Skip to main content

Aspects of Bone Tissue in Relation to Catabolic States

  • Chapter
Acute Catabolic State

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 21))

  • 41 Accesses

Abstract

The metabolic response to injury is related to the extent of the trauma; the greater the trauma, the greater the response, which generally increases until it plateaus at a maximum level [1]. The signals that stimulate the response are mixed. Nervous afferent signals play a significant role in the early phase after injury, and circulating and local humoral factors act as major mediators for homeostatic adjustments. Pyrogens may serve as circulating afferent signals to the brain to stimulate the output of an integrated hormonal response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilmore DW (1977) The metabolic management of the critically ill. Plenum, New York

    Google Scholar 

  2. Mgiuid MM, Brennan, Aoki TT, Muller WA, Ball MR, Moore FD (1974) Hormone-substrate interrelationship following trauma. Arch Surg 109:776–783

    Article  Google Scholar 

  3. Frost HM (1963) Bone remodeling dynamics. Thomas, Springfield

    Google Scholar 

  4. McKibbin B (1978) The biology of fracture healing in long bones. J Bone Joint Surg [Br] 60:105–162

    Google Scholar 

  5. Hunt TK (1984) Can repair processes be stimulated by modulators without adversely affecting normal processes? J Trauma 24:S39–S46

    PubMed  CAS  Google Scholar 

  6. Glaser BM, D’Amore PA, Seppa H, Schiffmann E (1980) Adult tissues contain chemoattractants for vascular endothelial cells. Nature 288:483–484

    Article  PubMed  CAS  Google Scholar 

  7. Heppenstad RB, Grislis G, Hunt TK (1975) Tissue gas oxygen consumption in healing bone defects. Clin Orthop 106:357–365

    Article  Google Scholar 

  8. Skjeldal S (1994) Acute skeletal muscle ischemia. Microcirculation and histological changes in rat hindlimbs. Thesis, University of Oslo

    Google Scholar 

  9. Skjeldal S, Svindland A, Nordsletten L, Kase T, Torvik A, Reikeras O (1993) Tourniquet ischemia induces periosteal hyperplasia in the rat tibia. Trans Scand Orthop Res Soc 1:11 (abstract)

    Google Scholar 

  10. Kase T, Skjeldal S, Nordsletten L, Reikeras O (1993) Healing of tibial fractures after acute ischemia in the rat hindlimb. Trans Scand Orthop Res Soc 1:10 (abstract)

    Google Scholar 

  11. Hogevold HE, Aasen AO, Kierulf P, Garred P, Mollnes TE, Reikeras O (1989) High dose of corticosteroids in total hip replacement. Effects on components of coagulation, fibrinolytic, plasma kallikrein-kinin and complement systems. Acta Chir Scand 155:247–250

    PubMed  CAS  Google Scholar 

  12. Hogevold HE, Lyberg T, Kierulf P, Reikeras O (1991) Generation of procoagulant (thromboplastin) and plasminogen activation activities in peripheral blood monocytes after total hip replacement surgery. Effects of high doses of corticosteroids. Thromb Res 62:449–457

    Article  PubMed  CAS  Google Scholar 

  13. Hogevold HE, Kierulf P, Ovstebo R, Reikeras O (1992) Acute phase reactants and interleukin 6 after total hip replacement. Effects of high dose corticosteroids. Eur J Surg 158:339–345

    PubMed  CAS  Google Scholar 

  14. Rosenblatt M, Kroneneberg HM, Potts JT (1989) Parathyroid hormone: physiology, chemistry, biosynthesis, secretion, metabolism and mode of action. In: DeGroot LJ et al. (eds) Endocrinology, vol 2. Grune and Stratton, New York, pp 848–891

    Google Scholar 

  15. Adams PH (1979) Calcium regulating hormones: general. In: Nordin BEC (ed) Human nutritional reviews: calcium in human biology. Springer, Berlin Heidelberg New York, pp 68–91

    Google Scholar 

  16. Isaksson OGP, Edens S, Jansson JO (1985) Mode of action of pituitary growth hormone on target cells. Annu Rev Physiol 47:483–499

    Article  PubMed  CAS  Google Scholar 

  17. Jilka RL, Hangoc G, Girasole G, Passeri G, Williams D, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC (1992) Increased osteoblast development after estrogen loss: mediation by interleukin-6. Science 257:88–91

    Article  PubMed  CAS  Google Scholar 

  18. Kaastad TS, Reikeras O, Narum S, Madsen JE, Haug E, Obrand KJ, Nordsletten L (1993) Intensive training of oophorectomized rats does not affect the in vivo structural strength of the lower leg during muscle contraction (Abstr). Trans Nor Surg Soc 157

    Google Scholar 

  19. Hogevold HE, Grogaard B, Reikeras O (1992) Effect of short-term treatment with corticosteroids and indomethacin on bone healing. A mechanical study of osteotomies in rats. Acta Orthop Scand 63:607–611

    CAS  Google Scholar 

  20. Mueller-Glauser W, Hunbel B, Glatt M, Straeuli P, Winterhalter KH, Bruckner P (1986) On the role of type IX collagen in the extracellular matrix of cartilage: type IX collagen is localized to intersections of collagen fibrils. J Cell Biol 102:1931–1939

    Article  CAS  Google Scholar 

  21. Grant WT, Wang GJ, Balian G (1987) Type X collagen synthesis during enchondral ossification. J Biol Chem 262:9844–9849

    PubMed  CAS  Google Scholar 

  22. Boskey AL (1989) Noncollagenous matrix proteins and their role in meralization. Bone Miner 6:111–123

    Article  PubMed  CAS  Google Scholar 

  23. Canalis E, McCarthy T, Centrella M (1988) Growth factors and the regulation of bone remodeling. J Clin Invest 81:277–285

    Article  PubMed  CAS  Google Scholar 

  24. Linkhart TA, Mohans S, Jennings JC, Farley JR, Baylink DJ (1984) Skeletal growth factors. In: Li CH (ed) Hormonal proteins and peptides. Academic, New York, pp 279–296

    Google Scholar 

  25. Urist MR, De Lange RJ, Finermann GAM (1983) Bone cell differentiation and growth factors. Science 220:680–689

    Article  PubMed  CAS  Google Scholar 

  26. Goldring MR, Goldring SR (1990) Skeletal tissue response to cytokines. Clin Orthop 258:245–278

    PubMed  Google Scholar 

  27. Kasperk C, Wergedal JE, Mohan S, Long DL, Lau KHW, Baylink DJ (1990) Interaction of growth factors present in bone matrix and bone cells: effects on DNA synthesis and alkaline phosphatase. Growth Factors 3:147–155

    Article  PubMed  CAS  Google Scholar 

  28. Globus RK, Patterson-Buckendahl P, Gospopdarowicz D (1988) Regulation of bovine bone cells synthesize basic fibroblast growth factor and transforming growth factor beta. Endocrinology 123:98–105

    Article  PubMed  CAS  Google Scholar 

  29. McCarthy TL, Centrella M, Raisz LG, Canalis E (1989) Parathyroid hormone enhances the transcript and polypeptide levels of insulin-like growth factor 1 in osteoblasts-enriched cultures from fetal rat bone. Endocrinology 124:1247–1254

    Article  PubMed  CAS  Google Scholar 

  30. Joyce ME, Jinguish S, Roberts SA, Sporn MB, Bolander ME (1989) Transforming growth factor beta initiates cartilage and bone formation in vivo. J Bone Miner Res 4:S259–S265

    Google Scholar 

  31. Hogevold HE, Grogaard B, Reikeras O (1994) Local treatment with platelet extract and anti-PDGF in fracture healing in rats. Eur J Exp Musculoskel Res 3 (in press)

    Google Scholar 

  32. Kennedy RL, Jones TH (1991) Cytokines in endocrinology: their roles in health and in disease. J Endocrinol 129:167–178

    Article  PubMed  CAS  Google Scholar 

  33. Rodan GA (1992) Introduction to bone biology. Bone 13:53–56

    Article  Google Scholar 

  34. Hanazawa S, Amano S, Nakuda K, Ohmori Y, Miyoshi T, Hirose K, Kitano S (1987) Biological characterization of interleukin-1 cytokine produced by cultured bone cells from newborn mice calvaria. Calcif Tissue Int 41:31–37

    Article  PubMed  CAS  Google Scholar 

  35. Gowen M, Mundy GR (1986) Actions of recombinant interleukin-1, interleukin-2 and interferon gamma on bone resorption in vitro. J Immunol 136:2478–2482

    PubMed  CAS  Google Scholar 

  36. Dewhirst FA, Age JM, Peros WJ, Stashenko P (1987) Synergism between parathyroid hormone and interleukin-1 in stimulating bone resorption in organ culture. J Bone Miner Res 2:127–134

    Article  PubMed  CAS  Google Scholar 

  37. Klein-Nulend J, Pilbeam CC, Harrison JR, Fall PM, Raisz LG (1991) Mechanism of regulation of prostaglandin production by parathyroid hormone, interleukin-1 and Cortisol in cultured mouse parietal bone. Endocrinology 128:2503–2510

    Article  PubMed  CAS  Google Scholar 

  38. Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR (1986) Stimulation of bone resorption and inhibition of bone formation in vitro by human tumor necrosis factor. Nature 319:516–518

    Article  PubMed  CAS  Google Scholar 

  39. Russell RGG (1990) Bone cell biology: the role of cytokines and other mediators. In: Smith R (ed) Osteoporosis. Royal College of Physicians, London, pp 9–33

    Google Scholar 

  40. Thompson BM, Mundy GR, Chambers TJ (1987) Tumor necrosis factors alpha and beta induce osteoblastic cells to stimulate osteoclastic bone resorption. J Immunol 138:775–779

    Google Scholar 

  41. Mundy GR (1991) Mechanism of osteolytic bone destruction. Bone 12:S1–S6

    Article  PubMed  Google Scholar 

  42. Einthorn TA, Majeska RJ, Bosch CG, Rusch EB, Horowitz MC (1991) The production of cytokines by fracture (Abstr). Trans Orthop Res Soc 16:117

    Google Scholar 

  43. Gowen M, Wood DD, Ihrie EJ, Meats JE, Russel GG (1984) Stimulation by human interleukin-1 of cartilage breakdown and production of collagenase and proteoglycase by human chondrocytes, but not by human osteoblasts in vitro. Biochim Biophys Acta 797:186–193

    Article  PubMed  CAS  Google Scholar 

  44. Flower RJ, Blackwell GJ (1976) The importance of phospholipase A2 in prostaglandin biosynthesis. Biochem Pharmacol 25:285–291

    Article  PubMed  CAS  Google Scholar 

  45. Zor V, Lamprecht SA (1977) Mechanism of prostaglandin action in endocrine glands. Biochem Actions Horm 4:85–133

    CAS  Google Scholar 

  46. Raisz LG, Fall PM (1990) Biphasic effects of prostaglandin E2 on bone formation in cultured fetal rat calvariae: interaction with Cortisol. Endocrinology 126:1654–1659

    Article  PubMed  CAS  Google Scholar 

  47. Collis DA, Chambers TJ (1991) Effect of prostaglandins El, E2 and F2 alpha on osteoclast formation in mouse bone marrow cultures. J Bone Miner Res 6:157–164

    Article  Google Scholar 

  48. Crawford A, Atkins D, Martin TJ (1978) Rat osteogenetic sarcoma cells: comparisons of the effect of prostaglandins El, E2,12,6 keto Fl and thromboxane B2 and cyclic AMP production and adenyl cyclase activity. Biochem Biophys Res Commun 82:1195–1201

    Article  PubMed  CAS  Google Scholar 

  49. Somsen D, Binderman I, Berger EI, Havell A (1980) Bone remodeling induced by physical stress is PGE2 mediated. Biochem Biophys Acta 267:91–100

    Google Scholar 

  50. McCarthy TL, Centrella M, Raisz LG, Canalis E (1991) Prostaglandin E2 stimulates insulinlike growth factor 1 synthesis in osteoblast enriched cultures from fetal rat bone. Endocrinology 128:2895–2900

    Article  PubMed  CAS  Google Scholar 

  51. Dekel S, Lenthall G, Francis MJO (1981) Release of prostaglandins from bone and muscle after tibial fracture. An experimental study in rabbits. J Bone Joint Surg [Br] 63:185–189

    Google Scholar 

  52. Hogevold HE, Gragaard B, Reikeras O (1993) The effects of short-term and long-term treatment with indomethacin on primary and secondary fracture healing in rats. Eur J Exp Musculoskel Res 2:3–8

    Google Scholar 

  53. Norrin RW, Jee WSS, High WB (1990) The role of prostaglandins in bone in vivo. Prostaglandins Leuko Essent Fatty Acids 41:139–149

    Article  Google Scholar 

  54. Browder W, Williams D, Lucore P, Pretus H, Jones E, McNamee R (1988) Effect of enhanced macrophage function on early wound healing. Surgery 104:224–230

    PubMed  CAS  Google Scholar 

  55. Schmidt JA, Mizel SB, Cohen D, Green I (1982) Interleukin-1, a potential regulator of fibroblast proliferation. J Immunol 128:2177–2182

    PubMed  CAS  Google Scholar 

  56. Horowitz MC, Coleman DL, Ryaby JT, Einthorn TA (1989) Osteotropic agents induce the differential secretion of granulocyte-macrophage colony-stimulating factor by the osteoblast cell line MC3T3-E1. J Bone Miner Res 4:911–921

    Article  PubMed  CAS  Google Scholar 

  57. Reikeras O, Grundnes O, Seljelid R (1993) The effects of macrophage activation on bone healing (Abstr). Trans Eur Orthop Res Soc 3:79

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reikeraas, O. (1996). Aspects of Bone Tissue in Relation to Catabolic States. In: Revhaug, A. (eds) Acute Catabolic State. Update in Intensive Care and Emergency Medicine, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48801-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48801-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48803-0

  • Online ISBN: 978-3-642-48801-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics