Skip to main content

Semiconductor Device Analysis

  • Chapter
Electrical Engineering Applications

Part of the book series: Topics in Boundary Element Research ((TBOU,volume 7))

  • 248 Accesses

Summary

A review concerning the basic semiconductor equations and the most used approximations is given in relation to the research activities with the boundary element method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Selberherr, S.: Analysis and simulation of semiconductor devices. Springer Verlag, Wien, 1984.

    Book  Google Scholar 

  2. Yamaguchi, K.: A time-dependent and two-dimensional numerical model for MOSFET device operation. Solid State Electronics, 1983, vol. 26, p. 907–916.

    Article  Google Scholar 

  3. Ryan, W.D.: Boundary element methods for the solution of the semiconductor equations. Proceedings International Conference on Simulation of Semiconductor Devices and Processes, Swansea U.K., 9–12/7/84, p. 56–59.

    Google Scholar 

  4. De Mey, G.: Potential calculations in Hall plates. Advances in Electronics and Electron Physics, 1983, vol. 61, p. 1–62.

    Article  Google Scholar 

  5. Jaswon, M., and Symm, G.: Integral equation methods in potential theory and electrostatics. Academic Press, New York, 1978.

    Google Scholar 

  6. Brebbia, C.: The boundary element method for engineers. Pentech Press, London, 1978.

    Google Scholar 

  7. De Mey, G.: Integral equation for the potential distribution in a Hall generator. Electronics Letters, 1973, vol. 9, p. 264–266.

    Article  Google Scholar 

  8. De Mey, G.: Determination of the electric field in a Hall generator under influence of an alternating magnetic field. Solid State Electronics, 1974, vol. 17, p. 977–979.

    Article  Google Scholar 

  9. De Mey, G.: Hall effect in a non homogeneous magnetic field. Solid State Electronics, 1977, vol. 20, p. 139–142.

    Article  Google Scholar 

  10. De Mey, G.: Characteristics of thin film Hall effect devices. Proceedings NASECODE I Conference, 27–29/6/79, Dublin, p. 224–225.

    Google Scholar 

  11. Sze, S.M.: Physics of semiconductor devices. Wiley, New York, 1981.

    Google Scholar 

  12. De Mey, G.: Numerical applications of integral equations in semiconductor physics. Colloquium on Integral Equations, 1978, Mathematisch Centrum, Amsterdam, Proceedings p. 99–114.

    Google Scholar 

  13. De Visschere, P., and De Mey, G.: An integral equation approach to the abrupt depletion approximation in semiconductor components. Electronics Letters, 1977, vol. 13, p. 104–106.

    Article  Google Scholar 

  14. De Mey, G., and Jacobs, B.: Influence of the rough shaped thickness profile on the performance of thin film solar cells. Colloque Survimet, Strassbourg, 9–12/5/78, Proceedings p. 215–219.

    Google Scholar 

  15. De Mey, G.: Integral equation techniques for the calculation of two dimensional and time dependent problems in pn junctions and solar cells. NASECODE I Conference, Dublin, 27–29/6/79, Proceedings p. 226–228.

    Google Scholar 

  16. De Mey, G., Jacobs, B., and Fransen, F.: Influence of junction roughness on solar cell characteristics. Electronics Letters, 1977, vol. 13, p. 657–658.

    Article  Google Scholar 

  17. De Mey, G.: An integral equation method to calculate the transient behaviour of a photovoltaic solar cell. Solid State Electronics, 1978, vol. 21, p. 595–596.

    Article  Google Scholar 

  18. Jacobs, B., and De Mey, G.: Theoretical analysis of Cu2S-CdS solar cells with rough interfaces. IEEE Transactions on Electron Devices, 1981, vol. ED-28, p. 289–293.

    Google Scholar 

  19. Cuypers, F., and De Mey, G.: Boundary element method for calculation of depletion layer profiles. Electronics Letters, 1984, vol. 20, p. 229–230.

    Article  Google Scholar 

  20. Oh, S.Y., and Dutton, R.W.: A simplified two dimensional numerical analysis of MOS devices — DC case. IEEE Transactions on Electron Devices, 1980, vol. ED-27, p. 2101–2108.

    Google Scholar 

  21. Arvas, E., Turkman, R.I., and Neelakantaswomy, P.S.: MOSFET analysis through numerical solution of Poisson’s equation by the method of moments. Solid State Electronics, 1987, vol. 30, p. 1355–1357.

    Article  Google Scholar 

  22. De Mey, G., Loret, D., and Van Calster, A.: The boundary element method for modelling the DMOS transistor at high drain voltages. International Conference on Simulation of Semiconductor Devices and Processes, Swansea, 8–12/6/84, Proceedings p. 69–81.

    Google Scholar 

  23. De Mey, G., Loret, D., and Van Calster, A.: Modelling of DMOS transistors. Colloquium Topics in Applied Numerical Analysis, Mathematisch Centrum, Amsterdam, 1984, Proceedings p. 297–311.

    Google Scholar 

  24. De Mey, G.: The boundary element method for modelling semiconductor components under low current approximations. NASECODE IV Conference, Dublin, 19–21/6/85, Proceedings p. 261–266.

    Google Scholar 

  25. Sah, G.T.: Characteristics of the metal-oxide-semiconductor transistors. IEEE Transactions on Electron Devices, 1964, vol. ED-11, p. 324–345.

    Article  Google Scholar 

  26. Grignoux, P., and Geiger, R.L.: Modelling of MOS transistors with nonrectangular gate geometries. IEEE Transactions on Electron Devices, 1982, vol. ED-29, p. 1261–1269.

    Article  Google Scholar 

  27. De Mey, G.: A comment on Modelling of MOS transistors with nonrectangular gate geometries’. IEEE Transactions on Electron Devices, 1983, vol. ED-30, p. 862–863.

    Article  Google Scholar 

  28. Chin, D., Oh, S.Y., and Dutton, R.: A general solution method for two dimensional non planar oxidation. IEEE Transactions on Electron Devices, 1983, vol. ED-30, p. 993–998.

    Article  Google Scholar 

  29. Needs, M.J., Jovic, V., Taylor, C., Board K., and Cooke, M.: A 2-D linear elastic model for the local oxidation of silicon using the boundary element method. Proceedings Second International Conference on Simulation of Semiconductor Devices and Processes, Swansea, 21–23/7/86, p. 412–432.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

De Mey, G. (1990). Semiconductor Device Analysis. In: Brebbia, C.A. (eds) Electrical Engineering Applications. Topics in Boundary Element Research, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48837-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48837-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48839-9

  • Online ISBN: 978-3-642-48837-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics