Skip to main content

Behaviour of the NMR Relaxation Parameters at High Fields

  • Conference paper

Part of the book series: NMR ((NMR,volume 25))

Abstract

The algebraic expressions of the dynamic NMR parameters, namely, the spin—lattice relaxation time T1, the spin-spin relaxation time T2, the cross-relaxation terms σ and σρ, and the NOE factor are derived. The study of their behaviour as a function of the applied magnetic field or resonance frequency is examined, with special emphasis on the high frequency region (ν > 800 MHz). The different models which may be used to derive the spectral density are presented. Several plots of the variation of the NMR dynamic parameters for the most often encountered nuclei (1H,13C,15N,31P) are shown. These plots correspond to different and realistic values of the correlation times, internuclear distances, and chemical shielding anisotropy. The variation of the NMR signal sensitivity as a function of the magnetic field is also discussed. As expected, with the exception of the phosphorus nucleus, the sensitivity increases with B0. In some cases, the increase is greater than the expected factor B 3/20 .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bendall MR, Doddrell DM (1979) J Magn Reson 33: 659

    Article  CAS  Google Scholar 

  2. Volino F (1977) In: Microscopic structure and dynamics of liquids. Nato Advanced Study Institute Series

    Google Scholar 

  3. Bloch F (1946) Phys Rev 70: 460

    Article  CAS  Google Scholar 

  4. Solomon I (1955) Phys Rev 99: 559

    Article  CAS  Google Scholar 

  5. Rose M (1976) Elementary theory of angular momentum. Wiley, New York

    Google Scholar 

  6. Abragam A (1961) Principles of nuclear magnetism. Oxford University Press

    Google Scholar 

  7. Redfield AG (1965) In: Waugh JS (ed) Advances in magnetic resonance, vol 1. Academic Press, New York, p 1

    Google Scholar 

  8. Szymanski S, Gryff-Keller AM, Binsch G (1986) J Magn Reson 68: 399

    Article  Google Scholar 

  9. Spiess HW (1978) In: Diehl P, Fluck E, Kosfeld R (eds) NMR Basic principles and progress, vol 15. Springer, Berlin Heidelberg New York, p 59

    Google Scholar 

  10. Hubbard PS (1969) Phys Rev 180: 319

    Article  Google Scholar 

  11. Vold RL, Vold RR (1978) In: Emsley JW, Feeney J, Sutcliffe LH (eds) Progress in NMR spectroscopy, vol 12, p 79. Pergamon, Oxford

    Google Scholar 

  12. Werbelow LG, Grant DM (1977) In: Waugh JS (ed) Advances in magnetic resonance, vol 4, p 189. Academic, New York

    Google Scholar 

  13. Hubbard PS (1970) J Chem Phys 52: 563

    Article  CAS  Google Scholar 

  14. Haeberlen U (1976) In: Waugh JS (ed) Advances in magnetic resonance. Academic Press, New York, London (suppl 1) High resolution NMR in solids

    Google Scholar 

  15. Noggle DH, Schirmer RE (1971) The nuclear Overhauser effect. Academic Press, New York

    Google Scholar 

  16. Vold RR, Vold RL (1976) J Chem Phys 64: 1320

    Article  Google Scholar 

  17. Mackor EL, Maclean C (1967) In: Emsley JW, Feeney J, Sutcliffe LH (eds) Progress in NMR spectroscopy, vol 30, p 129. Pergamon Press, Oxford

    Google Scholar 

  18. Goldman M (1984) J Magn Reson 60: 437

    Article  CAS  Google Scholar 

  19. Gueron M, Leroy JL, Griffey RH (1983) J Am Chem Soc 105: 473

    Article  Google Scholar 

  20. Farrar TC, Locker IC (1987) J Chem Phys 87: 3281

    Article  CAS  Google Scholar 

  21. Nery H, Canet D (1981) J Magn Reson 42: 370

    Article  CAS  Google Scholar 

  22. Werbelow LG, Marshall AG (1973) Chem Phys Lett 22: 568

    CAS  Google Scholar 

  23. Jones GP (1966) Phys Rev 148: 811

    Article  Google Scholar 

  24. Bothner-by AA, Stephens RL, Lee J, Warren CD, Jeanloz RW (1985) J Am Chem Soc 106: 811

    Article  Google Scholar 

  25. Bax A, Davis DG (1985) J Magn Reson 63: 207

    Article  CAS  Google Scholar 

  26. Halle B, Wennerstrom H (1981) J Magn Reson 44: 89

    Article  CAS  Google Scholar 

  27. Hubbard PS (1970) J Chem Phys 53: 985

    Article  CAS  Google Scholar 

  28. Delville A, Detellier C, Laszlo P (1979) J Magn Reson 34: 301

    Article  CAS  Google Scholar 

  29. Werbellow LG (1979) J Chem Phys 70: 5381

    Article  Google Scholar 

  30. Werbellow LG, Marshall AG (1981) J Magn Reson 43: 443

    Article  Google Scholar 

  31. Huntress WT Jr (1970) In: Waugh JS (ed) Advances in magnetic resonance, vol 4. Academic Press, New York. Steele WA (1976) In: Prigogine I, Rice AR (eds) Advances in chemical physics, vol xxxiv, p 1. John Wiley and Sons, New York

    Google Scholar 

  32. Hertz HG (1985) In: Emsley JW, Feeney J, Sutcliffe LH (eds) Progress in NMR spectroscopy, vol 16, p 115. Pergamon Press, Oxford

    Google Scholar 

  33. Egelstaff PA (1967) An introduction to the liquid state. Academic Press, London

    Google Scholar 

  34. Gordon RG (1966) J Chem Phys 44: 1840

    Google Scholar 

  35. McClung RED (1969) J Chem Phys 55: 3459

    Article  Google Scholar 

  36. McClung RED (1972) J Chem Phys 57: 5478

    Article  CAS  Google Scholar 

  37. Bull TE, Egan W (1984) J Chem Phys 81: 3181

    Article  CAS  Google Scholar 

  38. Fixman M, Rider K (1969) J Chem Phys 51: 2425

    Article  CAS  Google Scholar 

  39. Hubbard PS (1972) Phys Rev A6: 2421

    Article  CAS  Google Scholar 

  40. McClung RED (1980) J Chem Phys 73: 2435

    Article  CAS  Google Scholar 

  41. McClung RED (1980) J Chem Phys 75: 5503; GT Evans (1977) J Chem Phys 67: 2913

    Google Scholar 

  42. Lee DH, McClung RED (1987) Chem Phys 112: 1

    Article  Google Scholar 

  43. Bull TE (1988) Chem Phys 121: 1

    Article  CAS  Google Scholar 

  44. Perrin F (1934) J Phys Radium V: 33

    Google Scholar 

  45. Perrin F (1936) J Phys Radium VII: 1

    Google Scholar 

  46. Woessener DE (1961) J Chem Phys 36: 1

    Article  Google Scholar 

  47. Huntress WT Jr (1968) J Chem Phys 48: 3524

    Article  CAS  Google Scholar 

  48. Woessner DE (1962) J Chem Phys 37: 647

    Article  CAS  Google Scholar 

  49. Wennerstrom H, Lindman B, Soderman O, Drakenberg T, Rosenholm JB (1979) J Amer Chem Soc 101: 6860; Lippari G, Szabo A (1982) J Amer Chem Soc 104: 5146

    Google Scholar 

  50. Ernst RR (1966) In: Waugh JS (ed) Advances in magnetic resonance, vol 2, pp 1–131. Academic Press, New York

    Google Scholar 

  51. Hoult DI, Richards RE (1976) J Magn Reson 24: 71

    Article  Google Scholar 

  52. Mehring M (1976) In: Diehl P, Fluck E, Kosfeld R (eds) NMR basic principles and progress, vol 11. Spinger-Verlag, Berlin Heidelberg New York

    Google Scholar 

  53. Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Clarendon Press, Oxford

    Google Scholar 

  54. Ducan TM (1987) J Phys Chem Ref Data 6: 125

    Google Scholar 

  55. Facelli JC, Grant DM (1989) In: Eliel EL, Wilen SH (eds) Topics in stereochemistry, vol 19, pp 1–61. An Interscience publication. J Wiley and Sons, New York

    Google Scholar 

  56. Harbison G, Herzfeld J, Griffin RG (1981) J Amer Chem Soc 103: 4752

    Article  CAS  Google Scholar 

  57. Harbison G, Jelinski LW, Stark RE, Torchia DA, Herzfeld J, Griffin RG (1984) J Magn Reson 60: 79

    Article  CAS  Google Scholar 

  58. Valentine KG, Rockwell AL, Gierash LM, Opella SJ (1987) J Magn Reson 73: 519

    Article  CAS  Google Scholar 

  59. Harris RK (1978) In: Harris RK, Mann BE (eds) NMR and the periodic table, Academic Press, London

    Google Scholar 

  60. Crutchfield MM, Dungan CH, Letcher JH, Van Wazer JR (1967) In: Grayson M, Griffiths EJ (eds) Topics in phosphorus chemistry, vol 5, Chap. 4, Wiley-Interscience. New York

    Google Scholar 

  61. Tebby JC (1987) In: Verkade JG, Quin LD (eds) Phosphorus-31 NMR spectroscopy in stereochemical analysis, Chap 1. VCH Publishers, Deerfield Beach

    Google Scholar 

  62. Robert JB, Wiesenfeld L (1982) Phys Rep 86: 363

    Article  CAS  Google Scholar 

  63. Robert JB, Wiesenfeld L (1987) In: Verkade JC, Quin LD (eds) Phosphorus-31 spectroscopy in stereochemical analysis. Chap 4, VCH Publishers Deerfeld, Beach

    Google Scholar 

  64. Gorenstein DG (1984) Phosphorus-31 NMR. Academic Press, San Francisco

    Google Scholar 

  65. Sun U, Klein MP (1989) J Amer Chem Soc 111: 5119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag, Berlin Heidelberg

About this paper

Cite this paper

Canet, D., Robert, J.B. (1990). Behaviour of the NMR Relaxation Parameters at High Fields. In: Robert, J.B. (eds) NMR at Very High Field. NMR, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48814-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48814-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48816-0

  • Online ISBN: 978-3-642-48814-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics