Skip to main content

Application of BEM to Galvanic Corrosion and Cathodic Protection

  • Chapter
Electrical Engineering Applications

Part of the book series: Topics in Boundary Element Research ((TBOU,volume 7))

Abstract

When two different metals are electrically connected in a corrosive environment, the least noble of the two corrodes more rapidly than when unconnected. This phenomenon, which is called galvanic corrosion, is often observed in many applications, because the contact of dissimilar metals is unavoidable for various reasons. The economic loss due to galvanic corrosion in structures, such as underground pipelines, off-shore structures and chemical plants, is estimated to be tremendously great. In order to reduce the loss, it would be necessary to design such structures and protection systems based on a precise analysis of the corrosion behaviors. Many attempts have been made to analyze galvanic corrosion and protection problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wagner, C.: Theoretical analysis of the current density distribution in electrolyte cells, J. Electrochem. Soc., 98–3, 116–128, 1951.

    Article  Google Scholar 

  2. Wagner, C.: Contribution to the theory of cathodic protection, J. Electrochem. Soc., 99–1, 1–12, 1952.

    Article  Google Scholar 

  3. Waber, J.T.: Mathematical studies on galvanic corrosion I. Coplanar electrodes with negligible polarization, J. Electrochem. Soc., 101, 271–276, 1954.

    Article  Google Scholar 

  4. Waber, J.T., and Rosenbluth, M.: Mathematical studies on galvanic corrosion II. Coplanar electrodes with one electrode infinitely large and with equal polarization parameter, J. Electrochem. Soc., 102, 344–353, 1955.

    Article  Google Scholar 

  5. Waber, J.T.: Mathematical studies on galvanic corrosion III. Semi-infinite coplanar electrodes with equal constant polarization parameters, J. Electrochem. Soc., 102, 420–429, 1955.

    Article  Google Scholar 

  6. Waber, J.T., and Fagan, B.: Mathematical Studies on Galvanic Corrosion IV. Influence of electrolyte thickness on the potential and current distributions over coplanar electrodes using polarization parameters, J. Electrochemical Soc., 103–1, 64–72, 1956.

    Article  Google Scholar 

  7. Waber, J.T., Morrissey, J., and Ruth, J.: Mathematical studies on galvanic corrosion V. Calculation of the average value of the corrosion current parameter, J. Electrochem. Soc. 103, 138–147, 1956.

    Article  Google Scholar 

  8. Waber, J.T.: Mathematical studies on galvanic corrosion VI. Limiting case of very thin films, J. Electrochem. Soc., 103, 567–570, 1956.

    Article  Google Scholar 

  9. Kennard, E., and Waber, J.T.: Mathematical studies on galvanic corrosion equal coplanar anode and cathode with unequal polarization parameters, J. Electrochem. Soc., 117, 880–885, 1970.

    Article  Google Scholar 

  10. Raz, L.G., and Yahalom, J.: Mathematical characterization of corrosion currents in local electrolytic cell, J. Electrochem. Soc., 120–5, 598–603, 1973.

    Google Scholar 

  11. McCafferty, E.: Calculation of current distribution in circular corrosion cells, Corrosion Sci., 16, 183–190, 1976.

    Article  Google Scholar 

  12. McCafferty, E.: Distribution of potential and current in circular corrosion cells having unequal polarization parameters, J. Electrochem. Soc., 124–12, 1869–1878, 1977.

    Article  Google Scholar 

  13. Doig, P., and Flewitt, P.E.J.: An analysis of galvanic corrosion: coplanar electrodes with one electrode infinitely large, Phil. Mag. B, 38–1, 27–40, 1978.

    Article  Google Scholar 

  14. Doig, P., and Flewitt, P.E.J.: A Finite difference numerical analysis of galvanic corrosion for semi-infinite linear coplanar electrodes, J. Electrochem. Soc.: Electrochemical Science and Technology, 126–12, 2057–2063, 1979.

    Google Scholar 

  15. Stremmen, R.: Evaluation of anode resistance formulas by computer analysis, Corrosion 84, paper number 253, 1984.

    Google Scholar 

  16. Stremmen, R., and Roland, A.: Corrosion surveillance of submarine pipelines by electric field strength monitoring, Material Performance, 20–10, 47–53, 1981.

    Google Scholar 

  17. Zamani, N.G., Porter, J.F., and Mufti, E.J.: A survey of computational efforts in the field of corrosion engineering, Int. J. Num. Meth. Engng., 23, 1295–1311, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  18. Forrest, A.W., and Bicicchi, R.: Cathodic protection of bronze propellers for copper nickel surface ships, Corrosion, 37–6, 349–357, 1981.

    Article  Google Scholar 

  19. Helle, H.P.E., Beek, G.H.M., and Ligtelijn, J. Th.: Numerical determination of potential distributions and current densities in multi-electrode system, Corrosion, 37–9, 522–530, 1981.

    Article  Google Scholar 

  20. Fu, J.W.: Finite element analysis of corrosion cells, Corrosion, 38–5, 295–296, 1982.

    Article  Google Scholar 

  21. Munn, R.S.: A mathematical model for a galvanic anode cathodic protection system, Material Performance, 21–8, 29–36, 1982.

    Google Scholar 

  22. Kasper, R.G., and April, M.G.: Electrogalvanic finite element analysis of partially protected marine structures, Corrosion, 39–5, 181–188, 1983.

    Article  Google Scholar 

  23. Fu, J.W., and Chan, S.: A finite element method for modeling localized corrosion cells, Corrosion, 40–10, 540–544, 1984.

    Article  Google Scholar 

  24. Danson, D.J., and Warne, M.A.: Current density/voltage calculations using boundary element techniques, Proc. Corrosion/83, Paper No. 211, 1983.

    Google Scholar 

  25. Bardal, E., Johnsen, R., and Gartland, P.O.: Prediction of galvanic corrosion rates and distribution by means of calculation and experimental modes, Corrosion, 40–12. 628–633, 1984.

    Article  Google Scholar 

  26. Telles, J.C.F., Mansur, W.J., and Wrobel, L.C.: On boundary elements for external potential problems, Mechanics research communications, 11–6, 373–377, 1984.

    Article  Google Scholar 

  27. Aoki, S., Kishimoto, K., and Sakata, M.: Boundary element analysis of galvanic corrosion, Boundary Element VII (Eds. Brebbia, C.A. and Maier G.), Vol 1, pp. 1–63–1–71, Springer–Verlag, 1985.

    Google Scholar 

  28. Telles, J.C.F., Wrobel, L.C., Mansur, W.J., and Azevedo, J.P.S.: Boundary elements for cathodic protection problems, Boundary Element VII (Eds. Brebbia, C.A. and Maier G.), Vol 1, pp. 1–73–183, Springer–Verlag, 1985.

    Google Scholar 

  29. Adey, R.A., Niku, S.M., Brebbia, C.A., and Finnegan, J.: Computer aided design of cathodic protection systems, Boundary Element VII (Eds. Brebbia, C.A. and Maier G.), Vol 2, pp. 14–21–14–43, Springer–Verlag, 1985.

    Google Scholar 

  30. Kishimoto, K., Aoki, S., and Sakata, M.: Application of boundary element method to galvanic corrosion problem of cast iron — stainless steel couple, Boundary Element VIII (eds. Tanaka, M. and Brebbia, C.A.), Vol 1, pp. 1–269–1–278, Springer–Verlag, 1986.

    Google Scholar 

  31. Cherry, B.W., Foo, M., and Siauw, T.H.: Boundary element method analysis of the potential field associated with a corroding electrode, Corrosion, 42–11, 654–662, 1986.

    Article  Google Scholar 

  32. Niku, S., Brebbia, C.A., and Adey, R.A.: BEASY-CP A CAD system for mathematical modeling of galvanic corrosion and cathodic protection system, in CADMO/86, Computational Mechanics Publications, Southampton and Springer-Verlag, 615–650, 1986.

    Google Scholar 

  33. Aoki, S., Kikuo, K. Sakata, M., and Miyasaka, M.: Application of boundary element method to galvanic corrosion problem, Theory and applications of boundary element methods (Eds. Tanaka, M. and Du, Q.H.), 313–323, Pergamon Press, 1987.

    Google Scholar 

  34. Aoki, S., Kishimoto, K., and Miyasaka, M.: Analysis of potential and current density distributions using a boundary element method, Corrosion, to be published.

    Google Scholar 

  35. Fontana, M.G.: Corrosion Engineering 3rd Edition, McGraw-Hill, 1986.

    Google Scholar 

  36. Brebbia, C.A., The Boundary Element Method for Engineer, Pentech Press, 1978.

    Google Scholar 

  37. Brebbia, C.A., and Walker, S.: Boundary Element Techniques in Engineering, Butterworth, 1980.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Aoki, S., Kishimoto, K. (1990). Application of BEM to Galvanic Corrosion and Cathodic Protection. In: Brebbia, C.A. (eds) Electrical Engineering Applications. Topics in Boundary Element Research, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48837-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48837-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48839-9

  • Online ISBN: 978-3-642-48837-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics