Advertisement

A Brief History of High Resolution NMR

Conference paper
  • 102 Downloads
Part of the NMR book series (NMR, volume 25)

Abstract

The idea that nuclear magnetic resonance might be used in chemistry seems to have been suggested by S.S. Dharmatti, a chemist who happened to be working with magnetic resonance physicists at Stanford University. It had just been shown that the resonance frequency of a given nuclear species in a given magnetic field was not constant (as had been fondly hoped) but depended on the chemical nature of the sample. It appeared that the motion of the extranuclear electron cloud slightly modified the intensity of the applied magnetic field B0, as it were “shielding” the nucleus to an extent of a few parts per million
$$ B={{B}_{0}}\left( 1-\sigma \right) $$
Disappointed physicists named the effect the “chemical shift” and moved on to more promising lines of research. Dharmatti pointed out that if this was indeed a universal effect, then a simple organic compound would show several proton resonance frequencies. For example ethanol should show three proton lines. The experiment was tried [1] and a high resolution NMR spectrum obtained, three lines with intensities in the ratio 1:2:3. It is an interesting commentary on scientific specialization that one of the authors, Martin Packard (a physicist), remarked that he had never really believed the structural formulae written by chemists until he saw the ethanol spectrum.

Keywords

High Magnetic Field Proton Resonance Frequency Radiofrequency Field High Resolution Spectrometer Free Induction Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold JT, Dharmatti SS, Packard ME (1951) J. Chem. Phys. 19: 507CrossRefGoogle Scholar
  2. 2.
    Arnold JT (1956) Phys. Rev. 102: 136CrossRefGoogle Scholar
  3. 3.
    Anderson WA (1956) Phys. Rev. 102: 151CrossRefGoogle Scholar
  4. 4.
    Pirkle WH (1966) J. Amer. Chem. Soc. 88: 1837; Burligame TG, Pirkle WH (1966) J. Amer. Chem. Soc. 88: 4294Google Scholar
  5. 5.
    Pirkle WH, Beare SD (1967) J. Amer. Chem. Soc. 89: 5485CrossRefGoogle Scholar
  6. 6.
    Bloom AL, Shoolery JN (1955) Phys. Rev. 97: 1261CrossRefGoogle Scholar
  7. 7.
    Freeman R, Anderson WA (1962) J. Chem. Phys. 37: 2053CrossRefGoogle Scholar
  8. 8.
    Forsén S, Hoffman RA (1963) J. Chem. Phys. 39: 2892CrossRefGoogle Scholar
  9. 9.
    Kuhlmann KF, Grant DM (1968) J. Amer. Chem. Soc. 90: 7355Google Scholar
  10. 10.
    Anderson WA, Freeman R, Reilly CA (1963) J. Chem. Phys. 39: 1518CrossRefGoogle Scholar
  11. 11.
    Hinkley CC (1969) J. Amer. Chem. Soc. 91: 5160CrossRefGoogle Scholar
  12. 12.
    Sanders JKM, Williams DH (1971) J. Amer. Chem. Soc. 93: 641Google Scholar
  13. 13.
    Primas H, Fifth European Congress of Molecular Spectroscopy, Amsterdam 1961Google Scholar
  14. 14.
    Klein MP, Barton GW (1963) Rev. Sci. Instru. 34: 754Google Scholar
  15. 15.
    Lowe IJ, Norberg RE (1957) Phys. Rev. 107: 46CrossRefGoogle Scholar
  16. 16.
    Fellgett PB (1951) Ph.D. Thesis, Cambridge UniversityGoogle Scholar
  17. 17.
    U.S. Patent 3, 287, 629 issued to Varian RH, Filed August 1956Google Scholar
  18. 18.
    Ernst RR, Anderson WA (1966) Rev. Sci. Instr. 37: 93Google Scholar
  19. 19.
    Cooley JW, Tukey JW (1965) Math. Computation 19: 297CrossRefGoogle Scholar
  20. 20.
    Vold RL, Waugh JS, Klein MP, Phelps DE (1968) J. Chem. Phys. 48: 3831CrossRefGoogle Scholar
  21. 21.
    Duval E, Béné GJ (1967) HeIv. Chem. Acta. 40: 501Google Scholar
  22. 22.
    Hochstrasser G (1961) Hel. Chem. Acta. 34: 189Google Scholar
  23. 23.
    Weitekamp DP, Bielecki A, Zax D, Zilm K, Pines A (1983) Phys. Rev. Lett. 50: 1807Google Scholar
  24. 24.
    Mullar JM, Thayer AM, Bielecki A, Zax DB, Pines A (1985) J. Chem. Phys. 83: 934CrossRefGoogle Scholar
  25. 25.
    Albrand JP, Gagnaire D, Robert JB (1973) J. Amer. Chem. Soc. 95: 6498Google Scholar
  26. 26.
    Nelson FA, Weaver HE (1964) Science 146: 3641CrossRefGoogle Scholar
  27. 27.
    Schneider-Muntau HJ (1984) J. de Physique Colloque Cl, 45, C15Google Scholar
  28. 28.
    Turowski P, Shneider Th (1988) IEEE Transactions on Magnetics 24: 1063CrossRefGoogle Scholar
  29. 29.
    Schneider-Muntau HJ, Vanier JC (1988) IEEE Transactions on Magnetics 24: 1067CrossRefGoogle Scholar
  30. 30.
    Gray KW, Ozier I (1971) Phys. Rev. Lett. 26: 161; Kachurin AM, Fomichev VN (1981) Sov. Phys. JETP 53: 99Google Scholar
  31. 31.
    Allerhand A, Addleman RE, Osman D (1985) J. Amer. Chem. Soc. 107: 5809; Maple SR, Allerhand A (1987) J. Amer. Chem. Soc. 109: 6609; Allerhand A, Maple SR (1988) J. Magn. Res. 76: 375CrossRefGoogle Scholar
  32. 32.
    Maple SR, Allerhand A (1987) J. Amer. Chem. Soc. 109: 6609; Allerhand A, Maple SR (1988) J. Magn. Res. 76: 375CrossRefGoogle Scholar
  33. 33.
    Allerhand A, Maple SR (1988) J. Magn. Res. 76: 375CrossRefGoogle Scholar
  34. 34.
    Shaka AJ, Keeler J, Freeman R (1983) J. Magn. Res. 53: 313CrossRefGoogle Scholar
  35. 35.
    Barra AL, Robert JB, Wiesenfeld L (1988) Europhys. Lett. 5: 217CrossRefGoogle Scholar
  36. 36.
    Saupe A, Englert G (1963) Phys. Rev. Lett. 11: 462Google Scholar
  37. 37.
    Diehl P, Khetrapal CL (1969) NMR basic principles and progress vol 1, p 1Google Scholar
  38. 38.
    Chidichimo G, Liguori H, Longeri M, Veracini CA (1983) J. Magn. Reson. 51: 438CrossRefGoogle Scholar
  39. 39.
    Andrew ER, Bradbury A, Eades RG (1958) Archs. Sci. Genève 11: 223Google Scholar
  40. 40.
    Schaefer J, Stejskal EO (1976) J. Amer. Chem. Soc. 98: 1031Google Scholar
  41. 41.
    Pines A, Gibby MG, Waugh JS (1972) Chem. Phys. Lett. 15: 373Google Scholar
  42. 42.
    Waugh JS, Huber LM, Haeberlen U, Phys. Rev. Lett. 20: 180Google Scholar
  43. 43.
    Mansfield P (1970) Phys. Lett. A 32: 485CrossRefGoogle Scholar
  44. 44.
    Rhim WK, Elleman DD, Vaughan RW (1973) J. Chem. Phys. 59: 3740CrossRefGoogle Scholar
  45. 45.
    Ernst RR (1966) J. Chem. Phys. 45: 3845CrossRefGoogle Scholar
  46. 46.
    Levitt MH, Freeman R (1979) J. Magn. Reson. 33: 473CrossRefGoogle Scholar
  47. 47.
    Waugh JS (1982) J. Magn. Reson. 50: 30CrossRefGoogle Scholar
  48. 48.
    Shaka AJ, Keeler J, Frenkiel TA, Freeman R (1983) J. Magn. Reson. 52: 335CrossRefGoogle Scholar
  49. 49.
    See for example Laszlo P (ed) (1983) NMR of newly accessible nuclei, Academic, New YorkGoogle Scholar
  50. 50.
    Jeener J (1971) Ampère International Summer School, Basko Polje, YugoslaviaGoogle Scholar
  51. 51.
    Aue WP, Bartholdi E, Ernst RR (1976) J. Chem. Phys. 64: 2229CrossRefGoogle Scholar
  52. 52.
    Bax A, Freeman R, Frenkiel TA (1981) J. Amer. Chem. Soc. 103: 2102Google Scholar
  53. 53.
    Kumar A, Ernst RR, Wüthrich K (1980) Biochem. Biophys. Res. Comm. 95: 1Google Scholar
  54. 54.
    Jeener J, Meier BH, Bachmann P, Ernst RR (1979) J. Chem. Phys. 71: 4546CrossRefGoogle Scholar
  55. 55.
    Lauterbur PC (1973) Nature 242: 190CrossRefGoogle Scholar
  56. 56.
    Ross BD, Radda GK, Gadian DG, Rocker G, Esiri M, Falconer-Smith J (1981) New Eng. J. Medicine 304: 1338Google Scholar
  57. 57.
    Ross BD, Freeman D, Chan L (1986) Kidney International 29: 131CrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1990

Authors and Affiliations

  1. 1.Department of ChemistryCambridge UniversityEngland
  2. 2.Service National des Champs Intenses CNRSGrenobleFrance

Personalised recommendations