Skip to main content

Electrochemical Cell Design

  • Chapter
Electrical Engineering Applications

Part of the book series: Topics in Boundary Element Research ((TBOU,volume 7))

Abstract

In industrial electrochemistry there is an increasing demand for high speed and high efficiency processes. In order to perform these objectives one needs a perfect insight in the interaction between electrode kinetics, cell geometry and mass- and charge transport. For many practical problems it is possible to simplify the general equations to a potential problem describing only transport of charge or only transport of mass in the electrolytic solution. That potential problem has non-linear boundary conditions due to the electrochemical reactions on the electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., and Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, Inc., New-York, 1970.

    Google Scholar 

  2. Alkire, R., Bergh, T., and Sani, R.L.: Predicting Electrode Shape Change with use of Finite Element Methods. J. Electrochem. Soc.: Vol. 125, pp. 1981–1988, 1978.

    Article  Google Scholar 

  3. Bialecki, R., and Nowak, A.J.: Boundary value Problems in Heat Conduction with Non-Linear Material and Non-Linear Boundary Conditions. Appl. Math. Modeling, Vol. 5, pp. 417–421, 1981.

    Article  MATH  Google Scholar 

  4. Bockris, J.O’M., Conway, B.E., Yeager, E., and White, R.E.: Comprehensive Treatise of Electrochemistry, Vol. 2, Electrochemical Processing, Plenum Press, New York and London, 1981.

    Google Scholar 

  5. Brebbia, C.A.: The Boundary Element Method for Engineers, A Halsted Press book, John Wiley & Sons, 1978.

    Google Scholar 

  6. Deconninck, J.: Analytical integration of integrals involved by the two-dimensional boundary element method using straight elements, Engineering Analysis, Vol. 3, no. 3, pp. 173–176, 1986.

    Article  Google Scholar 

  7. Deconinck, J.: Current Distribution and Electrode Shape Change in Electrochemical Systems — a boundary element approach. Ph.D. Thesis Dienst Electrotechniek, Vrije Universiteit Brussel, 1985.

    Google Scholar 

  8. Deconinck, J., Maggetto, G., Versyck, P., Vereecken J.: The Boundary Element Method (BEM) for the Calculation of Current Distributions in Electrochemical Systems. Extended abstracts of the 34th ISE Meeting, Erlangen BRD, 1983.

    Google Scholar 

  9. Hughes, T.J.R., Akin J.E.: Techniques for Developing Special Finite Element Shape Functions with Particular Reference to Singularities, Int. J. Num. Methods Eng., Vol. 15, pp. 733–751, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  10. Kim, H.D., Walker, J.D.A.: Prediction of Electroplating Rates Using the Boundary Element Method, Proceedings of the 2nd Boundary Element Technology Conference, MIT USA, pp. 183–194, 1986.

    Google Scholar 

  11. Mc Geough, J.A.: Principles of Electrochemical Machining, Chapman and Hall, London, 1974.

    Google Scholar 

  12. Newman, J.: Electrochemical systems, Prentice Hall. Inc. Englewood Cliffs, N.J., 1973.

    Google Scholar 

  13. Stroud, A.H.: Numerical Quadrature and Solution of Ordinary Differential Equations, Applied Mathematical Sciences 10, Springer-Verlag, New-York Heidelberg Berlin, 1974.

    Google Scholar 

  14. Symm, G.T.: Integral Equation Formulations in Two-Dimensional, Three-Dimensional and Axisymmetric Problems, Boundary Element Methods in Engineering, CISM Course, Udine, 1983.

    Google Scholar 

  15. Van Santvoort, W.: Modellisatie van tertiaire stroomverdelingen in elektrochemische baden, Eindwerk Dienst Electrotechniek, Vrije Universiteit Brussel, 1986.

    Google Scholar 

  16. Wrobel, L.C., Brebbia C.A.: Axisymmetric Potential Problems. New developments in BEM 1980, pp. 77–89, 1980.

    Google Scholar 

  17. Yoshikawa, F., Tanaka M.: Boundary Elements in Axisymmetrical Problems, Proceedings of the 4th Int. Sem. on BEM 1982, pp. 101–111, Springer-Verlag, 1982.

    Google Scholar 

  18. Zienkiewicz, O.C., Morgan K.: Finite Elements and Approximation, John Wiley & Sons, 1983.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Deconinck, J. (1990). Electrochemical Cell Design. In: Brebbia, C.A. (eds) Electrical Engineering Applications. Topics in Boundary Element Research, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48837-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48837-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48839-9

  • Online ISBN: 978-3-642-48837-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics