Skip to main content

Structural Phylogenetics of DNA Base Excision Repair

  • Chapter
DNA Repair

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 12))

Abstract

Maintaining the chemical and informational integrity of DNA is vital for all cells. DNA both codes for the proteins and RNA essential for cellular metabolism, and provides the blueprints through which these instructions are passed to successive generations. As a hedge against devolution, a means of protecting the essential information inherent in primordial DNA must have arisen very early, and perhaps was mediated by recombination. The repair of DNA damage is fundamental to living organisms and is implicated for reactive oxygen and pathogen defenses, for controlling degenerative diseases and aging (Halliwell and Aruoma 1993), and for the development of sex and meiosis (Bernstein and Bernstein 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson CT, Friedberg EC (1980) The presence of nuclear and mitochondrial uracil-DNA glycosylase in extracts of human KB cells. Nucleic Acids Res 8: 875–888

    Article  CAS  PubMed  Google Scholar 

  • Asahara H, Wistort PM, Bank JF, Bakerian RH, Cunningham RP (1989) Purification and characterization of Escherichia coli endonuclease III from the cloned nth gene. Biochemistry 28: 4444–4449

    Article  CAS  PubMed  Google Scholar 

  • Babiychuk E, Kushnir S, Montagu MV, Inze D (1994) The Arabidopsis thaliana apurinic endonuclease Arp reduces human transcription factors Fos and Jun. Proc Natl Acad Sci USA 91: 3299–3303

    Article  CAS  PubMed  Google Scholar 

  • Barclay BJ, Kunz BA, Little JG, Haynes RH (1982) Genetic and biochemical consequences of thymidylate stress. Can J Biochem 60: 172–194

    Article  CAS  PubMed  Google Scholar 

  • Barzilay G, Hickson ID (1995) Structure and function of apurinic/apyrimidinic endonucleases. Bioessays 17: 713–719

    Article  CAS  PubMed  Google Scholar 

  • Barzilay G, Mol CD, Robson CN, Walker LJ, Cunningham RP, Tainer JA, Hickson ID (1995) Identification of critical active-site residues in the multifunctional DNA repair enzyme HAPI. Nat Struct Biol 2: 561–568

    Article  CAS  PubMed  Google Scholar 

  • Bennett MJ, Choe S, Eisenberg D (1994) Domain swapping: entangling alliances between proteins. Proc Natl Acad Sci USA 91: 3127–3131

    Article  CAS  PubMed  Google Scholar 

  • Bernstein C, Bernstein H (1991) Aging, sex, and DNA repair. Academic Press, San Diego

    Google Scholar 

  • Boorstein RJ, Hubert TP, Cadet J, Cunningham RP, Teebor GW (1989) UV-induced pyrimidine hydrates in DNA are repaired by bacterial and mammalian DNA glycosylase activities. Biochemistry 28: 6164–6170

    Article  CAS  PubMed  Google Scholar 

  • Bossemeyer D, Engh RA, Kinzel V, Postingl H, Huber R (1993) Phosphotransferase and substrate binding mechanism of the cAMP-dependent protein kinase catalytic subunit from porcine heart deduced from the 2.0 Å structure of the complex with Mn2+ adenylyl imidophosphate and inhibitor peptide PKI(5–24). EMBO J 12: 849–859

    CAS  PubMed  Google Scholar 

  • Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, Fitzgerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb J-F, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NSM, Weidman JF, Fuhrmann JL, Nguyen D, Utterback TR, Kelley JM, Peterson JD, Sadow PW, Hanna MC, Cotton MD, Roberts KM, Hurst MA, Kaine BP, Borodovsky M, Klenk H-P, Fraser CM, Smith HO, Woese CR, Venter JC (1996) Complete genome sequence of the methanogen archaeon, Methanococcus jannaschii. Science 273: 1058–1073

    Article  CAS  PubMed  Google Scholar 

  • Cedergren-Zeppezauer ES, Larsson G, Nyman PO, Dauter Z, Wilson KS (1992) Crystal structure of a dUTPase. Nature 355: 740–743

    Article  CAS  PubMed  Google Scholar 

  • Chee MS, Bankier AT, Beck S, Bohni R, Brown CM, Cerny R, Horsnell T, Hutchison III CA, Kouzarides T, Martignetti JA, Preddie E, Satchwell SC, Tomilinson P, Weston KM, Barrell BG (1990) Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154: 125–169

    Article  CAS  PubMed  Google Scholar 

  • Chen DS, Herman T, Demple B (1991) Two distinct human diesterases that hydrolyze 3′-blocking deoxyribose fragments from oxidized DNA. Nucleic Acids Res 19: 5907–5914

    Article  CAS  PubMed  Google Scholar 

  • Cunningham RP (1997) DNA glycosylases. Mutat Res 383: 189–196

    CAS  PubMed  Google Scholar 

  • Cunningham RP, Saporito SM, Spitzer SG, Weiss B (1986) Endonuclease IV (nfo) mutant of Escherichia coli. J Bacteriol 168: 1120–1127

    CAS  PubMed  Google Scholar 

  • Demple B, Linn S (1980) DNA N-glycosylases and UV repair. Nature 287: 203–208

    Article  CAS  PubMed  Google Scholar 

  • Demple B, Johnson A, Fung D (1986) Exonuclease III and endonuclease IV remove 3′ blocks from DNA synthesis primers in H2O2-damaged Escherichia coli. Proc Natl Acad Sci USA 83: 7731–7735

    Article  CAS  PubMed  Google Scholar 

  • Demple B, Herman T, Chen DS (1991) Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: definition of a family of DNA repair enzymes. Proc Natl Acad Sci USA 88: 11450–11454

    Article  CAS  PubMed  Google Scholar 

  • Dodson ML, Michaels ML, Lloyd RS (1994) Unified catalytic mechanism for DNA glycosylases. J Biol Chem 269: 32709–32712

    CAS  PubMed  Google Scholar 

  • Doetsch PW, Cunningham RP (1990) The enzymology of apurinic/apyrimidinic endonucleases. Mutat Res 236: 173–201

    CAS  PubMed  Google Scholar 

  • Doherty AJ, Worrall AF, Connolly BA (1995) The roles of arginine 41 and tyrosine 76 in the coupling of DNA recognition to phosphodiester bond cleavage by DNase I: a study using site-directed mutagenesis. J Mol Biol 251: 366–377

    Article  CAS  PubMed  Google Scholar 

  • Doherty AJ, Serpell LC, Ponting CP (1996) The helix-hairpin-helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA. Nucleic Acids Res 24: 2488–2497

    Article  CAS  PubMed  Google Scholar 

  • Domena JD, Timmer RT, Dicharry SA, Mosbaugh DW (1988) Purification and properties of mitochondrial uracil-DNA glycosylase from rat liver. Biochemistry 27: 6742–6751

    Article  CAS  PubMed  Google Scholar 

  • El-Hajj H, Zhang H, Weiss B (1988) Lethality of a dut (deoxyuridine triphosphatase) mutation in Escherichia coli. J Bacteriol 170: 1069–1075

    CAS  PubMed  Google Scholar 

  • El-Hajj HH, Wang L, Weiss B (1992) Multiple mutant of Escherichia coli synthesizing virtually thymineless DNA during limited growth. J Bacteriol 174: 4450–4456

    CAS  PubMed  Google Scholar 

  • Feng Q, Moran JV, Kazizian HH Jr, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87: 905–916

    Article  CAS  PubMed  Google Scholar 

  • Fleischmann, RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, McKenney K, Sutton G, Fitzhugh W, Fields CA, Gocayne JD, Scott JD, Shirley R, Liu L-I, Glodek A, Kelley JM, Weidman JF, Phillips CA, Spriggs T, Hedblom E, Cotton MD, Utterback TR, Hanna MC, Nguyen DT, Saudek DM, Brandon RC, Fine LD, Fritchman JL, Fuhrmann JL, Geoghagen NSM, Gnehm CL, McDonald LA, Small KV, Fraser CM, Smith HO, Venter JC (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496–512

    Article  CAS  PubMed  Google Scholar 

  • Fraser CM, Gocayne JD, White O., Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM, Fritchman JL, Weidman JF, Small KV, Sandusky M, Fuhrmann J, Nguyen D, Utterback TR, Saudek DM, Phillips CA, Merrick JM, Tomb JF, Dougherty BA, Bott KF, Hu PC, Lucier TS, Peterson SN, Smith HO, Hutchison CA III, Venter JC (1995) The minimal gene complement of Mycoplasma genitalium. Science 270: 397–403

    Article  CAS  PubMed  Google Scholar 

  • Freeland TM, Guyer RB, Ling AZ, Deering RA (1996) Apurinic/apyrimidinic (AP) endonuclease from Dictyostelium discoideum: cloning, nucleotide sequence and induction by sublethal levels of DNA damaging agents. Nucleic Acids Res 24: 1950–1953

    Article  CAS  PubMed  Google Scholar 

  • Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis. ASM Press, Washington, DC, pp 135–190

    Google Scholar 

  • Gadsden MH, Mcintosh EM, Game JC, Wilson PJ, Haynes RH (1993) dUTP pyrophosphatase is an essential enzyme in Saccharomyces cerevisiae. EMBO J 12: 4425–4431

    CAS  PubMed  Google Scholar 

  • Gates FT, Linn S (1997) Endonuclease from Escherichia coli that acts specifically upon duplex DNA damaged by ultraviolet light, osmium, acid or X-rays. J Biol Chem 252: 2802–2807

    Google Scholar 

  • Glaser P, Kunst F, Arnaud M, Coudart MP, Gonzales W, Hullo MF, Ionescu M, Lubochinsky B, Marcelino L, Moszer I, Presecan E, Santana M, Schneider E, Schweizer J, Vertes A, Rapoport G, Danchin A (1993) Bacillus subdlis genome project: cloning and sequencing of the 97 kb region from 325 degrees to 333 degrees. Mol Microbiol 10: 371–384

    Article  CAS  PubMed  Google Scholar 

  • Goebel SJ, Johnson GP, Perkus ME, Davis SW, Winslow JP, Paoletti E (1990) The complete DNA sequence of vaccinia virus. Virology 179: 247–266

    Article  CAS  PubMed  Google Scholar 

  • Gorman MA, Morera S, Rothwell DG, de La Fortelle E, Mol CD, Tainer JA, Hickson ID, Freemont PS (1997) The crystal structure of the human DNA repair endonuclease HAP1 suggests the recognition of extra-helical deoxyribose at DNA abasic sites. EMBO J 16: 6548–6558

    Article  CAS  PubMed  Google Scholar 

  • Goulian M, Bleil B, Tseng BY (1980) The effect of methotrexate on levels of dUTP in animal cells. J Biol Chem 255: 10630–10637

    CAS  PubMed  Google Scholar 

  • Gu L, Huang SM, Sander M (1994) Single amino acid changes alter the repair specificity of Drosophila Rrpl. Isolation of mutants deficient in repair of oxidative DNA damage. J Biol Chem 269: 32685–32691

    CAS  PubMed  Google Scholar 

  • Halliwell B, Aruoma OI (1993) DNA and free radicals. Ellis Horwood, New York

    Google Scholar 

  • Hatahet Z, Kow YW, Purmal AA, Cunningham RP, Wallace SS (1994) New substrates for old enzymes. 5-hydroxy-2′-deoxycytidine and 5-hydroxy-2′-deoxyuridine are substrates for Escherichia coli endonuclease III and formamidopyrimidine DNA glycosylase, while 5-hydroxy-2′-deoxyuridine is a substrate for uracil DNA N-glycosylase. J Biol Chem 269: 18814–18820

    CAS  PubMed  Google Scholar 

  • Haug T, Skorpen F, Lund H, Krokan HE (1994) Structure of the gene for human uracil-DNA glycosylase and analysis of the promoter function. FEBS Lett 353: 180–184

    Article  CAS  PubMed  Google Scholar 

  • Hemmingsen JM, Gernert KM, Richardson JS, Richardson DC (1994) The tyrosine corner: a feature of most Greek key β-barrel proteins. Protein Sci 3: 1927–1937

    Article  CAS  PubMed  Google Scholar 

  • Hieter P, Boguski M (1997) Functional genomics: it’s all how you read it. Science 278: 601–602

    Article  CAS  PubMed  Google Scholar 

  • Hilbert TP, Boorstein RJ, Kung HC, Bolton PH, Xing D, Cunningham RP, Teebor GW (1996) Purification of a mammalian homologue of Escherichia coli endonuclease III: identification of a bovine pyrimidine hydrate-thymine glycol DNAse/AP lyase by irreversible cross linking to a thymine glycol-containing oligoxynucleotide. Biochemistry 35: 2505–2511

    Article  CAS  PubMed  Google Scholar 

  • Hilbert TP, Chaung W, Boorstein RJ, Cunningham RP, Teebor GW (1997) Cloning and expression of the cDNA encoding the human homologue of the DNA repair enzyme, Escherichia coli endonuclease III. J Biol Chem 272: 6733–6740

    Article  CAS  PubMed  Google Scholar 

  • Hoheisel JD (1993) On the activities of Escherichia coli exonuclease III. Anal Biochem 209: 238–246

    Article  CAS  PubMed  Google Scholar 

  • Holmes SE, Dombroski BA, Krebs CM, Boehm CD, Kazazian HH Jr (1994) A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion. Nat Genet 7: 143–148

    Article  CAS  PubMed  Google Scholar 

  • Ingraham HA, Dickey L, Goulian M (1986) DNA fragmentation and cytotoxicity from increased cellular deoxyuridylate. Biochemistry 25: 3225–3230

    Article  CAS  PubMed  Google Scholar 

  • Ivarie R (1987) Thymine methyls and DNA-protein interactions. Nucleic Acids Res 15: 9975–9983

    Article  CAS  PubMed  Google Scholar 

  • Jones SJ, Worral AF, Connolly BA (1996) Site-directed mutagenesis of the catalytic residues of bovine pancreatic deoxyribonuclease I. J Mol Biol 264: 1154–1163

    Article  CAS  PubMed  Google Scholar 

  • Jurka J (1997) Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci USA 94: 1872–1877

    Article  CAS  PubMed  Google Scholar 

  • Katcher HL, Wallace SS (1983) Characterization of the Escherichia coli X-ray endonuclease, endonuclease III. Biochemistry 22: 4071–4081

    Article  CAS  PubMed  Google Scholar 

  • Klimasauskas S, Kumar S, Roberts RJ, Cheng X (1994) Hhal methyltransferase flips its target base out of the DNA helix. Cell 76: 357–369

    Article  CAS  PubMed  Google Scholar 

  • Kow YW, Wallace SS (1985) Exonuclease III recognizes urea residues in oxidized DNA. Proc Natl Acad Sci USA 82: 8354–8358

    Article  CAS  PubMed  Google Scholar 

  • Krokan HE, Standal R, Slupphaug G (1997) DNA glycosylases in the base excision repair of DNA. Biochem J 325: 1–16

    CAS  PubMed  Google Scholar 

  • Kuo CF, McRee DE, Fisher CL, O’Handley SF, Cunningham RP, Tainer JA (1994) Atomic structure of the DNA repair [4Fe-4S] enzyme endonuclease III. Science 258: 434–440

    Article  Google Scholar 

  • Labahn J, Scharer OD, Long A, Ezaz-Nikpay K, Verdine GL, Ellenberger TE (1996) Structural basis for the excision repair of alkylation-damaged DNA. Cell 86: 321–329

    Article  CAS  PubMed  Google Scholar 

  • Ladner RD, Caradonna SJ (1997) The human dUTPase gene encodes both nuclear and mitochondrial isoforms. Differential expression of the isoforms and characterization of a cDNA encoding the mitochondrial species. J Biol Chem 272: 19072–19080

    Article  CAS  PubMed  Google Scholar 

  • Ladner RD, Carr SA, Huddleston MJ, McNulty DE, Caradonna SJ (1996a) Identification of a consensus cyclin-dependent kinase phosphorylation site unique to the nuclear form of human deoxyuridine triphosphate nucleotidohydrolase. J Biol Chem 271: 7752–7757

    Article  CAS  PubMed  Google Scholar 

  • Ladner RD, McNulty DE, Carr SA, Roberts GD, Caradonna SJ (1996b) Characterization of distinct nuclear and mitochondrial forms of human deoxyuridine triphosphate nucleotidohydrolase. J Biol Chem 271: 7745–7751

    Article  CAS  PubMed  Google Scholar 

  • Lahm A, Suck D (1991) DNase I-induced DNA conformation. 2 Å structure of a DNase I-octamer complex. J Mol Biol 222: 645–667

    Article  CAS  PubMed  Google Scholar 

  • Larsson G, Svensson LA, Nyman PO (1996) Crystal structure of the Escherichia coli dUTPase in complex with a substrate analogue (dUDP). Nat Struct Biol 3: 532–538

    Article  CAS  PubMed  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362: 709–715

    Article  CAS  PubMed  Google Scholar 

  • Lindahl T, Nyberg B (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry 11: 3610–3618

    Article  CAS  PubMed  Google Scholar 

  • Lindahl T, West SC (1995) DNA repair and recombination. Chapman & Hall, London

    Book  Google Scholar 

  • Loeb LA (1985) Apurinic sites as mutagenic intermediates. Cell 40: 483–484

    Article  CAS  PubMed  Google Scholar 

  • Lundberg LG, Thoresson HO, Karlstrom OH, Nyman PO (1983) Nucleotide sequence of the structural gene for dUTPase of Escherichia coli K-12. EMBO J 2: 967–971

    CAS  PubMed  Google Scholar 

  • Massung RF, Jayarama V, Moyer RW (1993) DNA sequence analysis of conserved and unique regions of swinepox virus: identification of genetic elements supporting phenotypic observations including a novel G protein-coupled receptor homologue. Virology 197: 511–528

    Article  CAS  PubMed  Google Scholar 

  • Mattes BW, Lee CS, Laval J, O’Connor TR (1996) Excision of DNA adducts of nitrogen mustards by bacterial and mammalian 3-methyladenine-DNA glycosylases. Carcinogenesis 17: 643–648

    Article  CAS  PubMed  Google Scholar 

  • McGeoch DJ (1990) Protein sequence comparisons show that the “pseudoproteases” encoded by poxviruses and certain retroviruses belong to the deoxyuridine triphosphatase family. Nucleic Acids Res 18: 4105–4110

    Article  CAS  PubMed  Google Scholar 

  • McGeoch DJ, Dalrymple MA, Davison AJ, Dolan A, Frame MC, McNab D, Perry LJ, Scott JE, Taylor P (1988) The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69: 1531–1574

    Article  CAS  PubMed  Google Scholar 

  • Mcintosh EM, Ager DD, Gadsden MH, Haynes RH (1992a) Human dUTP pyrophosphatase: cDNA sequence and potential biological importance of the enzyme. Proc Natl Acad Sci USA 92: 8020–8024

    Article  Google Scholar 

  • Mcintosh EM, Looser J, Haynes RH, Pearlman RE (1992b) Mlul site-dependent transcriptional regulation of the Candida albicans dUTPase gene. Curr Genet 26: 415–421

    Article  Google Scholar 

  • Mejean V, Rives I, Claverys JP (1990) Nucleotide sequence of the Streptococcus pneumoniae ung gene encoding uracil-DNA glycosylase. Nucleic Acids Res 18: 6693

    Article  CAS  PubMed  Google Scholar 

  • Mercer AA, Fraser KM, Stockwell PA, Robinson AJ (1989) A homologue of retroviral pseudoproteases in the parapoxvirus, orf virus. Virology 172: 665–668

    Article  CAS  PubMed  Google Scholar 

  • Michaels ML, Pham L, Nghiem Y, Cruz C, Miller JH (1990) MutY, an adenine glycosylase active on G-A mispairs, has homology to endonuclease III. Nucleic Acids Res 18: 3841–3845

    Article  CAS  PubMed  Google Scholar 

  • Mol CD, Arvai AS, Sanderson RJ, Slupphaug G, Kavli B, Krokan HE, Mosbaugh DW, Tainer JA (1995a) Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell 82: 701–708

    Article  CAS  PubMed  Google Scholar 

  • Mol CD, Arvai AS, Slupphaug G, Kavli B, Alseth I, Krokan HE, Tainer JA (1995b) Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis. Cell 80: 869–878

    Article  CAS  PubMed  Google Scholar 

  • Mol CD, Kuo CF, Thayer MM, Cunningham RP, Tainer JA (1995c) Structure and function of the multifunctional DNA-repair enzyme exonuclease III. Nature 374: 381–386

    Article  CAS  PubMed  Google Scholar 

  • Mol CD, Harris JM, Mcintosh EM, Tainer JA (1996) Human dUTP pyrophosphatase: uracil recognition by a β hairpin and active sites formed by three separate subunits. Structure 4: 1077–1092

    Article  CAS  PubMed  Google Scholar 

  • Moore MH, Gulbis JM, Dodson EJ, Demple B, Moody PCE (1994) Crystal structure of a suicidal DNA repair protein: the ADA O6-methylguanine-DNA methyltransferase from E. coli. EMBO J 13: 1495–1501

    CAS  PubMed  Google Scholar 

  • Nash HM, Bruner SD, Scharer OD, Kawate T, Addona TA, Spooner E, Lane WS, Verdine GL (1996) Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr Biol 6: 968–980

    Article  CAS  PubMed  Google Scholar 

  • Nash HM, Lu R, Lane WS, Verdine GL (1997) The critical active-site amine of the human 8-oxoguanine DNA glycosylase, hOggl: direct identification, ablation and chemical reconstitution. Chem Biol 4: 693–702

    Article  CAS  PubMed  Google Scholar 

  • Nilsen H, Otterlei M, Haug T, Solum K, Nagelus TA, Skorpen F, Krokan HE (1997) Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the ung gene. Nucleic Acids Res 25: 750–755

    Article  CAS  PubMed  Google Scholar 

  • Nugent M, Huang SM, Sander M (1993) Characterization of the apurinic endonuclease activity of Drosophila Rrpl. Biochemistry 32: 11445–11452

    Article  CAS  PubMed  Google Scholar 

  • Oefner C, Suck D (1986) Crystallographic refinement and structure of DNase I at 2 A resolution. J Mol Biol 192: 605–632

    Article  CAS  PubMed  Google Scholar 

  • Ouellete BF, Clark MW, Keng T, Storms RK, Zhong W, Zeng B, Fortin N, Delaney S, Barton A, Kaback DB, Bussey H (1993) Sequencing of chromosome I from Saccharomyces cerevisiae: analysis of a 32 kb region between the LTE1 and SPO7 genes. Genome 36: 32–42

    Article  Google Scholar 

  • Park H-W, Kim S-T, Sancar A, Deisenhofer J (1995) Crystal structure of DNA photolyase from Escherichia coli. Science 268: 1866–1872

    Article  CAS  PubMed  Google Scholar 

  • Pearl LH, Savva R (1996) The problem with pyrimidines. Nat Struct Biol 3: 485–487

    Article  CAS  PubMed  Google Scholar 

  • Pelletier H, Sawaya MR, Wolfe W, Wilson SH, Kraut J (1996) Crystal structures of human DNA polymerase beta complexed with DNA: implications for catalytic mechanism, processivity, and fidelity. Biochemistry 35: 12742–12761

    Article  CAS  PubMed  Google Scholar 

  • Percival KJ, Klein MB, Burgers PM (1989) Molecular cloning and primary structure of the uracil-DNA-glycosylase gene from Saccharomyces cerevisiae. J Biol Chem 264: 2593–2598

    CAS  PubMed  Google Scholar 

  • Philipp WJ, Poulet S, Eiglmeier K, Pascopella L, Balasubramanian V, Heym B, Bergh S, Bloom BR, Jacobs WR Jr, Cole ST (1996) An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis H37Rv, and comparison with Mycobacterium leprae. Proc Natl Acad Sci USA 93: 3132–3137

    Article  CAS  PubMed  Google Scholar 

  • Prasad GS, Stura EA, McRee DE, Laco GS, Hasselkus-Light C, Elder JH, Stout CD (1996a) Crystal structure of dUTP pyrophosphatase from feline immunodeficiency virus. Protein Sci 5: 2429–2437

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Singhal RK, Srivastava DK, Molina JT, Tomkinson AE, Wilson SH (1996b) Specific interaction of DNA polymerase β and DNA ligase I in a multiprotein base excision repair complex from bovine testis. J Biol Chem 271: 16000–16007

    Article  CAS  PubMed  Google Scholar 

  • Pri-Hadash A, Hareven D, Lifschitz E (1992) A meristem-related gene from tomato encodes a dUTPase: analysis of expression in vegetative and floral meristems. Plant Cell 4: 149–159

    Article  CAS  PubMed  Google Scholar 

  • Pu WT, Struhl K (1992) Uracil interference, a rapid and general method for defining protein-DNA interactions involving the 5-methyl group of thymines: the GCN4-DNA complex. Nucleic Acids Res 20: 771–775

    Article  CAS  PubMed  Google Scholar 

  • Puyet A, Greenberg B, Lacks SA (1989) The exoA gene of Streptococcus pneumoniae and its product, a DNA exonuclease with apurinic endonuclease activity. J Bacteriol 171: 2278–2286

    CAS  PubMed  Google Scholar 

  • Radman M (1976) An endonuclease from Escherichia coli that introduces single polynucleotide chain scissions in ultraviolet-irradiated DNA. J Biol Chem 251: 1438–1445

    CAS  PubMed  Google Scholar 

  • Reinisch KM, Chen L, Verdine GL, Lipscomb WN (1995) The crystal structure of HaeIII methyltransferase covalently complexed to DNA: an extrahelical cytosine and rearranged base pairing. Cell 82: 143–153

    Article  CAS  PubMed  Google Scholar 

  • Richards RG, Sowers LC, Laszlo J, Sedwick WD (1984) The occurrence and consequences of deoxyuridine in DNA. Adv Enzyme Regul 22: 157–185

    Article  CAS  PubMed  Google Scholar 

  • Robson CN, Hochhauser D, Craig R, Rack K, Buckle VJ, Hickson ID (1992) Structure of the human DNA repair gene HAP1 and its localisation to chromosome 14q 11.2–12. Nucleic Acids Res 20: 4417–4421

    Article  CAS  PubMed  Google Scholar 

  • Rogers SG, Weiss B (1980) Cloning of the exonuclease III gene of Escherichia coli. Methods Enzymol 69: 201–211

    Article  Google Scholar 

  • Roldan-Arjona T, Anselmino C, Lindahl T (1996) Molecular cloning and functional analysis of a Schizosaccharomyces pombe homologue of Escherichia coli endonuclease III. Nucleic Acids Res 24: 3307–3312

    Article  CAS  PubMed  Google Scholar 

  • Roseman NA, Slabaugh MB (1990) The vaccinia virus HindIII F fragment: nucleotide sequence of the left 6.2 kb. Virology 178: 410–418

    Article  CAS  PubMed  Google Scholar 

  • Rossman MG, Liljas A, Branden C-I, Banaszak LJ (1975) Evolutionary and structural relationships among dehydrogenases. In: Boyer P (ed) The enzymes vol 11. Academic Press, New York pp 61–102

    Chapter  Google Scholar 

  • Rothwell DG, Hickson ID (1996) Asparagine 212 is essential for abasic site recognition by the human DNA repair endonuclease HAP1. Nucleic Acids Res 24: 4217–4221

    Article  CAS  PubMed  Google Scholar 

  • Rushlow K, Olsen K, Stiegler G, Payne SL, Montelaro RC, Issel CJ (1986) Lentivirus genomic organization: the complete nucleotide sequence of the env gene region of equine infectious anemia virus. Virology 155: 309–321

    Article  CAS  PubMed  Google Scholar 

  • Sander M, Lowenhaupt K, Lane WS, Rich A (1991) Cloning and characterization of Rrpl, the gene encoding Drosophila strand transferase: carboxy-terminal homology to DNA repair endo/exonucleases. Nucleic Acids Res 19: 4523–4529

    Article  CAS  PubMed  Google Scholar 

  • Saporito SM, Smith-White BJ, Cunningham RP (1988) Nucleotide sequence of the xth gene of Escherichia coli K-12. J Bacteriol 170: 4542–4547

    CAS  PubMed  Google Scholar 

  • Savva R, McAuley-Hecht K, Brown T, Pearl L. (1995) The structural basis of specific base-excision repair by uracil-DNA glycosylase. Nature 373: 487–493

    Article  CAS  PubMed  Google Scholar 

  • Schulz GE (1980) Gene duplication in glutathione reductase. J Mol Biol 138: 335–347

    Article  CAS  PubMed  Google Scholar 

  • Seeberg E, Eide L, Bjoras M (1995) The base excision repair pathway. Trends Biochem Sci 20: 391–397

    Article  CAS  PubMed  Google Scholar 

  • Seki S, Ikeda S, Watanabe S, Hatsushika M, Tsutsui K, Akiyama K, Zhang B (1991) A mouse DNA repair enzyme (APEX nuclease) having exonuclease and apurinic/ apyrimidinic endonuclease activities: purification and characterization. Biochim Biophys Acta 1079: 57–64

    Article  CAS  PubMed  Google Scholar 

  • Shapiro R (1981) Damage to DNA caused by hydrolysis. In: Seeberg E, Kleppe K (eds) Chromosome damage and repair. Plenum Press, New York, pp 3–18

    Google Scholar 

  • Shida T, Noda M, Sekiguchi L (1996) Cleavage of single-and double-stranded DNAs containing an abasic residue by Escherichia coli exonuclease III (AP endonuclease VI). Nucleic Acids Res 24: 4572–4576

    Article  CAS  PubMed  Google Scholar 

  • Slupphaug G, Olsen LC, Heiland D, Aasland R, Krokan HE (1991) Cell cycle regulation and in vitro hybrid arrest analysis of the major human uracil-DNA glycosylase. Nucleic Acids Res 19: 5131–5137

    Article  CAS  PubMed  Google Scholar 

  • Slupphaug G, Markussen FH, Olsen LC, Aasland R, Aarsaether N, Bakke O, Krokan HE, Heiland DE (1993) Nuclear and mitochondrial forms of human uracil-DNA glycosylase are encoded by the same gene. Nucleic Acids Res 21: 2579–2584

    Article  CAS  PubMed  Google Scholar 

  • Slupphaug G, Eftedal I, Kavli B, Bharati S, Helle NM, Haug T, Levine DW, Krokan HE (1995) Properties of a recombinant human uracil-DNA glycosylase from the UNG-gene and evidence that the UNG-gene encodes the major uracil-DNA glycosylase. Biochemistry 34: 128–138

    Article  CAS  PubMed  Google Scholar 

  • Slupphaug G, Mol CD, Kavli B, Arvai AS, Krokan HE, Tainer JA (1996) A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature 384: 87–92

    Article  CAS  PubMed  Google Scholar 

  • Strniste GF, Wallace SS (1975) Endonucleolytic incision of X-irradiated deoxyribonucleic acid by extracts of Escherichia coli. Proc Natl Acad Sci USA 72: 1997–2001

    Article  CAS  PubMed  Google Scholar 

  • Suck D, Oefner C (1986) Structure of DNase I at 2.0Å resolution suggests a mechanism for binding to and cutting DNA. Nature 321: 620–625

    Article  CAS  PubMed  Google Scholar 

  • Suck D, Lahm A, Oefner C (1988) Structure refined to 2.0Å of a nicked DNA octanucleotide complex with DNase I. Nature 322: 464–468

    Article  Google Scholar 

  • Svendsen PC, Yee HA, Winkfein RJ, van de Sande JH (1997) The mouse uracil-DNA glycosylase gene: isolation of cDNA and genomic clones and mapping ung to mouse chromosome 5. Gene 189: 175–181

    Article  CAS  PubMed  Google Scholar 

  • Thayer MM, Ahern H, Xing D, Cunningham RP, Tainer JA (1995) Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure. EMBO J 14: 4108–4120

    CAS  PubMed  Google Scholar 

  • Tye BK, Nyman PO, Lehman IR, Hochhauser S, Weiss B (1977) Transient accumulation of Okazaki fragments as a result of uracil incorporation into nascent DNA. Proc Natl Acad Sci USA 74: 154–157

    Article  CAS  PubMed  Google Scholar 

  • van Sinderen D, Karsens H, Kok J, Terpstra P, Ruiters MH, Venema G, Nauta A (1996) Sequence analysis and molecular characterization of the temperate lactococcal bacteriophage rlt. Mol Microbiol 19: 1343–1355

    Article  PubMed  Google Scholar 

  • Varshney U, Hutcheon T, van de Sande JH (1988) Sequence analysis, expression, and conservation of Escherichia coli uracil DNA glycosylase and its gene (ung). J Biol Chem 263: 7776–7784

    CAS  PubMed  Google Scholar 

  • Vassylyev DG, Kashiwagi T, Mikami Y, Ariyoshi M, Iwai S, Ohtsuka E, Morikawa K (1995) Atomic model of a pyrimidine dimer excision repair enzyme complexed with a DNA substrate: structural basis for damaged DNA recognition. Cell 83: 773–782

    Article  CAS  PubMed  Google Scholar 

  • Vertessy BG (1997) Flexible glycine rich motif of Escherichia coli deoxyuridine triphosphate nucleotidohydrolase is important for functional but not structural integrity of the enzyme. Proteins Struct Funct Genet 28: 568–579

    Article  CAS  PubMed  Google Scholar 

  • Vertessy BG, Zalud P, Nyman PO, Zeppezauer M (1994) Identification of tyrosine as a functional residue in the active site of Escherichia coli dUTPase. Biochim Biophys Acta 1205: 146–150

    Article  CAS  PubMed  Google Scholar 

  • Wagaman PC, Hasselkus-Light CS, Henson M, Lerner DL, Philips TR, Elder JH (1993) Molecular cloning and characterization of deoxyuridine triphosphatase from feline immunodeficiency virus (FIV). Virology 196: 451–457

    Article  CAS  PubMed  Google Scholar 

  • Warren MA, Evans SJ, Connolly BA (1997) Effects of non-conservative changes to tyrosine 76, a key DNA binding residue of DNase I, on phosphodiester bond cleavage and DNA hydrolysis selectivity. Protein Eng 10: 279–283

    Article  CAS  PubMed  Google Scholar 

  • Weston SA, Lahm A, Suck D (1992) X-ray structure of the DNase I-d (GGTATACC)2 complex at 2.3 Å resolution. J Mol Biol 226: 1237–1256

    Article  CAS  PubMed  Google Scholar 

  • Wilson DM, Takeshita M, Grollman AP, Demple B (1995) Incision activity of human apurinic endonuclease (Ape) at abasic site analogs in DNA. J Biol Chem 270: 16002–16007

    Article  CAS  PubMed  Google Scholar 

  • Wilson DM, Takeshita M, Demple B (1997) Abasic site binding by the human apurinic endonuclease, Ape, and determination of the DNA contact sites. Nucleic Acids Res 25: 933–939

    Article  CAS  PubMed  Google Scholar 

  • Wilson R, Ainscough R, Anderson K, Baynes C, Berks M, Bonfield J, Burton J, Connell M, Copsey T, Cooper J, Coulson A, Craxton M, Dear S, Du Z, Durbin R, Favello A, Fulton L, Gardner A, Green P, Hawkins T, Hillier L, Jier M, Johnston L, Jones M, Kershaw J, Kirsten J, Laister N, Latreille P, Lightning J, Lloyd C, McMurray A, Mortimore B, O’Callaghan M, Parsons J, Percy C, Rifken L, Roopra A, Saunders D, Shownkeen R, Smaldon N, Smith A, Sonnhammer E, Staden R, Sulston J, Thierry-Mieg J, Thomas K, Vaudin M, Vaughan K, Waterston R, Watson A, Weinstock L, Wilkinson-Sproat J, Wohldman P (1994) 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature 368: 32–38

    Article  CAS  PubMed  Google Scholar 

  • Wittwer CU, Krokan HE (1985) Uracil-DNA glycosylase in HeLa S3 cells: interconvertibility of 50 and 20 kDa forms and similarity of the nuclear and mitochondrial form of the enzyme. Biochim Biophys Acta 832: 308–318

    Article  CAS  PubMed  Google Scholar 

  • Wolf E, Brukner I, Suck D (1995) Mutational analysis of DNase I-DNA interactions: design, expression and characterization of a DNase I loop insertion mutant with altered sequence selectivity. Protein Eng 8: 283–291

    Article  CAS  PubMed  Google Scholar 

  • Wood RD (1997) Nucleotide excision repair in mammalian cells. J Biol Chem 272: 23465–23468

    Article  CAS  PubMed  Google Scholar 

  • Xanthoudakis S, Miao G, Wang F, Pan Y-CE, Curran T (1992) Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J 11: 3323–3335

    CAS  PubMed  Google Scholar 

  • Yamagata Y, Kato M, Odawara K, Tokuno Y, Nakashima Y, Matsushima N, Yasumura K, Tomita K, Ihara K, Funjii Y, Nakabeppu Y, Sekiguchi M, Fujii S (1996) Three-dimensional structure of a DNA repair enzyme, 3-methyladenine DNA glycosylase II, from Escherichia coli. Cell 86: 311–319

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Knighton DR, Ten Eyck LF, Karlsson R, Xuong N, Taylor SS, Sowadski JM (1993a) Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor. Biochemistry 32: 2154–2161

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Trafny EA, Knighton DR, Xuong N-H, Taylor SS, Ten Eyck LF, Sowadski JM (1993b) 2.2 Å refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MnATP and a peptide inhibitor. Acta Crystallogr D49: 362–365

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mol, C.D., Parikh, S.S., Lo, T.P., Tainer, J.A. (1998). Structural Phylogenetics of DNA Base Excision Repair. In: Eckstein, F., Lilley, D.M.J. (eds) DNA Repair. Nucleic Acids and Molecular Biology, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48770-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48770-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48772-9

  • Online ISBN: 978-3-642-48770-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics