Advertisement

Solid-State NMR in High and Very High Magnetic Fields

Conference paper
  • 92 Downloads
Part of the NMR book series (NMR, volume 25)

Abstract

This contribution grew out of a seminar held in Grenoble in September ’86 on the prospects of the construction of a 1-GHz NMR spectrometer whose crucial component is, of course, the magnet which is planned to generate a field of 23.4 Tesla. My part in this seminar was, as it is in this volume, to consider solid-state NMR in fields currently classified as “high” as well as to explore the impact the availability of a 23.4-Tesla field would possibly have on this branch of NMR spectroscopy. Naturally I shall not restrict myself to proton NMR to which the frequency of 1 GHz applies but shall keep an eye on the NMR of other nuclei as well. What follows is not intended to be a review of solid-state NMR as such, or of solid-state NMR methodology. Such reviews with extensive lists of references have appeared in the literature in various places [1–4].

Keywords

Electric Field Gradient Larmor Frequency Chemical Shift Anisotropy Powder Spectrum Isotropic Chemical Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mehring M (1983) in: Diehl P, Fluck E, Kosfeld R (eds) NMR Basic principles and progress, vol 11, Springer-Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  2. 2.
    Fyfe CA (1983) Solid state NMR for chemists, CFC Press Guelph Ontario CanadaGoogle Scholar
  3. 3.
    Gerstein B, Dybowski C (1985) Transient techniques in NMR of solids, Academic Press, New YorkGoogle Scholar
  4. 4.
    Blümich B, Spieß HW (1988) Angew. Chem. Int. Ed. Engl. 27: 1655Google Scholar
  5. 5.
    Sagnowski SF, Aravamudhan S, Haeberlen U (1977) J. Magn. Reson. 28: 271CrossRefGoogle Scholar
  6. 6.
    Meier BH (1984) Dynamik und Struktur der intermolekularen Wasserstoffbrücken in dimeren Carbonsäuren untersucht mit Festkörperkernresonanz und Neutronenbeugung. Thesis, ETH ZürichGoogle Scholar
  7. 7.
    LeFloch-Durand M, Haeberlen U, Müller C (1986) J. de Physique 43: 107CrossRefGoogle Scholar
  8. 8.
    Benz S, Haeberlen U, Tegenfeldt J (1986) J. Magn. Reson. 66: 125CrossRefGoogle Scholar
  9. 9.
    Slosarek G, Heuer A, Zimmermann H, Haeberlen U (1989) J. Phys.: Condens. Matter 1: 5931CrossRefGoogle Scholar
  10. 10.
    Müller C, Schajor W, Zimmermann H, Haeberlen U (1984) J. Magn. Reson. 56: 235CrossRefGoogle Scholar
  11. 11.
    Gärtner S, Gogu E, Heinen I, Keller HJ, Klutz T, Schweitzer D (1988) Solid State Comm. 65: 1531CrossRefGoogle Scholar
  12. 12.
    Spieß HW (1978) In: Diehl P, Fluck E, Kosfeld R (eds) NMR Basic principles and progress, vol 15, Springer-Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  13. 13.
    Topic B, Haeberlen U, Blinc R (1988) Z. Phys. B Condensed Matter 70: 95CrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1990

Authors and Affiliations

  1. 1.Arbeitsgruppe MolekülkristalleMax-Planck-Institut für Medizinische ForschungHeidelbergGermany

Personalised recommendations