Skip to main content

Prolegomenon for a Holonomic Brain Theory

  • Conference paper

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 45))

Abstract

“Before the connection of thought and brain can be explained, it must be stated in elementary form; and there are great difficulties about stating it. … Many would find relief at this point in celebrating the mystery of the unknowable and the “awe” which we should feel. … It may be constitutional infirmity, but I can take no comfort in such devices for making a luxury of intellectual defeat. … Better live on the ragged edge, better gnaw the file forever!” (James, 1950 pp. 177–179)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.H. Ackley, G.E. Hinton, T.J. Sejnowski, A learning algorithm for Boltzmann Machines. Cog. Sci., 9(2), pp. 147–169 (1985)

    Google Scholar 

  2. J.A. Anderson, J.W. Silverstein, S.A. Ritz, R.S. Jones, Distinctive features, categorical perception, and probability learning: Some applications of a neural model. Psych. Rev., 84, pp. 413–447 (1977)

    Article  Google Scholar 

  3. B.W. Andrews, D.A. Pollen, Relationship between spatial frequency selectivity and receptive field profile of simple cells. J. Physiol., 287, pp. 163–176 (1979)

    Google Scholar 

  4. W.R. Ashby, An introduction to cybernetics. London: Chapman & Hall, Ltd. (1956)

    MATH  Google Scholar 

  5. W.R. Ashby, Design for brain: The origin of adaptive behaviour. (2nd. ed.) New York: John Wiley & Sons (196)

    Google Scholar 

  6. F. Attneave, Some informational aspects of visual perception. Psychol. Rev., 61, pp. 183–193 (1954)

    Article  Google Scholar 

  7. H.B. Barlow, Single units and sensation: A neuron doctrine for perceptual psychology? Perception, 1, pp. 371–394 (1972)

    Article  Google Scholar 

  8. T.W. Barrett, The cortex as interferometer: The transmission of amplitude, frequency and phase in the cerebral cortex. Neuropsychologia, 7, pp. 135–148

    Google Scholar 

  9. R. Bracewell, The Fourier transform and its applications. New York: McGraw Hill Books (1965)

    MATH  Google Scholar 

  10. L. Brillouin, Science and information theory. New York: Academic Press (1962)

    MATH  Google Scholar 

  11. T. Caelli, On the specification of coding principles for visual image processing. In P.C. Dodwell and T. Caelli (eds.), Figural synthesis. Hillsdale, NJ: Lawrence Erlbaum Assoc., pp. 153–184 (1984)

    Google Scholar 

  12. T. Caelli, & M. Hubner, On the efficient two-dimensional energy coding characteristics of spatial vision. Vision Research (in press) (1983)

    Google Scholar 

  13. T. Caelli, & B. Julez, Psychophysical evidence for global feature processing in visual texture discrimination. J. Opt. Soc. of Amer., 69, pp. 675–678 (1979)

    Article  ADS  Google Scholar 

  14. F.W. Campbell, & J.G. Robson, Application of Fourier analysis to the visibility of gratings. J. Physiol., 197, pp. 551–566 (1968)

    Google Scholar 

  15. P. Cavanaugh, Two classes of holographic processes realizable in the neural realm. In T. Storer & D. Winter (eds.), Formal aspects of cognitive processes. Berlin: Springer-Verlag, pp. 14–40 (1975)

    Chapter  Google Scholar 

  16. P. Cavanaugh, Holographic and trace strength models of rehearsal effects in the item recognition task. Memory and cognition, 4, pp. 186–199 (1976)

    Article  Google Scholar 

  17. P. Cavanaugh, Image transforms in the visual system. In P.C. Dodwell & T.M. Caelli, (eds.), Figural Synthesis. Hillsdale, NJ: Lawrence Erlbaum Assoc., pp. 185–218 (1984)

    Google Scholar 

  18. P. Cavanaugh, Local log polar frequency analysis in the striate cortex as a basis for size and orientation invariance. In D. Rose & V.G. Dobson (eds.), Models of the visual cortex. New York: John Wiley & Sons, pp. 85–95 (1985)

    Google Scholar 

  19. C. Cherry, On human communication. Cambridge, MA: MIT Press (1978)

    Google Scholar 

  20. F.H.C. Crick, & C. Asanuma, Certain aspects of the anatomy and physiology of the cerebral cortex. In J.L. McClelland & D.E. Rumelhart (eds.), Parallel distributed processing: Explorations in the microstructure of cognition, Vol. II: Psychological and biological models. Cambridge, MA: MIT Press (1986)

    Google Scholar 

  21. J.E. Cutting, Gibson, representation, and belief. Contem. Psychol., 30, pp. 186–188 (1985)

    Google Scholar 

  22. J.G. Daugman, Two-dimensional spatial analysis of cortical receptive field profiles. Vision Res., 20, pp. 847–856 (1980)

    Article  Google Scholar 

  23. J.G. Daugman, Spatial vision channels in the Fourier plan. Vision Res., 24, pp. 891–910 (1984)

    Article  Google Scholar 

  24. J.G. Daugman, Representational issues and local filter models of two-dimensional spatial visual encoding. In David Rose and Vernon G. Dobson (eds.), Models of the visual cortex. New York: John Wiley & Sons (1985)

    Google Scholar 

  25. J.G. Daugman, Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression. IEEE Trans, on Accoustics, Speech and Signal Processing, 36, No. 7, pp. 1169–1179 (1988)

    Article  MATH  Google Scholar 

  26. R.L. DeValois, D.G. Albrecht, & L.G. Thorell, Cortical cells: Bar and Edge detectors, or spatial frequency filters? In S.J. Cool and E.L. Smith (eds.), Frontiers in visual science. New York: Springer-Verlag, pp. 544–556 (1978)

    Google Scholar 

  27. R.L. DeValois, & K.K. DeValois, Spatial vision. Ann. Rev. Psychol., 31, pp. 309–341 (1980)

    Article  Google Scholar 

  28. R.L. DeValois, & K.K. DeValois, Spatial vision (Oxford psychology series No. 14). New York, NY: Oxford University Press (1988)

    Google Scholar 

  29. P.A.M. Dirac, Is there an aether? Nature, 168, p. 906 (1951)

    Article  MathSciNet  ADS  Google Scholar 

  30. P.C. Dodwell, Local and global factors in figural synthesis. In P.C. Dodwell & T. Caelli (eds.). Figural synthesis. Hillsdale, NJ: Lawrence Erlbaum Assoc., pp. 219–248 (1984)

    Google Scholar 

  31. P.C. Dodwell, & T. Caelli, Figural synthesis. Hillsdale, NJ: Lawrence Erlbaum (1984)

    Google Scholar 

  32. R.P. Feynman, R.B. Leighton, & M. Sands, The Feynman lectures on physics. Reading, PA: Addison-Wesley (1963)

    Google Scholar 

  33. J.L. Flanagan, Speech analysis, synthesis and perception (2nd ed.), p. 444. Berlin: Springer-Verlag (1972)

    Google Scholar 

  34. P. Fleschsig, Gehirn und Seele, 2nd ed., Leipzig: Verlag Veit & Co. (1896)

    Google Scholar 

  35. Freeman, Oscillatory potentials. In D.E. Sheer & K.H. Pribram (eds.), Attention, cognitive and brain processes and clinical applications. New York, NY: Academic Press (1989)

    Google Scholar 

  36. S. Freud, Project for a scientific psychology. Standard Edition, Vol. I, pp. 281–397 (1895/1966)

    Google Scholar 

  37. D. Gabor, Theory of communication. J. Inst. Elec. Engrs., 93, pp. 429–441 (1946)

    Google Scholar 

  38. D. Gabor, A new microscopic principle. Nature, 161, pp. 777–778 (1948)

    Article  ADS  Google Scholar 

  39. W.R. Garner, Uncertainty and structure as psychological concepts. New York: John Wiley & Sons (1962)

    Google Scholar 

  40. L. Gatlin, Information theory and the living system. New York, NY: Columbia University Press (1972)

    Google Scholar 

  41. F.A. Geldard, Sensory saltation, metastability in the perceptual world. Hillsdale, NJ: Lawrence Erlbaum (1975)

    Google Scholar 

  42. A. Ginsburg, Psychological correlates of a model of the human visual system. Master’s thesis, Air Force Institute of Technology (1971)

    Google Scholar 

  43. A. Ginsburg, Visual information processing based on spatial filters constrained by biological data. Publication of the Aerospace Medical Research Lab., Wright-Patterson Air Force Base, Ohio (1978)

    Google Scholar 

  44. V.D. Glezer, Spatial and spatial frequency characteristics of receptive fields of the visual cortex and piecewise Fourier analysis. In D. Rose and V.G. Dobson (eds.), Models of the visual cortex. New York: John Wiley & Sons, Ltd., pp. 265–272 (1985)

    Google Scholar 

  45. V.D. Glezer, V.A. Ivanoff, T.A. Tscherbach, Investigation of complex and hypercomplex receptive fields of visual cortex of the cat as spatial frequency filters. Vision Research, 13, pp. 1875–1904 (1973)

    Article  Google Scholar 

  46. A. Goldscheider, Ueber die materiellen Veraenderungen bei der Assoziationsbildung. Neurologisches Zentralblatt, 25, p. 146 (1906)

    Google Scholar 

  47. C.G. Gross, Inferotemporal cortex and vision. In E. Stellar and J.M. Sprague (eds.), Progress in physiological psychology, 5, pp. 77–124. New York, NY: Academic Press (1973)

    Google Scholar 

  48. R.V.L. Hartley, Transmission of information. Bell System Tech. J., 7, p. 535 (1928)

    Google Scholar 

  49. D.O. Hebb, The organization of behavior, a neuro-psychological theory. Published in 1961 in New York: John Wiley & Sons (1949)

    Google Scholar 

  50. H. von Helmholta, Lehre von den Tonempfindungen. Braunschweig: Vieweg (1863)

    Google Scholar 

  51. G.E. Hinton, & J.A. Anderson, Parallel models of associative memory. Hillsdale, NJ: Lawrence Erlbaum Assoc. (1961)

    Google Scholar 

  52. G.E. Hinton, J.L. McClelland, D.E. Rumelhart, Distributed representations. In D.E. Rumelhart, & J.L. McClelland (eds.), Parallel distributed processing: Explorations in the microstructure of cognition, Vol. I: Foundations. Cambridge, MA: MIT Press (1986)

    Google Scholar 

  53. G.E. Hinton, T.J. Sejnowski, Learning and relearning in Boltzmann machines in parallel distributed processing. In D.E. Rumelhart & J.L. McClelland (eds.), Parallel distributed processing: Explorations in the microstructure of cognition. Vol. I: Foundations. Cambridge, MA: MIT Press (1986)

    Google Scholar 

  54. W.C. Hoffman, Figural synthesis by vectorfields: Geometric neuropsychology. In P.C. Dodwell & T. Caelli (eds.), Figural synthesis. Hillsdale, NJ: Lawrence Erlbaum Assoc., pp. 249–282 (1984)

    Google Scholar 

  55. J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities. PNAS, 79, pp. 2554–2558 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  56. D.H. Hubel, & T.N. Wiesel, Receptive fields of single neurons in the cat’s striate cortex. J. Physiol., 148, pp. 574–591 (1959)

    Google Scholar 

  57. D.N. Hubel, & T.N. Wiesel, Receptive fields binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol., 160, pp. 106–154 (1962)

    Google Scholar 

  58. W. James, Principles of psychology. Vol. I and II. New York: Dover Publications, Inc. (1950)

    Google Scholar 

  59. B. Julesz, Ks. S. Pennington, Equidistributed information mapping: An analogy to holograms and memory. J. Opt. Soc. Amer., 55, p. 605 (1965)

    Google Scholar 

  60. D.P. Kimble, The anatomy of memory. Palo Alto, CA: Science and Behavior Books (1965)

    Google Scholar 

  61. T. Kohonen, Correlation matrix memories. IEEE Trans. Computers, C., 21 pp. 353–359 (1972)

    Article  MATH  Google Scholar 

  62. T. Kohonen, Associative memory: A system theoretic approach. Berlin: Springer-Verlag (1977)

    Google Scholar 

  63. T. Kohonen, & E. Oja, Technical comments, in Science, 234, p. 1227 (1987)

    Google Scholar 

  64. R.E. Kronauer, & Y.Y. Zeevi, Reorganization and diversification of signals in vision. IEEE Trans. Systems, Man and Cybernetics, 15, No. 1, pp. 91–101 (1985)

    Google Scholar 

  65. S.W. Kuffler, Discharge patterns and functional organizations of mammalian retina. J. Neurophysiol., 16, pp. 37–69 (1953)

    Google Scholar 

  66. S.W. Kuffler, & J.G. Nicholls, From neuron to brain. Sunderland, MA: Sinauer Assoc. (1976)

    Google Scholar 

  67. K. Kupfmuller, Ueber Einschwingungsvorgaenge in Wellenfiltern, Elek. Nachr.-Tech., 1, p. 141 (The bandwidth × time uncertainty) (1924)

    Google Scholar 

  68. K.S. Lashley, The problem of cerebral organization in vision. In Biological Symposia, Vol. VII, Visual Mechanisms. Lancaster: Jaques Cattell Press, pp. 301–332 (1942)

    Google Scholar 

  69. E.N. Leith, White-light holograms. Scientific American, 235 (4), p. 80 (1976)

    Article  ADS  Google Scholar 

  70. J. Loeb, Comparative physiology of the brain and comparative psychology. New York: G.P. Putnam’s Sons, Science Series (1907)

    Google Scholar 

  71. A.R. Luria, The working brain. London, England: Penguin Books (1973)

    Google Scholar 

  72. D.M. MacKay, Information mechanism and meaning. Cambridge, MA: MIT Press (1969)

    Google Scholar 

  73. L. Maffei, & A. Fiorentini, The visual cortex as a spatial frequency analyzer. Vision Res., 13, pp. 1255–1267 (1973)

    Article  Google Scholar 

  74. H.R. Maturna, The neurophysiology of cognition. In P. Garvin (ed.), Cognition: A multiple view. New York, NY: Spartan Books (1969)

    Google Scholar 

  75. W.S. McCullough, & W. Pitts, Logical calculus of the ideas immenent in nervous activity. Bull. Math. Biophysics, 5, pp. 115–133 (1943)

    Article  Google Scholar 

  76. G.A. Miller, The magical number seven, plus or minus two, or some limits on our capacity for processing information. Psychol. Rev., 63, pp. 81–97 (1956)

    Article  Google Scholar 

  77. G.A. Miller, E.H. Galanter, & K.H. Pribram, Plans and the structure of behavior. New York: Holt, Rinehart & Winston (1960)

    Book  Google Scholar 

  78. M. Mishkin, Cortical visual areas and their interaction. In A.G. Karczmar and J.C. Eccles (eds.), The brain and human behavior. Berlin: Springer-Verlag, pp. 187–208 (1973)

    Google Scholar 

  79. J.A. Movshon, I.D. Thompson, & D.J. Tolhurst, Spatial summation in the receptive fields of simple cells in the cat’s striate cortex. J. Physiol., 283, pp. 53–77 (1978)

    Google Scholar 

  80. H. Nyquist, Certain factors affecting telegraph speed. Bell System Tech. J., p. 324 (1924)

    Google Scholar 

  81. G.S. Ohm, Ueber die Definition des Tones, nebst daran geknuepfter Theorie der Sirene und aehnlicher tonbildender Vorrichtungen. Ann. Physik, chem., 59, pp. 513–565 (1843)

    Article  ADS  Google Scholar 

  82. S.E. Palmer, The psychology of perceptual organization: A transformational approach. In J. Beck, B. Hype, and A. Rosenfeld (eds.), Human machine vision, pp. 269–339. New York, NY: Academic Press (1983)

    Google Scholar 

  83. T. Poggio, & V. Torre, A new approach to synaptic interactions. In H. Palm (ed.), Approaches to complex systems. Berlin: Springer-Verlag (1980)

    Google Scholar 

  84. T. Poggio, V. Torre, & C. Koch, Computational vision and regularization theory. Nature, 317, pp. 314–319 (1985)

    Article  ADS  Google Scholar 

  85. D.A. Pollen, Striate cortex and the reconstruction of visual space. In The Neurosciences Study Program III. Cambridge, MA: MIT Press (1973)

    Google Scholar 

  86. D.A. Pollen, J.R. Lee, J.H. Taylor, How does the striate cortex begin reconstruction of the visual world? Science, 173, pp. 74–77 (1971)

    Article  ADS  Google Scholar 

  87. D.A. Pollen, S.E. Ronner, Spatial computation performed by simple and complex cells in the cat visual cortex. Exp. Brain Res., 41, pp. A14–A15 (1980)

    Google Scholar 

  88. K.H. Pribram, Some dimensions of remembering: Steps toward a neuropsychological model of memory. In J. Gaito (ed.), Macromolecules and behavior. New York, NY: Academic Press, pp. 165–187 (1966)

    Google Scholar 

  89. K.H. Pribram, Languages of the brain: Experimental paradoxes and principles in neuropsychology. Englewood Cliffs, NJ: Prentice-Hall, Inc.

    Google Scholar 

  90. K.H. Pribram, Review of “Chance and necessity” by J. Monod, in Perspectives in Biology and Medicine (1972)

    Google Scholar 

  91. K.H. Pribram, Toward a holonomic theory of perception. In Gestalttheorie in der modernen Psychologie. (Metzger Festschrift), pp. 161–184 (1975)

    Google Scholar 

  92. K.H. Pribram, The cognitive revolution and mind/brain issues. American Psychologist, 41, pp. 507–520 (1986)

    Article  Google Scholar 

  93. K.H. Pribram, & E.H. Carlton, Holonomic brain theory in imaging and object perception. Acta Psychologica, 63, pp. 175–210 (1986)

    Article  Google Scholar 

  94. K.H. Pribram, M. Nuwer, & R. Baron, The holographic hyperthesis of memory structure in brain function and perception. In R.C. Atkinson, D.H. Krantz, R.C. Luce and P. Suppes (eds.), Contemporary developments in mathematical psychology. San Francisco, Ca: W.H. Freeman & Co., pp. 416–467 (1974)

    Google Scholar 

  95. I. Prigogine, From being to becoming. San Francisco (1980)

    Google Scholar 

  96. I. Prigogine, & Stengers, order out of chaos. New York: Bantam Books (1984)

    Google Scholar 

  97. P. Rakic, Local circuit neurons. Cambridge, MA: MIT Press (1976)

    Google Scholar 

  98. J.G. Robson, Receptive fields: Neural representation of the spatial and intensive attributes of the visual image. In E.C. Carterette (ed.), Handbook of perception, Vol. V, Seeing. New York: Academic Press (1975)

    Google Scholar 

  99. I. Rock, The logic of perception. Cambridge, MA: MIT Press (1983)

    Google Scholar 

  100. B. Sakitt, & G.B. Barlow, A model for the economic cortical encoding of the visual image. Biolog. Cybernetics, 43, pp. 97–108 (1982)

    Article  Google Scholar 

  101. F.O. Schmitt, P. Dev, & B.H. Smith, Electronic processing of information by brain cells. Science, 193, pp. 114–120 (1976)

    Article  ADS  Google Scholar 

  102. E.L. Schwartz, Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception. Biol. Cybernetics, 25, pp. 181–194 (1977)

    Article  Google Scholar 

  103. C.E. Shannon, & W. Weaver, The mathematical theory of communications. Urbana, IL: The University of Illinois Press (1949)

    Google Scholar 

  104. R. Shapley, & P. Lennie, Spatial frequency analysis in the visual system. Am. Rev. Neurosci., 8, pp. 546–583 (1985)

    Google Scholar 

  105. G.M. Shepherd, Neurobiology (2nd ed.). Oxford, England: Oxford University Press (1988)

    Google Scholar 

  106. D.N. Spinelli, O.C.C.A.M.: A computer model for a content addressable memory in the central nervous system. In K.H. Pribram and D.E. Broadbent (eds.), Biology of Memory. New York: Academic Press, pp. 293–306 (1970)

    Google Scholar 

  107. D.N. Spinelli, K.H. Pribram, & B. Bridgeman, Visual receptive field organization of single units in the visual cortex of monkey. Intern. J. Neuroscience, pp. 67–74 (1970)

    Google Scholar 

  108. D.N. Spinelli, A. Starr, & T. Barrett, Auditory specificity in unit recording from cat’s visual cortex. Exp. Neurol., 22, pp. 75–84 (1968)

    Article  Google Scholar 

  109. G. Stent, A pysiological mechanism for Hebb’s postulate of learning. Proc. Natl. Acad. Sci. USA, 70, pp. 997–1001 (1973)

    Article  ADS  Google Scholar 

  110. D.G. Stork, & H.R. Wilson, Do Gabor functions provide appropriate descriptions of visual cortical receptive fields? J. Opt. Soc. of Amer. (1990)

    Google Scholar 

  111. J. Szentagothai, Functional anatomy of the visual centers as cues for pattern recognition concepts. In D. Chagas, R. Gattass & C. Gross (eds.), Pattern recognition mechanisms. Berlin: Springer-Verlag, pp. 39–52 (1985)

    Google Scholar 

  112. R.W. Thatcher, & E.R. John, Functional neuroscience, Vol. I. Hillsdale, NJ: Lawrence Erlbaum Assoc. (1977)

    Google Scholar 

  113. R.B. Tootell, M.S. Silverman, & R.L. DeValois, Soatial frequency columns in primary visual cortex. Science, 214, pp. 813–815 (1981)

    Article  ADS  Google Scholar 

  114. P.J. Van Heerden, A new method of storing and retrieving information. Applied Optics, 2, pp. 387–392 (1963)

    Article  ADS  Google Scholar 

  115. F. Varela, Principles of biological autonomy. New York: North-Holland/Elsevier (1979)

    Google Scholar 

  116. H. Von Foerster, Memory without record. In D.P. Kimble (ed.), The anatomy of memory. Palo Alto, CA: Science and Behavior Books, pp. 388–433 (1965)

    Google Scholar 

  117. A.B. Watson, & A.J. Ahumada, Jr., A model of human visual motion sensing. J. Opt. Soc. Am., A2, pp. 322–342 (1985)

    Article  ADS  Google Scholar 

  118. N. Weisstein, The joy of Fourier analysis. In C.S. Harris (ed.), Visual coding and adaptability. Hillsdale, NJ: Lawrence Erlbaum Assoc, pp. 365–380 (1980)

    Google Scholar 

  119. N. Weisstein, & C.S. Harris, Masking and the unmasking of distributed representations in the visual system. In C.S. Harris (ed.), Visual coding and adaptability. Hillsdale, NJ: Lawrence Erlbaum Assoc., pp. 317–364 (1980)

    Google Scholar 

  120. M.L. Yevick, Holographic or Fourier logic pattern recognition. Oxford: Pergamon Press, pp. 197–213 (1975)

    Google Scholar 

  121. Y.Y. Zeevi, & J.G. Daugman, Some psychophysical aspects of visual processing of displayed information. Proc. Image II Conf., Phoenix, AZ (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Pribram, K.H. (1990). Prolegomenon for a Holonomic Brain Theory. In: Haken, H., Stadler, M. (eds) Synergetics of Cognition. Springer Series in Synergetics, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48779-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48779-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48781-1

  • Online ISBN: 978-3-642-48779-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics