Advertisement

Behaviour of the NMR Relaxation Parameters at High Fields

Conference paper
Part of the NMR book series (NMR, volume 25)

Abstract

The algebraic expressions of the dynamic NMR parameters, namely, the spin—lattice relaxation time T1, the spin-spin relaxation time T2, the cross-relaxation terms σ and σρ, and the NOE factor are derived. The study of their behaviour as a function of the applied magnetic field or resonance frequency is examined, with special emphasis on the high frequency region (ν > 800 MHz). The different models which may be used to derive the spectral density are presented. Several plots of the variation of the NMR dynamic parameters for the most often encountered nuclei (1H,13C,15N,31P) are shown. These plots correspond to different and realistic values of the correlation times, internuclear distances, and chemical shielding anisotropy. The variation of the NMR signal sensitivity as a function of the magnetic field is also discussed. As expected, with the exception of the phosphorus nucleus, the sensitivity increases with B0. In some cases, the increase is greater than the expected factor B 0 3/2 .

Keywords

Spectral Density Correlation Time Relaxation Parameter Nuclear Overhauser Effect Chemical Shift Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bendall MR, Doddrell DM (1979) J Magn Reson 33: 659CrossRefGoogle Scholar
  2. 2.
    Volino F (1977) In: Microscopic structure and dynamics of liquids. Nato Advanced Study Institute SeriesGoogle Scholar
  3. 3.
    Bloch F (1946) Phys Rev 70: 460CrossRefGoogle Scholar
  4. 4.
    Solomon I (1955) Phys Rev 99: 559CrossRefGoogle Scholar
  5. 5.
    Rose M (1976) Elementary theory of angular momentum. Wiley, New YorkGoogle Scholar
  6. 6.
    Abragam A (1961) Principles of nuclear magnetism. Oxford University PressGoogle Scholar
  7. 7.
    Redfield AG (1965) In: Waugh JS (ed) Advances in magnetic resonance, vol 1. Academic Press, New York, p 1Google Scholar
  8. 8.
    Szymanski S, Gryff-Keller AM, Binsch G (1986) J Magn Reson 68: 399CrossRefGoogle Scholar
  9. 9.
    Spiess HW (1978) In: Diehl P, Fluck E, Kosfeld R (eds) NMR Basic principles and progress, vol 15. Springer, Berlin Heidelberg New York, p 59Google Scholar
  10. 10.
    Hubbard PS (1969) Phys Rev 180: 319CrossRefGoogle Scholar
  11. 11.
    Vold RL, Vold RR (1978) In: Emsley JW, Feeney J, Sutcliffe LH (eds) Progress in NMR spectroscopy, vol 12, p 79. Pergamon, OxfordGoogle Scholar
  12. 12.
    Werbelow LG, Grant DM (1977) In: Waugh JS (ed) Advances in magnetic resonance, vol 4, p 189. Academic, New YorkGoogle Scholar
  13. 13.
    Hubbard PS (1970) J Chem Phys 52: 563CrossRefGoogle Scholar
  14. 14.
    Haeberlen U (1976) In: Waugh JS (ed) Advances in magnetic resonance. Academic Press, New York, London (suppl 1) High resolution NMR in solidsGoogle Scholar
  15. 15.
    Noggle DH, Schirmer RE (1971) The nuclear Overhauser effect. Academic Press, New YorkGoogle Scholar
  16. 16.
    Vold RR, Vold RL (1976) J Chem Phys 64: 1320CrossRefGoogle Scholar
  17. 17.
    Mackor EL, Maclean C (1967) In: Emsley JW, Feeney J, Sutcliffe LH (eds) Progress in NMR spectroscopy, vol 30, p 129. Pergamon Press, OxfordGoogle Scholar
  18. 18.
    Goldman M (1984) J Magn Reson 60: 437CrossRefGoogle Scholar
  19. 19.
    Gueron M, Leroy JL, Griffey RH (1983) J Am Chem Soc 105: 473CrossRefGoogle Scholar
  20. 20.
    Farrar TC, Locker IC (1987) J Chem Phys 87: 3281CrossRefGoogle Scholar
  21. 21.
    Nery H, Canet D (1981) J Magn Reson 42: 370CrossRefGoogle Scholar
  22. 22.
    Werbelow LG, Marshall AG (1973) Chem Phys Lett 22: 568Google Scholar
  23. 23.
    Jones GP (1966) Phys Rev 148: 811CrossRefGoogle Scholar
  24. 24.
    Bothner-by AA, Stephens RL, Lee J, Warren CD, Jeanloz RW (1985) J Am Chem Soc 106: 811CrossRefGoogle Scholar
  25. 25.
    Bax A, Davis DG (1985) J Magn Reson 63: 207CrossRefGoogle Scholar
  26. 26.
    Halle B, Wennerstrom H (1981) J Magn Reson 44: 89CrossRefGoogle Scholar
  27. 27.
    Hubbard PS (1970) J Chem Phys 53: 985CrossRefGoogle Scholar
  28. 28.
    Delville A, Detellier C, Laszlo P (1979) J Magn Reson 34: 301CrossRefGoogle Scholar
  29. 29.
    Werbellow LG (1979) J Chem Phys 70: 5381CrossRefGoogle Scholar
  30. 30.
    Werbellow LG, Marshall AG (1981) J Magn Reson 43: 443CrossRefGoogle Scholar
  31. 31.
    Huntress WT Jr (1970) In: Waugh JS (ed) Advances in magnetic resonance, vol 4. Academic Press, New York. Steele WA (1976) In: Prigogine I, Rice AR (eds) Advances in chemical physics, vol xxxiv, p 1. John Wiley and Sons, New YorkGoogle Scholar
  32. 32.
    Hertz HG (1985) In: Emsley JW, Feeney J, Sutcliffe LH (eds) Progress in NMR spectroscopy, vol 16, p 115. Pergamon Press, OxfordGoogle Scholar
  33. 33.
    Egelstaff PA (1967) An introduction to the liquid state. Academic Press, LondonGoogle Scholar
  34. 34.
    Gordon RG (1966) J Chem Phys 44: 1840Google Scholar
  35. 35.
    McClung RED (1969) J Chem Phys 55: 3459CrossRefGoogle Scholar
  36. 36.
    McClung RED (1972) J Chem Phys 57: 5478CrossRefGoogle Scholar
  37. 37.
    Bull TE, Egan W (1984) J Chem Phys 81: 3181CrossRefGoogle Scholar
  38. 38.
    Fixman M, Rider K (1969) J Chem Phys 51: 2425CrossRefGoogle Scholar
  39. 39.
    Hubbard PS (1972) Phys Rev A6: 2421CrossRefGoogle Scholar
  40. 40.
    McClung RED (1980) J Chem Phys 73: 2435CrossRefGoogle Scholar
  41. 41.
    McClung RED (1980) J Chem Phys 75: 5503; GT Evans (1977) J Chem Phys 67: 2913Google Scholar
  42. 42.
    Lee DH, McClung RED (1987) Chem Phys 112: 1CrossRefGoogle Scholar
  43. 43.
    Bull TE (1988) Chem Phys 121: 1CrossRefGoogle Scholar
  44. 44.
    Perrin F (1934) J Phys Radium V: 33Google Scholar
  45. 45.
    Perrin F (1936) J Phys Radium VII: 1Google Scholar
  46. 46.
    Woessener DE (1961) J Chem Phys 36: 1CrossRefGoogle Scholar
  47. 47.
    Huntress WT Jr (1968) J Chem Phys 48: 3524CrossRefGoogle Scholar
  48. 48.
    Woessner DE (1962) J Chem Phys 37: 647CrossRefGoogle Scholar
  49. 49.
    Wennerstrom H, Lindman B, Soderman O, Drakenberg T, Rosenholm JB (1979) J Amer Chem Soc 101: 6860; Lippari G, Szabo A (1982) J Amer Chem Soc 104: 5146Google Scholar
  50. 50.
    Ernst RR (1966) In: Waugh JS (ed) Advances in magnetic resonance, vol 2, pp 1–131. Academic Press, New YorkGoogle Scholar
  51. 51.
    Hoult DI, Richards RE (1976) J Magn Reson 24: 71CrossRefGoogle Scholar
  52. 52.
    Mehring M (1976) In: Diehl P, Fluck E, Kosfeld R (eds) NMR basic principles and progress, vol 11. Spinger-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  53. 53.
    Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Clarendon Press, OxfordGoogle Scholar
  54. 54.
    Ducan TM (1987) J Phys Chem Ref Data 6: 125Google Scholar
  55. 55.
    Facelli JC, Grant DM (1989) In: Eliel EL, Wilen SH (eds) Topics in stereochemistry, vol 19, pp 1–61. An Interscience publication. J Wiley and Sons, New YorkGoogle Scholar
  56. 56.
    Harbison G, Herzfeld J, Griffin RG (1981) J Amer Chem Soc 103: 4752CrossRefGoogle Scholar
  57. 57.
    Harbison G, Jelinski LW, Stark RE, Torchia DA, Herzfeld J, Griffin RG (1984) J Magn Reson 60: 79CrossRefGoogle Scholar
  58. 58.
    Valentine KG, Rockwell AL, Gierash LM, Opella SJ (1987) J Magn Reson 73: 519CrossRefGoogle Scholar
  59. 59.
    Harris RK (1978) In: Harris RK, Mann BE (eds) NMR and the periodic table, Academic Press, LondonGoogle Scholar
  60. 60.
    Crutchfield MM, Dungan CH, Letcher JH, Van Wazer JR (1967) In: Grayson M, Griffiths EJ (eds) Topics in phosphorus chemistry, vol 5, Chap. 4, Wiley-Interscience. New YorkGoogle Scholar
  61. 61.
    Tebby JC (1987) In: Verkade JG, Quin LD (eds) Phosphorus-31 NMR spectroscopy in stereochemical analysis, Chap 1. VCH Publishers, Deerfield BeachGoogle Scholar
  62. 62.
    Robert JB, Wiesenfeld L (1982) Phys Rep 86: 363CrossRefGoogle Scholar
  63. 63.
    Robert JB, Wiesenfeld L (1987) In: Verkade JC, Quin LD (eds) Phosphorus-31 spectroscopy in stereochemical analysis. Chap 4, VCH Publishers Deerfeld, BeachGoogle Scholar
  64. 64.
    Gorenstein DG (1984) Phosphorus-31 NMR. Academic Press, San FranciscoGoogle Scholar
  65. 65.
    Sun U, Klein MP (1989) J Amer Chem Soc 111: 5119CrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1990

Authors and Affiliations

  1. 1.Laboratoire de Méthodologie RMN (UA CNRS 406-LESOC)Université de Nancy IVandoeuvre-les-Nancy, CedexFrance
  2. 2.Service National des Champs Intenses CNRSGrenoble CedexFrance

Personalised recommendations