Skip to main content

Nucleotide Excision Repair in Yeast: Recent Progress and Implications

  • Chapter
Book cover DNA Repair

Abstract

Nucleotide excision repair (NER) is a ubiquitous process by which damaged bases are excised from the genome of living cells as oligonucleotide fragments (reviewed in Friedberg et al. 1995). Recent years have witnessed significant progress in our understanding of the biochemistry of NER in the yeast Saccharomyces cerevisiae (reviewed in Prakash et al. 1993; Friedberg et al. 1995; Friedberg 1996a). The establishment of a cell-free system that monitors NER of damaged plasmid DNA in vitro (Wang et al. 1995a, 1996) has facilitated the systematic screening of yeast strains carrying mutations in multiple genes known to be required for or involved in NER. Additionally, the polypeptides encoded by many of these genes have been purified and the early steps in the NER process have been reconstituted in vitro (Guzder et al. 1995a). At least 26 gene products are believed to be required for or involved in NER (Table 1). The Rad1/Rad10 heterodimeric complex and the Rad2 protein are now known to function as junction-specific endonucleases which specifically cleave DNA at single-strand/duplex junctions with opposite singlestrand polarity (Habraken et al. 1993; Bardwell et al. 1994; Fig. 1). Incisions (nicks) generated by these two endonucleases result in the formation of oligonucleotide fragments ~24–27 nucleotides in size, which include damaged bases (Guzder et al. 1995a). Displacement of the oligonucleotides generates single-strand gaps that are filled in by repair synthesis and sealed by ligation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Band DD, Verhage RA, Goosen N, Brouwer J, van de Putte P (1992) Molecular cloning of RAD 16, a gene involved in differential repair in Saccharomyces cerevisiae. Nucleic Acids Res 20: 3925–3931

    Article  Google Scholar 

  • Bardwell AJ, Bardwell L, Tomkinson AE, Friedberg EC (1994) Specific cleavage of model recombination and repair intermediates by the yeast Rad1/Rad10 DNA endonuclease. Science 265: 2082–2085

    Article  PubMed  CAS  Google Scholar 

  • Bhatia PK, Verhage RA, Brouwer J, Friedberg EC (1996) The RAD28 gene of S. cerevisiae; the homolog of the human Cockayne syndrome A (CSA) gene. J Bacteriol 178: 5977–5988

    PubMed  CAS  Google Scholar 

  • Eisen JA, Sweder KS, Hanawalt PC (1995) Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res 23: 2715–2723

    Article  PubMed  CAS  Google Scholar 

  • Evans E, Fellows J, Coffert A, Wood RD (1997) Open complex formation around a lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein. EMBO J 16: 625–638

    Article  PubMed  CAS  Google Scholar 

  • Feaver WJ, Svejstrup JQ, Henry NL, Kornberg RD (1994) Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79: 1103–1109

    Article  PubMed  CAS  Google Scholar 

  • Feaver WJ, Henry NL, Wang Z, Wu X, Svejstrup JQ, Bushnell DA, Friedberg EC, Kornberg RD (1997) Genes for Tfb2, Tfb3 and Tfb4 subunits of yeast transcription/repair factor TFIIH: homology to “CAK” and human IIH subunits. J Biol Chem 272: 19318–19327

    Article  Google Scholar 

  • Friedberg EC (1996a) Cockayne syndrome — a primary defect in DNA repair, transcription, both or neither? BioEssays 18: 731–738

    Article  PubMed  CAS  Google Scholar 

  • Friedberg EC (1996b) Relationships between DNA repair and transcription. Annu Rev Biochem 65: 15–42

    Article  PubMed  CAS  Google Scholar 

  • Friedberg EC, Bardwell L, Naegeli H (1993) What can yeast tell us about cancer and cancer proneness? In: Bohr VA, Wasserman K, Kraemer KA (eds) Alfred Benzon Symposium 35: DNA repair mechanisms. Munksgaard Copenhagen, pp 80–89

    Google Scholar 

  • Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis. ASM Press, Washington, DC

    Google Scholar 

  • Gaillard P-HL, Martini EM-D, Kaufman PD, Stillman B, Moustacchi E, Almouzni G (1996) Chromatin assembly coupled to DNA repair: a new role from chromatin assembly factor I. Cell 86: 887–896

    Article  PubMed  CAS  Google Scholar 

  • Goodrich JA, Tjian R (1994) Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell 77: 145–156

    Article  PubMed  CAS  Google Scholar 

  • Guzder SN, Habraken Y, Sung P, Prakash L, Prakash S (1995a) Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH. J Biol Chem 270: 12973–12976

    Article  PubMed  CAS  Google Scholar 

  • Guzder SN, Bailly V, Sung P, Prakash L, Prakash S (1995b) Yeast DNA repair protein RAD23 promotes complex formation between transcription factor TFIIH and DNA damage recognition factor Rad14. J Biol Chem 270: 8385–8388

    Article  PubMed  CAS  Google Scholar 

  • Guzder SN, Sung P, Prakash L, Prakash S (1996a) Nucleotide excision repair in yeast is mediated by sequential assembly of repair factors and not by a pre-assembled repairosome. J Biol Chem 271: 8903–8910

    Article  PubMed  CAS  Google Scholar 

  • Guzder SN, Habraken Y, Sung P, Prakash L, Prakash S (1996b) RAD26, the yeast homolog of human Cockayne’s syndrome group B gene, encodes a DNA-dependent ATPase. J Biol Chem 271: 18314–18317

    Article  PubMed  CAS  Google Scholar 

  • Habraken Y, Sung P, Prakash L, Prakash S (1993) Yeast excision repair gene RAD2 encodes a single-stranded DNA endonuclease. Nature 366: 365–368

    Article  PubMed  CAS  Google Scholar 

  • Habraken Y, Sung P, Prakash S, Prakash L (1996) Transcription factor TFIIH and DNA endonuclease Rad2 constitute yeast nucleotide excision repair factor 3: implications for nucleotide excision repair and Cockayne syndrome. Proc Natl Acad Sci USA 93: 10718–10722

    Article  PubMed  CAS  Google Scholar 

  • Hess MT, Schwitter U, Petretta M, Giese B, Naegeli H (1997) Bipartite substrate recognition discrimination by human nucleotide excision repair. Proc Natl Acad Sci USA 94: 6664–6669

    Article  PubMed  CAS  Google Scholar 

  • Iyer N, Reagan MS, Wu K-J, Canagarajah B, Friedberg EC (1996) Interactions involving the human RNA polymerase II transcription/nucleotide excision repair factor TFIIH, the nucleotide excision repair protein XPG and Cockayne syndrome group B (CSB) protein. Biochemistry 35: 2157–2167

    Article  PubMed  CAS  Google Scholar 

  • Kaufman PD, Kobayashi R, Stillman B (1997) Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev 11: 345–357

    Article  PubMed  CAS  Google Scholar 

  • Lauder S, Bankmann M, Guzder SN, Sung P, Prakash L, Prakash S (1996) Dual requirement for the yeast MMS19 gene in DNA repair and RNA polymerase II transcription. Mol Cell Biol 16: 6783–6793

    PubMed  CAS  Google Scholar 

  • Li L, Lu X, Peterson C, Legerski R (1997) XPC interacts with both HHR23B and HHR23A in vitro. Mutat Res 383: 197–203

    PubMed  CAS  Google Scholar 

  • Lue NF, Flanagan PM, Sugimoto K, Kornberg RD (1989) Initiation by yeast RNA polymerase II adenoviral major late promoter. Science 246: 661–664

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga T, Mu D, Park C-H, Reardon P, Sancar A (1995) Human DNA repair excision nuclease. Analysis of the roles of the subunits involved in dual incisions by using anti-XPG and anti-ERCC1 antibodies. J Biol Chem 270: 20862–20869

    Article  PubMed  CAS  Google Scholar 

  • Mueller JP, Smerdon MJ (1996) Rad23 is required for transcription-coupled repair and efficient overall repair in Saccharomyces cerevisiae. Mol Cell Biol 16: 2361–2368

    PubMed  CAS  Google Scholar 

  • Nowak R (1995) Molecular machines may aid gene expression. Science 270: 1589–1590

    Article  PubMed  CAS  Google Scholar 

  • Peterson C, Tamkun JW (1995) The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem Res 20: 143–146

    Article  CAS  Google Scholar 

  • Prakash L, Prakash S (1977) Isolation and characterization of MMS-sensitive mutants of Saccharomyces cerevisiae. Genetics 86: 33–55

    PubMed  CAS  Google Scholar 

  • Prakash S, Sung P, Prakash L (1993) DNA repair genes and proteins of Saccharomyces cerevisiae

    Google Scholar 

  • Reagan MS, Friedberg EC (1997) Recovery of RNA polymerase II synthesis following DNA damage in mutants of Saccharomyces cerevisiae defective in nucleotide excision repair. Nucleic Acids Res 25: 4257–4263

    Article  PubMed  CAS  Google Scholar 

  • Sancar A (1996) DNA excision repair. Annu Rev Biochem 65: 43–81

    Article  PubMed  CAS  Google Scholar 

  • Selby CP, Sancar A (1997) Human transcription-repair coupling factor CSB/ERCC6 is a DNA-stimulated ATPase but is not a helicase and does not disrupt the ternary transcription complex of stalled RNA polymerase II. J Biol Chem 272: 1885–1890

    Article  PubMed  CAS  Google Scholar 

  • Song J-M, Montelone B A, Siede W, Friedberg EC (1990) Effects of multiple yeast rad3 mutant alleles on UV sensitivity, mutability and mitotic recombination. J Bacteriol 172: 6620–6630

    PubMed  CAS  Google Scholar 

  • Sung P, Guzder SN, Prakash L, Prakash S (1996) Reconstitution of TFIIH and requirement of its DNA helicase subunits, Rad3 and Rad25, in the incision step of nucleotide excision repair. J Biol Chem 271: 10821–10826

    Article  PubMed  CAS  Google Scholar 

  • Svejstrup JQ, Wang Z, Feaver WJ, Wu X, Donahue TF, Friedberg EC, Kornberg RD (1995) Different forms of RNA polymerase transcription factor IIH (TFIIH) for transcription and DNA repair: holoTFIIH and a nucleotide excision repairosome. Cell 80: 21–28

    Article  PubMed  CAS  Google Scholar 

  • Tijsterman M, Verhage RA, van de Putte P, Tasseron-de Jong JG, Brouwer J (1997) Transitions in the coupling of transcription and nucleotide excision repair within RNA polymerase II-transcribed genes of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94: 8027–8032

    Article  PubMed  CAS  Google Scholar 

  • van Gool AJ, Verhage R, Swagemakers SMA, van de Putte P, Brouwer J, Troelstra C, Bootsma D, Hoeijmakers JHJ (1994) RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. EMBO J 13: 5361–5369

    PubMed  Google Scholar 

  • Verhage R, Zeeman A-M, de Groot N, Glieg F, Bang DD, van de Putte P, Brouwer J (1994) The RAD7 and RAD 16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiae. Mol Cell Biol 14: 6135–6142

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Svejstrup JQ, Feaver WJ, Wu X, Kornberg RD, Friedberg EC (1994) Requirement for RNA polymerase II transcription factor b (TFIIH) during nucleotide excision repair in the yeast Saccharomyces cerevisiae. Nature 368: 74–76

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Wu X, Friedberg EC (1995a) The detection and measurement of base and nucleotide excision repair in cell-free extracts of the yeast S. cerevisiae. Methods: A Companion to Methods Enzymol 7: 177–186

    Article  Google Scholar 

  • Wang Z, Buratowski S, Svejstrup J, Feaver WJ, Wu X, Kornberg RD, Donahue T, Friedberg EC (1995b) Yeast Tfb1 and Ss11 genes, which encode subunits of transcription factor IIH, are required for nucleotide excision repair and RNA polymerase II transcription. Mol Cell Biol 15: 2288–2293

    PubMed  CAS  Google Scholar 

  • Wang Z, Wu X, Friedberg EC (1996) A yeast whole cell extract supports nucleotide excision repair and RNA polymerase II transcription. Mutat Res 364: 51–56

    Google Scholar 

  • Wang Z, Wei S, Wu X, Svejstrup JQ, Feaver WJ, Kornberg RD, Friedberg EC (1997) The RAD7, RAD15 and RAD23 genes of S. cerevisiae: requirement for transcription-independent nucleotide excision repair in vitro and interactions between the gene products. Mol Cell Biol 17: 635–643

    PubMed  CAS  Google Scholar 

  • Wood RD (1996) DNA repair in eukaryotes. Annu Rev Biochem 65: 135–167

    Article  PubMed  CAS  Google Scholar 

  • Zawel L, Kumar KP, Reinberg D (1995) Recycling of the general transcription factors during RNA polymerase II transcription. Genes Dev 9: 1479–1490

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Friedberg, E.C. et al. (1998). Nucleotide Excision Repair in Yeast: Recent Progress and Implications. In: Eckstein, F., Lilley, D.M.J. (eds) DNA Repair. Nucleic Acids and Molecular Biology, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48770-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48770-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48772-9

  • Online ISBN: 978-3-642-48770-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics