon and radiocarbon in the Pacific. J Geophys Res 74: 5491–5506

    Google Scholar 

  • Crisp JA (1984) Rates of magma emplacement and volcanic output. J Volcanol Geotherm Res 20: 177–211

    Google Scholar 

  • Däppen W, Gilliland RL, Christensen-Dalsgaard J (1986) Weakly interacting massive particles, solar neutrinos, and solar oscillations. Nature 321: 229–231

    Google Scholar 

  • Daly RA (1933) Igneous Rocks and the Depth of the Earth; containing some revised chapters of “Igneous Rocks and their Origin”. New York London, McGraw-Hill Book Company Inc, pp 598

    Google Scholar 

  • Dana JD (1866) Observations on the origin of some of theearth’s features. Am J Sci 2/42:205–211, 252–253 Danckwerts PV ( 1970 ) Gas-liquid Reactions. McGraw Hill, pp 276

    Google Scholar 

  • Davies TA, Gorsline DS (1976) Oceanic sediments and sedimentary processes (2nd ed). In “Chemical Oceanography” (eds Riley JP, Chester R ), London New York San Francisco, Academic Press, pp 1–80

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1972) An Introduction to the Rock-Forming Minerals. London, J Wiley & Sons Inc, pp 528

    Google Scholar 

  • Degens ET (1965) Geochemistry of Sediments. Englewood Cliffs, New Jersey, Prentice-Hall Inc, pp 342

    Google Scholar 

  • Degens ET, Ittekkot V (1986) Cat+ stress, biological response and particle aggregation in the aquatic habitat. Neth J Sea Res 20/2–3: 109–116

    Google Scholar 

  • Degens ET, Kurtman F (eds) (1978) The Geology of Lake Van. The Miner Res Explor Inst Turkey 169, pp 158

    Google Scholar 

  • Degens ET, Ross DA (eds) (1969) Hot Brines and Recent Heavy Metal Deposits in the Red Sea. Springer Verlag, Berlin Heidelberg New York, pp 600

    Google Scholar 

  • Degens ET, Ross DA (1970) The Red Sea hot brines. Sci Am 222 /4: 32–42

    Google Scholar 

  • Degens ET, Ross DA (eds) (1974) The Black Sea — Geology, Chemistry, and Biology. Am Assoc Petrol Geol Mem 20, pp 633

    Google Scholar 

  • Degens ET, Ross DA (1976) Strata-bound metalliferous deposits found in or near active rifts. In “Handbook of Strata-bound and Stratiform Ore Deposits”, vol 4:165–202, Tectonics and Metamorphism (ed Wolf KH ), Amsterdam, Elsevier Publ Co

    Google Scholar 

  • Degens ET, Stoffers P (1977) Phase boundaries as an instrument for metal concentration. In “Time and Strata-bound Ore Deposits” (eds Klemm DD, Schneider H-J ), Berlin Heidelberg New York, Springer-Verlag, 25–45

    Google Scholar 

  • Degens ET, von Herzen RP, Wong HK (1971) Lake Tanganyika: water chemistry, sediments, geological structure. Naturwissenschaften 58: 229–241

    Google Scholar 

  • Degens ET, Paluska A, Eriksson E (1976) Rates of soil erosion. In “Nitrogen, Phosphorus and Sulphur — Global Cycles”, SCOPE Report 7 (eds Svensson BG, Soderlund R), Ecol Bull 22, Stockholm, 185–191

    Google Scholar 

  • Degens ET, Timm J, Wong HK (eds) (1980) Rheinisches Schiefergebirge: Ebbe-Antiklinorium. Fazies, Stratigraphie, Tektonik. Mitt Geol-Paläont Inst Univ Hamburg 50, pp 284

    Google Scholar 

  • Degens ET, Kempe S, Spitzy A (1984a) Carbon dioxide: a biogeochemical portrait. In “Handbook of Environmental Chemistry” (ed Hutzinger O) vol 1 pt C, Springer Verlag, Berlin Heidelberg New York: 127–215

    Google Scholar 

  • Degens ET, Kempe S, Ittekkot V (1984b) Monitoring carbon in world rivers. Environment 26: 29–33

    Google Scholar 

  • Degens ET, Wong HK, Kempe S, Kurtman F ( 1984 c) A geological study of Lake Van, Eastern Turkey. Geol Rdsch 73: 701–734

    Google Scholar 

  • Degens ET, Wong HK, Wiesner MG (1986) The Black Sea region: sedimentary facies, tectonics and oil potential. Mitt Geol-Paläont Inst Univ Hamburg 60: 127–149

    Google Scholar 

  • Degens ET, Izdar E, Honjo S (eds) (1987) Particle Flux in the Ocean. Mitt Geol-Paläont Inst Univ Hamburg 62, pp 480

    Google Scholar 

  • Denman KL (1973) A time-dependent model of the upper ocean. J Phys Oceanogr 3: 173–184

    Google Scholar 

  • Densmore CD (1965) Missing ingredients found. Oceanus 11/ 3: 6

    Google Scholar 

  • DePaolo DJ (1980) Crustal growth and mantle evolution: inferences from models of element transport and Nd and Sr isotopes. Geochim Cosmochim Acta 44: 1185–1196

    Google Scholar 

  • Deuser WG, Brewer PG, Jickells TD, Commean RD (1983) Biological control of the removal of abiogenic particles from the surface ocean. Science 219: 388–391

    Google Scholar 

  • Dewey JF (1976) Ophiolite obduction. Tectonophysics 31: 93120

    Google Scholar 

  • Dewey JF (1977) Suture zone complexities: a review. Tectonophysics 40: 53–67

    Google Scholar 

  • Dewey JF, Burke KCA (1973) Tibetan, Variscan, and Precambrian basement reactivation: products of continental collision. J Geol 81: 683–692

    Google Scholar 

  • Dietz RS (1961) Continent and ocean evolution by spreading of the sea floor. Nature 190: 854–857

    Google Scholar 

  • Dimroth E (1985) A mass balance between Archean and Phanerozoic rates of magma emplacement, crustal growth and erosion: implications for recycling of the continental crust. Chem Geol 53: 17–24

    Google Scholar 

  • Dimroth E, Rochelean M, Mueller W (1984) Paleogeography, isostasy and crustal evolution of the Archean Abitibi Belt: a comparison between the Rouyn-Noranda and ChibongamauChapals areas. In “Chibongamau — Stratigraphy and Mineralization” (eds Guha J, Chown EH ), Can Inst Min Spec 34: 73–91

    Google Scholar 

  • Dobretsov NL (1980) Introduction in Global Petrology. Nauka, Novosibirsk, pp 200 (in Russian)

    Google Scholar 

  • Dobretsov NL, Kepezhinscas VV (1981) Three types of ultrabasic magmas and their bearing on the problem of ophiolites. Ofioliti 6: 221–236

    Google Scholar 

  • Dott RH (1974) The geosynclinal concept. In “Modern and Ancient Geosynclinal Sedimentation”, (eds Dott RH, Shaver RH) Spec Publ Soc econ Paleont Miner 19: 1–13

    Google Scholar 

  • Dott RH, Shaver RH (eds) (1974) Modern and Ancient Geosynclinal Sedimentation. Spec Publ Soc econ Paleont Miner 19, pp 380

    Google Scholar 

  • East Pacific Rise Study Group (1981) Crustal processes of the Mid-Ocean Ridge. Science 213: 31–40

    Google Scholar 

  • Eddy JA (1977) Historical evidence for the existence of the solar cycle. In “The Solar Output and Its Variation” (ed White OR ), Univ Colorado Press, Boulder, 51–71

    Google Scholar 

  • Edmond JM, Von Damm K (1983) Hot springs on the ocean floor. Sci Am 248 /4: 70–85

    Google Scholar 

  • Edmond JM, Von Damm KL, McDuff RE et al. (1982) Chemistry of hot springs on the East Pacific Rise and their effluent dispersal. Nature 297: 187–191

    Google Scholar 

  • Ehrmann WU, Thiede J (1985) History of Mesozoic and Cenozoic Sediment Fluxes to the North Atlantic Ocean. Contrib Sedimentology 15, E Schweizerbart’sche Verlagsbuchhandlung (Nägele und Obermiller) Stuttgart, pp 109

    Google Scholar 

  • Ehrmann WU, Thiede J (1986) Correlation of terrigenous and biogenic sediment fluxes in the North Atlantic Ocean during the past 150 my. Geol Rdsch 75: 43–55

    Google Scholar 

  • Eisma D, Bernard P, Boon JJ et al. (1985) Loss of particulate organic matter in estuaries as exemplified by the Ems and Gironde estuaries. Mitt Geol-Paläont Inst Univ Hamburg 58: 397–412

    Google Scholar 

  • Emery KO, Uchupi E (1972) Western North Atlantic Ocean: Topography, rocks, structure, water, life and sediments. Am Assoc Petrol Geol Mem 17: 1–532

    Google Scholar 

  • Emery KO, Uchupi E (1984) The Geology of the Atlantic Ocean. Springer-Verlag, Berlin Heidelberg New York Tokyo, pp 1050

    Google Scholar 

  • Emery KO, Hunt JM, Hays EE (1969) Summary of hot brines and heavy metal deposits in the Red Sea. In “Hot Brines and Recent Heavy Metal Deposits in the Red Sea” (eds Degens ET, Ross DA ), Springer Verlag, Berlin Heidelberg New York, 557–571

    Google Scholar 

  • Engel AEJ, Itson SP, Engel CG, Stickney DM, Cray Jr EJ (1974) Crustal evolution and global tectonics: a petrogenic view. Geol Soc Am Bull 85: 843–858

    Google Scholar 

  • Engelhardt W von (1977) The Origin of Sediments and Sedimentary Rocks. Stuttgart, E. Schweizerbart’sche Verlagsbuchhandlung (Nägele und Obermiller), pp 359

    Google Scholar 

  • Fairbridge RW (1971) Upper Ordovician glaciation in Africa? Reply. Geol Soc Am Bull 82: 269–274

    Google Scholar 

  • Faulkner J, Gough DO, Vahia MN (1986) Weakly interacting massive particles and solar oscillations. Nature 321:226–229 Fisher RV

    Google Scholar 

  • Schmincke HU (1984) Pyroclastic Rocks. Springer Verlag, Berlin Heidelberg New York, pp 472

    Google Scholar 

  • Flothmann D, Lohse E, Munich KO (1979) Gas exchange in a circular wind/water tunnel. Naturwissenschaften 66: 49–50

    Google Scholar 

  • Folk RL (1974) Petrology of Sedimentary Rocks. Austin, Texas, Hemphill’s Book Store, pp 182

    Google Scholar 

  • Fonselius SH (1974) Phosphorus in Black Sea. In “The Black Sea — Geology, Chemistry, and Biology” (eds Degens ET, Ross DA ), Am Assoc Petrol Geol Mem 20: 144–150

    Google Scholar 

  • Frakes LA (1979) Climates Throughout Geologic Times. Amsterdam Oxford New York, Elsevier Publ Co, pp 310

    Google Scholar 

  • Frey H (1977) Origin of the Earth’s ocean basins. Icarus 32: 235–250

    Google Scholar 

  • Fuchs K, Gehlen K v, Mälzer H, Murawski H, Semmel A (eds) (1983) Plateau Uplift, The Rhenish Shield - A Case History. Intern Lithosph Progr Publ no 0104, Berlin Heidelberg New York Tokyo, Springer-Verlag, pp 411

    Google Scholar 

  • Füchtbauer H, Müller G (1977) Sedimente und Sedimentgesteine (Sediment-Petrologie, Pt 2) - Stuttgart, E Schweizerbart’sche Verlagsbuchhandlung, pp 783

    Google Scholar 

  • Fuglister FC (1960) Atlantic Ocean Atlas of Temperature and Salinity, Profiles and Data from the International Geophysical Year of 1957–1958.

    Google Scholar 

  • Whoi, Woods Hole, Mass, pp 209 Fujii H (1975) Material and energy production from volcanoes. Bull Volcanol Soc Japan 20: 197–204

    Google Scholar 

  • Fyfe WS (1976) The evolution of the Earth’s crust: modern plate tectonics to ancient hot spot tectonics? Chem Geol 23: 86–114

    Google Scholar 

  • Fyfe WS (1981) The environmental crisis: quantifying geosphere interactions. Science 213: 105–110

    Google Scholar 

  • Gaposchkin EM (1974) Earth’s gravity field to the eighteenth degree and geocentric coordinates for 104 stations from satellite and terrestrial data. J Geophys Res 79: 5377–15411

    Google Scholar 

  • Garrels RM, Mackenzie FT (1971) Evolution of Sedimentary Rocks. New York, WW Norton & Co, Inc, pp 397

    Google Scholar 

  • Gaustad JE, Vogel SN (1982) High energy solar radiation and the origin of life. Origins of Life 12 /1: 3–8

    Google Scholar 

  • Gee DG, Sturt BA (eds) (1985) The Caledonian Orogen - Scandinavia and Related Areas. New York, John Wiley and Sons

    Google Scholar 

  • Geer G de (1910) A geochronology of the last 12,000 years. Congr Geol Int XI, Stockholm 1910: 241–253

    Google Scholar 

  • Girdler RW, Styles P (1978) Seafloor spreading in the western Gulf of Aden. Nature 271: 615–617

    Google Scholar 

  • Girdler RW, Brown C, Noy DJM, Styles P (1980) A geophysical survey of the westernmost Gulf of Aden. Philos Trans R Soc Lond Ser A 298: 1–43

    Google Scholar 

  • Glikson AY (1976) Stratigraphy and evolution of primary and secondary greenstones: significance of data from shields of the southern hemisphere. In “The Early History of the Earth” (ed Windley BF ), New York, 257–277

    Google Scholar 

  • Global Ocean Flux Study (1984) Proceedings of a workshop, September 10–14, 1984. Washington, DC, National Academy Press, pp 360

    Google Scholar 

  • Goldich SS (1938) A study in rock-weathering. J Geol 46: 17–58

    Google Scholar 

  • Goldschmidt VM (1926) Geochemische Verteilungsgesetze der Elemente. VII. Die Gesetze der Kristallochemie. Skrift. Norske Vidensk-Akad Oslo I. Math-Nat K1 2, pp 117

    Google Scholar 

  • Goldschmidt VM (1954) Geochemistry. Clarendon Press, Oxford, pp 730

    Google Scholar 

  • Goodwin AM (1981) Precambrian perspectives. Science 213: 55–61

    Google Scholar 

  • Green DH (1975) Genesis of Archean peridotitic magmas and constraints on Archean geothermal gradients and tectonics. Geology 3: 15–18

    Google Scholar 

  • Green DH, Nicholls IA, Viljoen M, Viljoen R (1975) Experimental demonstration of the existence of peridotitic liquids in earliest Archean magmatism. Geology 3: 11–14

    Google Scholar 

  • Green DH, Hibberson WO, Jaques AL (1979) Petrogenesis of Mid-ocean ridge basalts. In “The Earth: Its Origin, Structure and Evolution” (ed McElhinny MW ), Academic Press, London New York San Francisco, 265–299

    Google Scholar 

  • Green JC (1981) Pre-Tertiary continental flood basalts. In “Basaltic Volcanism”, Pergamon Press, New York, 30–77

    Google Scholar 

  • Grim RE (1968) Clay Mineralogy ( 2nd ed ). McGraw-Hill Book Company, New York Toronto London, pp 596

    Google Scholar 

  • Gutenberg B (1941) Changes in sea level. Postglacial uplift and mobility of the earth’s interior. Geol Soc Am Bull 52: 72 1772

    Google Scholar 

  • Gutenberg B (1959) Physics of the Earth’s Interior. Academic Press, New York, pp 240

    Google Scholar 

  • Hall J (1859) Description and figures of the organic remains of the lower Helderberg Group and the Oriskany Sandstone. Nat Hist New York; Paleontology, Geol Surv, Albany, NY 3, pp 544

    Google Scholar 

  • Hallam A (1981) Facies Interpretation and the Stratigraphic Record. WH Freeman and Company, Oxford and San Francisco, pp 291

    Google Scholar 

  • Hamblin WK, Howard JD (1986) Exercises in Physical Geology ( 6th ed ). Burgess Publ Co, Minneapolis, pp 191

    Google Scholar 

  • Hammen TVD, Wijmstra TA, Zagwijn WH (1971) The floral record of the Late Cenozoic of Europe. In “Late Cenozoic Glacial Ice Ages” (ed Turekian KK ), Yale Univ Press, New Haven, London 391–424

    Google Scholar 

  • Hanisch J (1984) The Cretaceous opening of the Northeast Atlantic. Tectonophysics 101: 1–23

    Google Scholar 

  • Harland WB, Cox AV, Llewellyn PG, Picton CAG, Smith AG, Walters R (1982) A Geological Time Scale. Cambridge, Cambridge Univ Press, pp 128

    Google Scholar 

  • Hartline BK (1979) In search of solar neutrinos. Science 204: 42–44

    Google Scholar 

  • Hasse L, Liss P (1980) Gas exchange across the air-sea interface. Tellus 32: 470–481

    Google Scholar 

  • Head JW, Solomon SC (1981) Tectonic evolution of the terrestrial planets. Science 213: 62–76

    Google Scholar 

  • Head JW, Wood CA, Mutch TA (1977) Geologic evolution of the terrestrial planets. Am Sci 65: 21–29

    Google Scholar 

  • Heath DF, Thekaekara MP (1977) The solar spectrum between 1,200 and 3,000 A. In “The Solar Output and Its Variation” (ed White OR ), Boulder, Colorado, Colorado Assoc Univ Press, 193–212

    Google Scholar 

  • Heezen BC, Hollister CD (1971) The Face of the Deep. New York, Oxford Univ Press, pp 659

    Google Scholar 

  • Heezen BC, McGregor ID (1973) The evolution of the Pacific. Sci Am 229 /5: 102–112

    Google Scholar 

  • Heirtzler JR, Dickson GO, Herron EM, Pitman WC, III, Le Pichon X (1968) Marine magnetic anomalies, geomagnetic field reversals, and motions of the ocean floor and continents. J Geophys Res 73: 2119–2136

    Google Scholar 

  • Henderson-Sellers A (1983) The Origin and Evolution of Planetary Atmospheres. Monogr Astron Subj 9 ( Gen Ed AJ Meadows), Adam Hilger Ltd, Bristol, pp 240

    Google Scholar 

  • Henderson-Sellers A, Meadows AJ (1977) Surface temperature of early Earth. Nature 270: 589–591

    Google Scholar 

  • Hendricks SB (1945) Base-exchange of crystalline silicates. Ind Eng Chem 37: 625–630

    Google Scholar 

  • Hermann AG, Blanchard DP, Haskin LA et al. (1976) Major, minor, and trace element compositions of peridotitic and basaltic komatiites from the Precambrian crust of South Africa. Contrib Miner Petrol 59: 1–12

    Google Scholar 

  • Hess HH (1962) History of ocean basins. In “Petrologic Studies–A Volume in Honor of AF Buddington” (eds Engel AEJ, James HL, Leonard BL ), New York, Geol Soc Amer 599–620

    Google Scholar 

  • Hickey RL, Frey FA (1982) Geochemical characteristics of boninite series volcanics: implications for their source. Geochim Cosmochim Acta 46: 2099–2115

    Google Scholar 

  • Holeman JN (1968) Sediment yield of major rivers of the world. Water Resour Res 4: 737–747

    Google Scholar 

  • Holler P (1986) Fracture activity: a possible triggering mechanism for slope instabilities in the Eastern Atlantic? Geo-Mar Lett 5: 211–216

    Google Scholar 

  • Honjo S (1976) Coccoliths: production, transportation, and sedimentation. Mar. Micropaleont 1: 65–79

    Google Scholar 

  • Honjo S, Spencer D, Farrington JW (1982) Deep advective transport of lithogenic particles in Panama Basin. Science 216: 516–518

    Google Scholar 

  • Hunt JM, Hays EE, Degens ET, Ross DA (1967) Red Sea: detailed survey of hot brine areas. Science 156: 514–516

    Google Scholar 

  • Illies JH, Fuchs K (1983) Plateau-uplift of the Rhenish Massif–introductory remarks. In “Plateau Uplift, The Rhenish Shield–A Case History” (eds Fuchs K, Gehlen K v et al.), Springer-Verlag, Berlin Heidelberg New York Tokyo, 1–8

    Google Scholar 

  • Irving E (1977) Drift of the major continental blocks since the Devonian. Nature 270: 304–309

    Google Scholar 

  • Irving E (1979) Pole position and continental drift since the Devonian. In “The Earth. Its Origin, Structure and Evolution” (ed McElhinney MW ), Academic Press, London 567–593

    Google Scholar 

  • Jähne B, Münnich KO, Siegenthaler U (1979) Measurements of gas exchange and momentum transfer in a circular wind-water tunnel. Tellus 31: 321–329

    Google Scholar 

  • Jahn BM, Gruau G, Glikson AY (1982) Komatiites of the Onverwacht Group, S. Africa: REE geochemistry, Sm/Nd age and mantle evolution. Contrib Miner Petrol 80: 25–40

    Google Scholar 

  • Jannasch HW, Mottl MJ (1985) Geomicrobiology of deep-sea hydrothermal vents. Science 229: 717–725

    Google Scholar 

  • Jenkyns HC (1978) Pelagic environments. In “Sedimentary Environments and Facies” (ed Reading HG ), 314–371, Oxford, Blackwell

    Google Scholar 

  • Joides (1982) Report of the Conference on Scientific Ocean Drilling, Nov 16–18, 1981. JOIDES, Washington, DC, pp 112

    Google Scholar 

  • Jung D, Vinx R (1973) Einige Bemerkungen zur Geochemie der Magmatite des Saar-Nahe-Pfalz-Gebietes. Ann Scien Univ Besançon 3 /18: 197–202

    Google Scholar 

  • Kanwisher J (1963) On the exchange of gases between the atmosphere and the sea. Deep-Sea Res 10: 195–207

    Google Scholar 

  • Keller WD (1956) Clay minerals as influenced by environments at their formation. Am Assoc Petrol Geol Bull 40: 2689–2710

    Google Scholar 

  • Keller WD (1957) Principles of Chemical Weathering. Colum-bia, Mo, Lucas Brothers, pp 486

    Google Scholar 

  • Kempe S (1977) Hydrographie, Warven-Chronologie und organische Geochemie des Van Sees, Ost-Türkei. Mitt Geol Paläont Inst Univ Hamburg 47: 125–228

    Google Scholar 

  • Kempe S (1983) Impact of Asuan High Dam on water chemistry of the Nile. Mitt Geol-Paläont Inst Univ Hamburg 55: 401–423

    Google Scholar 

  • Kempe S, Degens ET (1985) An early soda ocean? Chem Geol 53: 95–108

    Google Scholar 

  • King-Hele DG, Brookes CJ, Cook GE (1980) The pear-shaped section of the Earth. Nature 286: 377–378

    Google Scholar 

  • Klein C, Hurlbut CS Jr (1985) Manual of Mineralogy (after JD Dana) ( 20th ed ). New York, Wiley, pp 596

    Google Scholar 

  • Kossinna SE (1921) Die Tiefen des Weltmeeres. Veröff. Inst Meereskunde, Univ Berlin, NFA, Geogr, Naturwiss 9: 1–70

    Google Scholar 

  • Kranck K (1980) Experiments on the significance of flocculation in the settling of fine-grained sediment in still water. Can J Earth Sci 17: 1517–1526

    Google Scholar 

  • Kraskovski SA (1961) On the thermal field in old shields. Izv Akad Nauk Arm SSR, Geol Geogr Nauki, Engl Transl 247250

    Google Scholar 

  • Kraus EB, Turner JS (1967) A one-dimensional model of the seasonal thermocline. II. The general theory and its consequences. Tellus 19: 98–106

    Google Scholar 

  • Krebs W (1976) Wiederholter Magmenaufstieg und die Entwicklung postvariszischer Strukturen in Mitteleuropa. Nova Acta Leopoldina, NF 45: 23–36

    Google Scholar 

  • Krebs W (1978) Die Kaledoniden im nördlichen Mitteleuropa. Z dt geol Ges 129: 403–422

    Google Scholar 

  • Krebs W, Wachendorf H (1974) Faltungskerne im mitteleuropäischen Grundgebirge. Abbilder eines orogenen Diapirismus. N Jb Geol Paläont Abh 147 /1: 30–60

    Google Scholar 

  • Kröner A (1985) Evolution of the Archean continental crust. Ann Rev Earth Planet Sci 13: 49–74

    Google Scholar 

  • Kröner A, Hanson GN, Goodwin AM (eds) (1984) Archaean Geochemistry. Springer-Verlag, Berlin Heidelberg New York, pp 286

    Google Scholar 

  • Krumbein WC, Sloss LL (1963) Stratigraphy and Sedimentation ( 2nd ed ). WH Freeman and Company, San Francisco and London, pp 660

    Google Scholar 

  • Lean J (1987) Solar ultraviolet irradiance variations: a review. J Geophys Res 92: 839–868

    Google Scholar 

  • Lee WHK, Uyeda S (1965) Review of heat flow data. In “Terrestrial Heat Flow”, Geophys Monogr 8, Amer Geophys Union, 87–190

    Google Scholar 

  • Leeder MR (1982) Sedimentology: Process and Product. Lon- don Boston Sydney, George Allen & Unwin, pp 344 LePichon X (1968) Sea-floor spreading and continental drift. J Geophys Res 73: 3661–3697

    Google Scholar 

  • LePichon X, Francheteau J (1978) A plate-tectonic analysis of the Red Sea-Gulf of Aden area. In “Structure and Tectonics of the Eastern Mediterranean” (ed Oren OH), Tectonophysics 46: 369–406

    Google Scholar 

  • LePichon X, Renard V (1982) Avalanching, a major process of erosion and transport in deep-sea canyons: evidence from submersible and multi-narrow beam surveys. In “The Ocean Floor” (eds Scrutton RA, Talwani M ), Bruce Heezen commemorative volume, New York, John Wiley and Sons, 113128

    Google Scholar 

  • LePichon X, Sibuet J-C (1981) Passive margins: a model of formation. J Geophys Res 86, no B5: 3708–3720

    Google Scholar 

  • LePichon X, Francheteau J, Bonnin J (1973) Plate Tectonics. Amsterdam, Elsevier Publ Co, pp 300

    Google Scholar 

  • Lerch FJ, Wagner CA, Richardson JA, Brownd JE (1974) Goddard earth models (5 and 6) NASA-GSFC Doc X-92174–145. Greenbelt Md, Goddard Space Flight Center, pp 100

    Google Scholar 

  • Lewis BTR (1983) The process of formation of ocean crust. Science 220: 151–157

    Google Scholar 

  • Lilley FEM (1979) Geomagnetism and the earth’s core. In “The Earth: Its Origin, Structure and Evolution” (ed McElhinny MW ), Academic Press, London New York San Francisco 83–111

    Google Scholar 

  • Liss P (1973) Processes of gas exchange across an air-water interface. Deep-Sea Res 20: 221–238

    Google Scholar 

  • Liss P, Slater PG (1974) Flux of gases across the air-sea interface. Nature 247: 181–184

    Google Scholar 

  • Livingstone DA (1963) Chemical composition of rivers and lakes. US Geol Sury Prof Paper 440-G, pp 64

    Google Scholar 

  • Lowrie W, Alvarez W (1981) One hundred million years of geomagnetic polarity history. Geology 9: 392–397

    Google Scholar 

  • Lupton JE, Weiss RF, Craig H (1977) Mantle helium in the Red Sea brines. Nature 266: 244–246

    Google Scholar 

  • MacDonald GJF (1964) Dependence of the surface heat flow on the radioactivity of the earth. J Geophys Res 69: 29332946

    Google Scholar 

  • McDougall I (1979) The present status of the geomagnetic polarity time scale. In “The Earth: Its Origin, Structure and Evolution” (ed McElhinny MW ), 543–566, Academic Press, London New York San Francisco

    Google Scholar 

  • McElhinny MW (ed) ( 1979 a) The Earth: Its Origin, Structure and Evolution. Academic Press, London New York San Francisco, pp 597

    Google Scholar 

  • McElhinny MW ( 1979 b) Palaeogeomagnetism and the core-mantle interface. In “The Earth: Its Origin, Structure and Evolution” (ed McElhinny MW), 113–136, Academic Press, London New York San Francisco

    Google Scholar 

  • McGregor VR, Mason B (1977) Petrogenesis and geochemistry of metabasaltic and metasedimentary enclaves in the Am’itsoq gneisses, West Greenland. Am Mineral 62: 887–904

    Google Scholar 

  • McKenzie D (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40: 25–32

    Google Scholar 

  • McKenzie DP (1967) Some remarks on heat-flow and gravity anomalies. J Geophys Res 72: 6261–6273

    Google Scholar 

  • McLennan SM, Taylor SR (1982) Geochemical constraints on the growth of the continental crust. J Geol 90: 347–361

    Google Scholar 

  • Maier-Reimer E, Hasselmann K (1987) Transport and storage of CO2 in the ocean — an inorganic ocean circulation carbon cycle model. Climate Dynamics 2: 63–90

    Google Scholar 

  • Mareschal J-C (1983) Mechanisms of uplift preceding rifting. In “Processes of Continental Rifting” (eds Morgan P, Baker BD ), Tectonophysics 94: 51–66

    Google Scholar 

  • Martin AK (1984) Propagating rifts: crustal extension during continental rifting. Tectonics 3 /6: 611–617

    Google Scholar 

  • Martin H, Eder FW (eds) (1983) Intracontinental Fold Belts.

    Google Scholar 

  • Springer-Verlag, Berlin Heidelberg New York, pp 945 Martin JM, Burton D, Eisma D (1980) River Inputs to Ocean Systems. UNEP-UNESCO, Switzerland, pp 384

    Google Scholar 

  • Masursky H, Boyce JM, Dial AL, Schaber GG, Strobel MB (1977) Classification and time of formation of Martian channels based on Viking data. J Geophys Res 82: 4016–4038

    Google Scholar 

  • Matheja J, Degens ET (1971) Structural Molecular Biology of Phosphates. Gustav Fischer Verlag, Stuttgart, pp 180 Matsui T, Abe Y (1986) Evolution of an impact-induced atmosphere and magma ocean on the accreting Earth. Nature 319: 303–305

    Google Scholar 

  • Matuyama M (1929) On the direction of magnetization of basalt in Japan, Tyôsen, and Manchuria. Japan Acad Proc 5: 203–205

    Google Scholar 

  • Meade RH (1982) Sources, sinks, and storage of river sediment in the Atlantic drainage of the United States. J Geol 90: 235252

    Google Scholar 

  • Meeresforschung in Hamburg (1977) Illustrated documentation of the “Sonderforschungsbereich 94”, FLEX 76. Univ Hamburg, FRG

    Google Scholar 

  • Meissner R (1983) Evolution of plate tectonics on terrestrial planets. Ann Geophysicae 1 /2: 121–127

    Google Scholar 

  • Meissner R, Bartelson H, Murawski H (1981) Thin-skinned tectonics in the northern Rhenish Massif, Germany. Nature 290: 399–401

    Google Scholar 

  • Merlivat L, Memery L (1983) Gas exchange across an air-water interface: Experimental results and modeling of bubble contribution to transfer. J Geophys Res 88: 707–724

    Google Scholar 

  • Meybeck M (1982) Carbon, nitrogen and phosphorus transport by major world rivers. Am J Sci 282: 401–501

    Google Scholar 

  • Meyer W, Stets J (1975) Das Rheinprofil zwischen Bonn und Bingen. Z dt geol Ges 126: 15–29

    Google Scholar 

  • Meyer W, Alber HJ et al. (1983) Pre-Quaternary uplift in the central part of the Rhenish Massif. In “Plateau Uplift. The Rhenish Shield — A Case History” (eds Fuchs K, Gehlen K v et al.), 39–46, Springer-Verlag, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Middleton GV (1973) Johannes Walther’s law of correlation of facies. Geol Soc Am Bull 84: 979–988

    Google Scholar 

  • Miller AR (1964) Highest salinity in the world ocean? Nature 203: 590–591

    Google Scholar 

  • Miller AR (1969) Atlantis II account. In “Hot Brines and Recent Heavy Metal Deposits in the Red Sea” (eds Degens ET, Ross DA ) 15–17, Springer Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Miller AR, Densmore CD, Degens ET et al. (1966) Hot brines and recent iron deposits in deeps of the Red Sea. Geochim Cosmochim Acta 30: 341–359

    Google Scholar 

  • Milliman JD, Meade RH (1983) World-wide delivery of river sediments to the oceans. J Geol 91: 1–21

    Google Scholar 

  • Mitchell AHG, Reading HG (1978) Sedimentation and tectonics. In “Sedimentary Environments and Facies” (ed Reading HG ), 439–476, Blackwell, Oxford

    Google Scholar 

  • Miyashiro A (1978) Metamorphism and Metamorphic Belts. Boston Sydney, George Allen & Unwin, pp 492

    Google Scholar 

  • Moore JG (1960) Curvature of normal faults in the Basin and Range Province of the western United States. US Geol Sury Prof Paper 400, B409 — B411

    Google Scholar 

  • Moore TC, Heath GR (1977) Survival of deep-sea sedimentary sections. Earth Planet Sci Lett 37: 71–80

    Google Scholar 

  • Morgan WJ (1968) Rises, trenches, great faults, and crustal blocks. J Geophys Res 73: 1959–1982

    Google Scholar 

  • Mulugeta G (1985) Dynamic models of continental rift valley systems. Tectonophysics 113: 49–73

    Google Scholar 

  • Murawski H (1964) Fazies. Geol Rdsch 54: 585–595

    Google Scholar 

  • Murawski H, Albers HJ et al. (1983) Regional tectonic setting and geological structure of the Rhenish Massif. In “Plateau Uplift. The Rhenish Shield — A Case History” (eds Fuchs K, Gehlen K v et al.) 9–38, Berlin Heidelberg New York Tokyo, Springer-Verlag

    Google Scholar 

  • Mutter JC (1985) Seaward dipping reflectors and the continent-ocean boundary at passive continental margins. In “Geophysics of the Polar Regions” (eds Husebye ES, Johnson GL, Kristoffersen Y ), Tectonophysics 114: 117–131

    Google Scholar 

  • Mysen BO (1977) The solubility of H2O and CO2 under predicted magma genesis conditions and some petrological and geophysical implications. Rev Geophys Space Phys 15: 351361

    Google Scholar 

  • Nakamura K (1974) Preliminary estimate of global volcanic production rate. In “The Utilization of Volcano Energy” (ed Colp JL ), Albuquerque, NM, Sandia Lab, 273–286

    Google Scholar 

  • Naldrett AJ, Smith IEM (1981) Mafic and ultramafic volcanism during the Archean. In “Basaltic Volcanism on the Terrestrial Planets” (eds Members Basaltic Volcanism Study Project ), New York Oxford Toronto Sydney Frankfurt Paris, Pergamon Press, 5–29

    Google Scholar 

  • Natterer K (1901) Expedition SM Schiff “Pola” in das Rote Meer, Südliche Hälfte, Sept. 1897—März 1899. 15: Chemische Untersuchung von Wasser und Grundproben. Denkschr Österr Akad Wiss, Mathem-naturwiss Kl, Abt I, 69, Wien 1901: 297–309

    Google Scholar 

  • Neugebauer HJ (1983) Mechanical aspects of continental rifting. In “Processes of Continental Rifting” (eds Morgan P, Baker BH ), Tectonophysics 94: 91–108

    Google Scholar 

  • Neumann AC, Densmore CD (1959) Oceanographic data from the Mediterranean Sea, Red Sea, Gulf of Aden and Indian Ocean. Woods Hole Oceanogr Inst, Ref No 60–2. (unpubl manuscript)

    Google Scholar 

  • Newkirk Jr G (1983) Variations in solar luminosity. Annu.Rev Astron Astrophys 21: 429–467

    Google Scholar 

  • Newman MJ, Rood RT (1977) Implications of solar evolution for the earth’s early atmosphere. Science 198: 1035–1037

    Google Scholar 

  • Newsom HE (1980) Hydrothermal alteration of impact melt sheets with implications for Mars. Icarus, 44: 207–216

    Google Scholar 

  • Newton RC, Smith JV, Windley BF (1980) Carbonic metamorphism, granulites and crustal growth. Nature 288: 45–50

    Google Scholar 

  • Nisbet EG, Walker D (1982) Komatiites and the structure of the Archaean mantle. Earth Planet Sci Lett 60:105–113 Norton DL (1984) Theory of hydrothermal systems. Annu Rev Earth Planet Sci 12: 155–177

    Google Scholar 

  • Noy DJ (1978) A comparison of magnetic anomalies in the Red Sea and the Gulf of Aden. In “Tectonics and Geophysics of Continental Rifts” (eds Ramberg IB, Neumann E-R), 279287, D Reidel Publ Co, Dordrecht

    Google Scholar 

  • Nur A, Ben-Avraham Z (1982) Oceanic plateaus, the fragmentation of continents, and mountain building. J Geophys Res 87: 3644–3661

    Google Scholar 

  • Owen T, Cess RD, Ramanathan V (1979) Enhanced CO2 greenhouse to compensate for reduced solar luminosity on early Earth. Nature 277: 640–642

    Google Scholar 

  • Parkinson JH, Morrison LV, Stephenson FR (1980) The constancy of the solar diameter over the past 250 years. Nature 288: 548–551

    Google Scholar 

  • Parsons B, McKenzie DP (1978) Mantle convection and the thermal structure of the plates. J Geophys Res 83: 4485–4496

    Google Scholar 

  • Parsons B, Sclater JG (1977) An analysis of the variation of ocean floor bathymetry and heat flow with age. J Geophys Res 82: 803–827

    Google Scholar 

  • Patchett PJ, Bylund G (1977) Age of Grenville magnetisation; Rb-Sr and paleomagnetic evidence from Swedish dolerites. Earth Planet Sci Lett 35: 92–104

    Google Scholar 

  • Pauling L (1927) The sizes of ions and the structure of ionic crystals. J Am Chem Soc 49: 765–790

    Google Scholar 

  • Pauling L (1960) The Nature of the Chemical Bond and the Structure of Molecules and Crystals ( 3rd ed ). Cornell Univ Press, Ithaca, New York, pp 644

    Google Scholar 

  • Pepin R, Eddy JA, Merrill RB (eds) (1980) The Ancient Sun. Geochim Cosmochim Acta, Suppl 13, pp 581

    Google Scholar 

  • Pettijohn FJ (1975) Sedimentary Rocks ( 3rd ed ). New York, Harper and Row, pp 628

    Google Scholar 

  • Pettijohn FJ, Potter PE (1964) Atlas and Glossary of Primary Sedimentary Structures. Springer-Verlag, Berlin Göttingen Heidelberg New York, pp 370

    Google Scholar 

  • Pettijohn FJ, Potter PE, Siever R (1972) Sand and Sandstone. Springer-Verlag, Berlin Heidelberg New York, pp 618 Pitman WC

    Google Scholar 

  • Talwani M (1972) Seafloor spreading in the North Atlantic. Geol Soc Am Bull 83: 619–646

    Google Scholar 

  • Pollack HN, Chapman DS (1977) On the regional variation of heat flow, geotherms and the thickness of the lithosphere. Tectonophysics 38: 279–296

    Google Scholar 

  • Pollack JB (1979) Climatic change on the terrestrial planets. Icarus 37: 479–553

    Google Scholar 

  • Pollack JB (1984) Origin and history of the outer planets: theoretical models and observational constraints. Annu Rev Astron Astrophys 22: 389–424

    Google Scholar 

  • Pollack JB, Grossman AS, Moore R, Graboske HC Jr (1977) A calculation of Saturn’s gravitational contraction history. Icarus 30: 111–128

    Google Scholar 

  • Pollack JB, Borucki WJ, Toon OB (1979) Are solar spectral variations a drive for climatic change. Nature 282: 600–603

    Google Scholar 

  • Polyak BG, Smirnov YaB (1968) Relationship between terrestrial heat flow and the tectonics of continents. Geotectonics 4: 205–213 (engl translation)

    Google Scholar 

  • Potter PE, Pettijohn FJ (1977) Paleocurrents and Basin Analysis ( 2nd ed ). Springer Verlag, Berlin Heidelberg New York, pp 425

    Google Scholar 

  • Prasad G (1985) Das frühtertiäre Bauxit-Ereignis. Weinheim, Geowissenschaften in unserer Zeit 3 /3: 81–85

    Google Scholar 

  • Press F, Siever R (1986) Earth ( 4th ed ). New York, WH Freeman and Company, pp 656

    Google Scholar 

  • Ramberg H (1963) Experimental study of gravity tectonics by means of centrifuged models. Bull Geol Inst Univ Uppsala 42 /1: 1–97

    Google Scholar 

  • Ramberg H (1971) Dynamic models simulating rift valleys and continental drift. Lithos 4: 259–276

    Google Scholar 

  • Ramberg H (1978) Experimental model studies of rift valley systems. In “Tectonics and Geophysics of Continental Rifts” (eds Ramberg IB, Neumann ER ), 39–40, Dordrecht, D Reidel Publ Co

    Google Scholar 

  • Ramberg IB, Neumann ER (eds) (1978) Tectonics and Geophysics of Continental Rifts. Dordrecht, D Reidel Publ Co, pp 443

    Google Scholar 

  • Rau A, Tongiorgi M (1981) Some problems regarding the Paleozoic paleogeography in Mediterranean western Europe. J Geol 89: 663–673

    Google Scholar 

  • Reading HG (ed) (1981) Sedimentary Environments and Facies. Oxford London, Blackwell Scient Publ, pp 569

    Google Scholar 

  • Regan RD, Cain JC, Davis WM (1975) A global magnetic ano-maly map. J Geophys Res 80: 794–802

    Google Scholar 

  • Reineck H-E, Singh IB (1980) Depositional Sedimentary Environments ( 2nd ed ). Berlin Heidelberg New York, Springer-Verlag, pp 549

    Google Scholar 

  • Reymer A, Schubert G (1984) Phanerozoic addition rates tothe continental crust and crustal growth. Tectonics 3: 63–78

    Google Scholar 

  • Richards FA (1975) The Cariaco Basin (Trench). Oceanogr Mar Biol Annu Rev 13: 11–67

    Google Scholar 

  • Richards S, Pedersen B, Silverton JV, Hoard JL (1964) Stereochemistry of ethylene-diaminetetraacetato complexes. Inorg Chem 3: 27–33

    Google Scholar 

  • Riley GA, Stommel W, Bumpus DF (1949) Quantitative ecology of the plankton of the western North Atlantic. Bull Bingham Oceanogr Coll 12, Art 3: 1–169

    Google Scholar 

  • Ringwood AE (1979) Origin of the Earth and Moon. Springer-Verlag, New York Heidelberg Berlin, pp 295

    Google Scholar 

  • Ringwood AE (1982) Phase transformations and differentiation in subducted lithosphere: Implications for mantle dynamics, basalt petrogenesis, and crustal evolution. J Geol 90: 611–643

    Google Scholar 

  • Rittenberg SC, Emery KO, Hülsemann J et al. (1963) Biogeochemistry of sediments in Experimental Mohole. J Sed Petrol 33 /1: 140–172

    Google Scholar 

  • Rogers CA (1964) Packing and Covering. Cambridge Univ Press

    Google Scholar 

  • Rona PA (1980) The Central North Atlantic Ocean basin and continental margins: geology, geophysics, geochemistry, and resources, including the Trans-Atlantic Geotraverse (TAG). Nat Ocean Atmosph Administr, Envir Res Labs, NOAA Atlas 3

    Google Scholar 

  • Ronov AB (1972) Evolution of rock composition and geochemical processes in the sedimentary shell of the earth. Sedimentology 19: 157–172

    Google Scholar 

  • Ronov AB, Yaroshevsky AA (1969) Chemical structure of the earth’s crust. Geokhimia, 1967 (II), 1285–1309 (in Russian); also: In “Earth’s Crust and Upper Mantle”, Geophys Monogr 13, Amer Geophys Union, Washington DC, 37–57

    Google Scholar 

  • Ross DA, Whitmarsh RB, Ali SA et al. (1973) Red Sea drillings. Science 179: 377–380

    Google Scholar 

  • Ross DA, Uchupi AE, Prada KE, Macllvaine JC (1974) Bathymetry and microtopography of Black Sea. In “The Black Sea — Geology, Chemistry and Biology” (eds Degens ET, Ross DA), AAPG Memoir 20, Tulsa, Oklahoma, 1–35

    Google Scholar 

  • Ross DA, Neprochnov YP et al. (eds) (1978) Initial Reports of the Deep Sea Drilling Project 42, Pt 2, US Government Printing Office, Washington, DC, pp 1244

    Google Scholar 

  • Sagan C (1977) Reducing greenhouses and the temperature history of Earth and Mars. Nature 269: 224–226

    Google Scholar 

  • Sauramo M (1955) Land uplift with hinge lines in Fennoscandia. Ann Acad Sc Fennicae, Ser A, 3, 44: 1–25

    Google Scholar 

  • Scheidegger KF, Krissek LA (1982) Dispersal and deposition of eolian and fluvial sediments off Peru and northern Chile. Geol Soc Am Bull 93: 150–162

    Google Scholar 

  • Schoell M, Faber E (1978) New isotopic evidence for the origin of Red Sea brines. Nature 275: 436–438

    Google Scholar 

  • Schoenenberg R (1979) Einführung in die Geologie Europas ( 2nd ed ). Rombach Verlag, Freiburg, pp 300

    Google Scholar 

  • Scholle PA (1979) Constituents, Textures, Cements, and Porosities of Sandstones and Associated Rocks. Am Assoc Petrol Geol Mem 28, pp 201

    Google Scholar 

  • Schove DJ (ed) (1983) Sunspot Cycles. Benchmark Papers in Geology 68, Hutchinson Ross Publ Co, Stroudsburg, Pennsylvania, pp 397

    Google Scholar 

  • Sclater JG, Christie PAF (1980) Continental stretching: an explanation of the post-Mid-Cretaceous subsidence of the central North Sea basin. J Geophys Res 85 (B7): 3711–3739

    Google Scholar 

  • Sclater JG, Francheteau J (1970) The implications of terrestrial heat flow observations on current tectonic and geochemical models of the crust and upper mantle of the earth. Geophys J 20: 509–542

    Google Scholar 

  • Sclater JG, Hellinger S, Tapscott C (1977) The paleobathymetry of the Atlantic Ocean from the Jurassic to the present. J Geol 85: 509–552

    Google Scholar 

  • Sclater JG, Royden L, Horvarth F et al. (1980) Subsidence and thermal evolution of the Intra-Carpathian Basins. Earth Planet Sci Lett 51: 139–162

    Google Scholar 

  • Sclater JG, Parsons B, Jaupart C (1981) Oceans and continents: Similarities and differences in the mechanisms of heat loss. J Geophys Res 86:11, 535–11, 552

    Google Scholar 

  • Scotese CR, Bambach RK, Barton C, Van der Voo, Ziegler AM (1979) Paleozoic base maps. J Geol 87: 217–277

    Google Scholar 

  • Self S, Rampino MR, Newton MS, Wolff JA (1984) Volcanological study of the great Tambora eruption of 1815. Geology 12 /11: 659–663

    Google Scholar 

  • Selley RC (1978) Ancient Sedimentary Environments ( 2nd ed ). Chapman and Hall, London, pp 287

    Google Scholar 

  • Sharp RP, Malin MC (1975) Channels on Mars. Geol Soc Am Bull 86: 593–609

    Google Scholar 

  • Sherman GD (1952) The genesis and morphology of the alumina-rich laterite clays. Amer Inst Min Met Eng, Problems of Clay and Laterite Genesis, 154–161

    Google Scholar 

  • Shimkus KM, Trimonis ES (1974) Modern sedimentation in Black Sea. In “The Black Sea–Geology, Chemistry, and Biology” (eds Degens ET, Ross DA ), Am Assoc Petrol Geol Mem 20, 249–278

    Google Scholar 

  • Sloane NJA (1984) The packing of spheres. Sci Am 250 /1: 92101

    Google Scholar 

  • Smith JV ( 1974 a) Feldspar Minerals. I. Crystal Structure and Physical Properties. Springer-Verlag, Berlin Heidelberg New York, pp 627

    Google Scholar 

  • Smith JV (19746) Feldspar Minerals. II. Chemical and Textural Properties. Springer-Verlag, Berlin Heidelberg New York, pp 690

    Google Scholar 

  • Smith JV (1979) Mineralogy of the planets: a voyage in space and time. Miner Mag 43 /325: 1–89

    Google Scholar 

  • Smith JV (1981) Progressive differentiation of a growing moon. Proc Lunar Planet Sci 12B: 979–990

    Google Scholar 

  • Smith JV (1982) Heterogeneous growth of meteorites and planets, especially the earth and moon. J Geol 90: 1–48

    Google Scholar 

  • Smoluchowski R (1983) The Solar System. Sci Am Library,New York, 1–174

    Google Scholar 

  • Southam JR, Hay WW (1977) Time scales and dynamic models of deep-sea sedimentation. J Geophys Res 82 /27: 3825–3842

    Google Scholar 

  • Spencer DW, Brewer PG (1971) Vertical advection diffusion and redox potentials as controls on the distribution of manganese and other trace metals dissolved in waters of the Black Sea. J Geophys Res 76: 5877–5892

    Google Scholar 

  • Sprague D, Pollack HN (1980) Heat flow in the Mesozoic and Cenozoic. Nature 285: 393–395

    Google Scholar 

  • Steckler MS (1985) Uplift and extension at the Gulf of Suez: Indications of induced mantle convection. Nature 317: 135139

    Google Scholar 

  • Steckler MS, Watts AB (1980) The Gulf of Lion: subsidence of a young continental margin. Nature 87: 425–429

    Google Scholar 

  • Steele JH (1956) Plant production on the Fladen Ground. J Mar Biol Assoc UK 35: 1–33

    Google Scholar 

  • Steele JH (1957) Notes on oxygen sampling on the Fladen Ground. J Mar Biol Assoc UK 36 /2: 227–241

    Google Scholar 

  • Steele JH (1974) The Structure of Marine Ecosystems. Harvard Univ Press, Cambridge, Mass, pp 128

    Google Scholar 

  • Stevenson DJ (1980) Saturn’s luminosity and magnetism. Science 208: 746–748

    Google Scholar 

  • Stille H (1924) Grundfragen der vergleichenden Tektonik. Berlin, Borntraeger, pp 443

    Google Scholar 

  • Stolper E, Walker D, Hager BH et al. (1981) Melt segregation from partially molten source regions: the importance of melt density and source region size. J Geophys Res 86: 6261–6271

    Google Scholar 

  • Stosch H-G, Lugmair GW (1984) Evolution of the lower continental crust: granulite facies xenoliths from the Eifel, West Germany. Nature 311: 368–370

    Google Scholar 

  • Strum H (1966) Mineralogische Tabellen ( 4th ed ). Akad Verlagsges, Geest & Portig K-G, Leipzig, pp 560

    Google Scholar 

  • Suess E (1885–1909) Das Antlitz der Erde (3 vols). Prag and Leipzig, pp 2778

    Google Scholar 

  • Suk M (1983) Petrology of Metamorphic Rocks. Dev Petr 9, Elsevier, Amsterdam, pp 322

    Google Scholar 

  • Summerhayes CP, Shackleton NJ (1986) North Atlantic Palaeoceanography. Geol Soc Spec Publ No 21, Oxford London Edinburgh Boston Palo Alto Melbourne, Blackwell Sci Publ, pp 473

    Google Scholar 

  • Swallow JC, Crease J (1965) Hot salty water at the bottom of the Red Sea. Nature 205: 165–166

    Google Scholar 

  • Sykes LR (1967) Mechanism of earthquakes and nature of faulting on the mid-oceanic ridges. J Geophys Res 72: 21312152

    Google Scholar 

  • Talwani M, Eldholm 0 (1977) Evolution of the Norwegian-Greenland Sea. Geol Soc Am Bull 88: 969–999

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The Continental Crust. Blackwell Scientific, Palo Alto, Calif,’ pp 312

    Google Scholar 

  • Teichert C (1958) Concepts of facies. Am Assoc Petrol Geol Bull 42: 2718–2744

    Google Scholar 

  • Thiede J (1979) History of the North Atlantic Ocean: evolution of an asymmetric zonal paleoenvironment in a latitudinal basin. In “Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment” (eds Talwani M, Hay W, Ryan WBF), Maurice Ewing Ser (AGU) 3:275–296 Toon OB, Pollack JB, Ward W, Burns JA, Bilski K (1980 a) The astronomical theory of climatic change on Mars. Icarus 44: 552–607

    Google Scholar 

  • Toon OB, Pollack JB, Rages K (1980b) A brief review of the evidence for solar variability on the planets. In “The Ancient Sun” (eds Pepin RP, Eddy JA, Merrill RB ), Geochim Cosmochim Acta, Suppl 13: 523–531

    Google Scholar 

  • Tozer DC (1985) Heat transfer and planetary evolution. Geophys Sury 7: 213–246

    Google Scholar 

  • Trefil JS (1978) Missing particles cast doubt on our solar theories. Smithsonian 8 /12: 74–83

    Google Scholar 

  • Turekian KK, Clark SP Jr (1969) Inhomogeneous accretion of the Earth from the primitive solar nebula. Earth Planet Sci Lett 6: 346–348

    Google Scholar 

  • Turner FJ (1968) Metamorphic Petrology. McGraw-Hill, New York, pp 403

    Google Scholar 

  • Turner FJ, Verhoogen J (1960) Igneous and Metamorphic Petrology ( 2nd ed ). New York Toronto London, McGraw-Hill Book Company, pp 694

    Google Scholar 

  • Turner JS (1969) A physical interpretation of the observations of hot brine layers in the Red Sea. In “Hot Brines and Recent Heavy Metal Deposits in the Red Sea” (eds Degens ET, Ross DA ), Springer-Verlag, Berlin Heidelberg New York, 164–173

    Google Scholar 

  • Turner JS, Stommel H (1964) A new case of convection in the presence of combined vertical salinity and temperature gradients. Proc US Natl Acad Sci 52: 49–53

    Google Scholar 

  • Uyeda S (1981) Subduction zones and back arc basins–a review. Geol Rdsch 70: 552–569

    Google Scholar 

  • Uyeda S (1982) Subduction zones: an introduction to comparative subductology. Tectonophysics 81: 133–159

    Google Scholar 

  • Uyeda S, Kanamori H (1979) Back-arc opening and the mode of subduction. J Geophys Res 84: 1049–1061

    Google Scholar 

  • Valeton I (1983) Klimaperioden lateritischer Verwitterung und ihre Abbildung in den synchronen Sedimentationsräumen. Z dt Geol Ges 134: 413–452

    Google Scholar 

  • Van Andel TH (1975) Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments. Earth Planet Sci Lett 26: 187–194

    Google Scholar 

  • Van Andel TH (1983) Estimation of sedimentation and accumulation rates. In “Sedimentology, Physical Properties and Geochemistry in the Initial Reports of the Deep Sea Drilling Project: An Overview” (ed Heath GR ), 93–101, US Dept of Commerce, Nat Ocean Atmosph Administr, Envir Data Inform Serv, Boulder

    Google Scholar 

  • Van Andel TH, Thiede J, Sclater JG et al. (1977) Depositional history of the South Atlantic Ocean during the last 125 million years. J Geol 85: 651–698

    Google Scholar 

  • Veizer J (1983) The Archean-Proterozoic earth. In “Earth’s Earliest Biosphere: Its Origin and Evolution” (ed Schopf JW ), Princeton Univ Press, Princeton, NJ, 240–259

    Google Scholar 

  • Veizer J (1985) Carbonates and ancient oceans: isotopic and chemical record on time scales of 10’-109 years. In “The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present” (eds Sundquist ET, Broecker WS), Geophys Monogr 32, Amer Geophys Union, Washington DC, 595–601

    Google Scholar 

  • Veizer J, Compston W (1976) S7Sr/86Sr in Precambrian carbonates as an index of crustal evolution. Geochim Cosmochim Acta 40: 905–915

    Google Scholar 

  • Veizer J, Jansen SL (1979) Basement and sedimentary recycling and continental evolution. J Geol 87: 341–370

    Google Scholar 

  • Vine FJ (1966) Spreading of the ocean floor: new evidence. Science 154: 1405–1415

    Google Scholar 

  • Vine FJ (1968) Magnetic anomalies associated with mid-ocean ridges. In “The History of the Earth’s Crust” (ed Phinney RA ), Princeton Univ Press, Princeton, NJ, 73–89

    Google Scholar 

  • Vine FJ, Matthews DH (1963) Magnetic anomalies over oceanic ridges. Nature 199: 947–949

    Google Scholar 

  • Vine FJ, Wilson JT (1965) Magnetic anomalies over a young oceanic ridge off Vancouver Island. Science 150: 485–489

    Google Scholar 

  • Vink GE (1982) Continental rifting and the implications for plate tectonic reconstructions. J Geophys Res 87, B13:10, 677–10, 688

    Google Scholar 

  • Vitorello I, Pollack HN (1980) On the variation of continental heat flow with age and the thermal evolution of continents. J Geophys Res 85: 983–995

    Google Scholar 

  • Voll G (1983) Crustal xenoliths and their evidence for crustal structure underneath the Eifel volcanic district. In “Plateau Uplift. The Rhenish Shield–A Case History” (eds Fuchs K, Gehlen K v, Mälzer H, Murawski H, Semmel A ) 336–342, Berlin Heidelberg New York Tokyo, Springer- Verlag

    Google Scholar 

  • Wagner CA, Lerch FJ, Brownd JE, Richardson JA (1977) Improvement in the geopotential derived from satellite and surface data (GEM 7 and 8). J Geophys Res 82: 901–914

    Google Scholar 

  • Walker JCG (1982) Climatic factors on the Archean Earth. Palaeogeogr, -climatol, -oecol 40: 1–11

    Google Scholar 

  • Walker JCG (1983) Possible limits on the composition of the Archaean ocean. Nature 302: 518–520

    Google Scholar 

  • Walther J (1894) Einleitung in die Geologie als historische Wissenschaft. 3 vols. Jena, Fischer Verlag, pp 1055

    Google Scholar 

  • Warren PH (1985) The magma ocean concept and lunar evolution. Annu Rev Earth Planet Sci 13: 201–240

    Google Scholar 

  • Wassen JT, Adler B, Oeschger H (1967) Aluminum-26 in Pacific sediment: implications. Science 155: 446–448

    Google Scholar 

  • Wedepohl KH (1975) The contribution of chemical data to assumptions about the origin of magmas from the mantle. Fortschr Miner 52: 141–172

    Google Scholar 

  • Wedepohl KH (1981 a) Der primäre Erdmantel (Mp) und die durch Krustenbildung verarmte Mantelzusammensetzung (Md). Fortschr Miner 59, Beih 1: 203–205

    Google Scholar 

  • Wedepohl KH (1981 b) Tholeiitic basalts from spreading ocean ridges. The growth of the oceanic crust. Naturwissenschaften 68: 110–119

    Google Scholar 

  • Wegener A (1912) Die Entstehung der Kontinente. Geol Rdsch 5: 276–292

    Google Scholar 

  • Wells AF (1978) Structural Inorganic Chemistry ( 4th ed ). Clarendon Press, Oxford, pp 1095

    Google Scholar 

  • Werner CD (1981 a) Outline of the evolution of the magmatism in the GDR. In “Ophiolites and Initialites of Northern Border of the Bohemian Massif”, Guide Book of Excursions, PK IX, UK 2, Potsdam, Freiberg 1:17–68

    Google Scholar 

  • Werner CD (1981 b) Sächsisches Granulitgebirge - Saxonian Granulite Massif. In “Ophiolites and Initialites of Northern Border of the Bohemian Massif”, Guide Book of Excursions, PK IX, UK 2, Potsdam, Freiberg I:129–161

    Google Scholar 

  • Werner CD (1984) Globale Entwicklung des basischen Magmatismus. Z geol Wiss Berlin 12: 537–562

    Google Scholar 

  • Westphal M (1977) Configuration of the geomagnetic field and reconstruction of Pangaea in the Permian period. Nature 267: 136–137

    Google Scholar 

  • Wetherill GW (1980) Formation of the terrestrial planets. Annu Rev Astron Astrophys 18: 77–113

    Google Scholar 

  • Whitmann WS (1923) Chem Metall Engng 29: 146

    Google Scholar 

  • Wickman FE (1954) The “total” amount of sediments and the composition of the “average igneous rock”. Geochim Cosmochim Acta 5: 97–110

    Google Scholar 

  • Williams H, Turner FJ, Gilbert CM (1982) Petrography (2nd ed). WH Freeman and Company, New York, pp 406

    Google Scholar 

  • Wilson JT (1965) A new class of faults and their bearing on continental drift. Nature 207: 343–347

    Google Scholar 

  • Wilson RC (1978) Accurate solar “constant” determination by

    Google Scholar 

  • cavity pyrheliometers. J Geophys Res 83:4003–4007 Windley BF (ed) (1975) The Early History of the Earth. Lon-don, Wiley, pp 619

    Google Scholar 

  • Windley BF (1977) The Evolving Continents. London, Wiley, pp 385

    Google Scholar 

  • Winkler HGF (1979) Petrogenesis of Metamorphic Rocks ( 5th ed ). New York Heidelberg Berlin, Springer-Verlag, pp 348

    Google Scholar 

  • Woerner G, Schmincke HU, Schreyer W (1982) Crustal xenoliths from the Quaternary Wehr Volcano (East Eifel). N Jb Miner Abh 144 /1: 29–55

    Google Scholar 

  • Wong HK, Degens ET (1981) Geotektonische Entwicklung des variszischen Faltungsgürtels im Paläozoikum. Mitt GeolPaläont Inst Univ Hamburg 50: 17–44

    Google Scholar 

  • Wong HK, Degens ET (1983) Effects of CO2- H2O and oblique collision on orogenesis–the European Hercynides as an example. Tectonophysics 95: 191–200

    Google Scholar 

  • Wong HK, Degens ET (1984) The crust beneath the Red Sea-Gulf of Aden-East African Rift System: a review. Mitt GeolPaläont Inst Univ Hamburg 56: 53–94

    Google Scholar 

  • Worsley TR, Davies TA (1979) Sea level fluctuations and deep-sea sedimentation rates. Science 203: 455–456

    Google Scholar 

  • Worthington LV, Wright WR (1970) North Atlantic Ocean Atlas of Potential Temperature and Salinity in the Deep Water Including Temperature, Salinity and Oxygen Profiles from the ERIKA DAN Cruise of 1962. WHOI, Woods Hole, Mass, pp 6, plates 58, tables 24

    Google Scholar 

  • Wurster P (1958) Geometrie and Geologie von Kreuzschichtungskörpern. Geol Rdsch 47: 322–359

    Google Scholar 

  • Wyllie PJ (1971) The Dynamic Earth. New York, Wiley, pp 416

    Google Scholar 

  • Wyllie PJ (1976) The Way the Earth Works. New York Lon-don Sydney Toronto, John Wiley & Sons, Inc, pp 296

    Google Scholar 

  • Wyllie PJ (1977) Mantle fluid compositions buffered by carbo-nates in peridotite CO2–H2O. J Geol 85: 187–207

    Google Scholar 

  • Wyllie PJ (1981) Magmas and volatile components. Am Mineral 64: 469–500

    Google Scholar 

  • Yoder HS Jr (1976) Generation of Basaltic Magma. Washington DC, National Acad Sci, pp 265

    Google Scholar 

  • Yoder HS Jr (ed) (1979) The Evolution of the Igneous Rocks. Princeton, Princeton Univ Press, pp 588

    Google Scholar 

  • Zagwijn WH (1975) Chronostratigrafie en biostratigrafie: Inde-ling van het Kwartair op grond van veranderingen in vegetatie en klimaat. In “Toelichting bij Geologische Overzihtskaarten van Nederland” (ed Zagwijn WH, Van Staalduinen CJ ), 109–114

    Google Scholar 

  • Zenkevich LA (1963) Biologiya morel SSSR: Moscow. Izd Akad Nauk SSSR, 793 pp: Engl transl (Zenkevich), 1963, Biology of the Seas of the USSR. New York, Interscience Publ, pp 955

    Google Scholar 

  • Ziegler AM, Scotese CR, McKerrow WS, Johnson HE, Bam-buch RK (1979) Paleozoic paleogeography. Annu Rev Earth Planet Sci 7: 473–502

    Google Scholar 

  • Ziegler PA (1977) Geology and hydrocarbon provinces in the North Sea. Geojournal 1: 7–32

    Google Scholar 

  • Ziegler PA (1982) Geological Atlas of Western and Central Europe. Elsevier Publ Co, Amsterdam pp 130

    Google Scholar 

  • Ziegler PA (1984) Caledonian and Hercynian crustal consolidation of Western and Central Europe — a working hypothesis. Geol Mijnbouw 63: 93–108

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Degens, E.T. (1989). Coordination Principles. In: Perspectives on Biogeochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48879-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48879-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50191-6

  • Online ISBN: 978-3-642-48879-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics