Skip to main content

Eukaryotic Mismatch Repair

  • Chapter
DNA Repair

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 12))

Abstract

An important property of DNA in all living cells is its ability to form an antiparallel double helix that is stabilized by Watson-Crick pairing between complementary bases. This structural concept provides the basis for templatedirected DNA dynamic processes such as replication, repair and recombination. However, fidelity of inheritance and genomic stability in populations is only possible if cells maintain a surveillance system capable of monitoring the state of base-pairing in their DNA and of correcting anomalous pairing in a conservative way. In principle, two types of mispairing can occur in the DNA double helix: base-base mismatches and insertion/deletion loops (IDL). Base-base mismatches consist of non-complementary juxtaposed bases and can be of purine-pyrimidine (G·T, A·C), purine-purine (G·G, G·A, A·A) or pyrimidine-pyrimidine (T·T, T·C, C·C) type. In the absence of repair, purinepyrimidine mispairs give rise to transition mutations in 50% of the progeny DNA following DNA replication, whereas the other mispair types lead to transversion mutations. IDLs are generated by strand slippage or misalignment due to insertion or deletion of one or more nucleotides in one of the complementary DNA strands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acharya S, Wilson T, Gradia S, Kane MF, Guerrette S, et al. (1996) hMSH2 forms specific mispair binding complexes with hMSH3 and hMSH6. Proc Natl Acad Sci USA 93: 13629–13634

    CAS  PubMed  Google Scholar 

  • Aebi S, Kurdi HB, Gordon R, Cenni B, Zheng H, et al. (1996) Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Res 56: 3087–3090

    CAS  PubMed  Google Scholar 

  • Akiyama Y, Tsubouchi N, Yuasa Y (1997a) Frequent somatic mutations of hMSH3 with reference to microsatellite instability in hereditary nonpolyposis colorectal cancers. Biochem Biophys Res Commun 236: 248–252

    CAS  PubMed  Google Scholar 

  • Akiyama Y, Sato H, Yamada T, Nagasaki H, Tsuchiya A, et al. (1997b) Germ-line mutation of the hMSH6/GTBP gene in an atypical hereditary nonpolyposis colorectal cancer kindred. Cancer Res 57: 3920–3923

    CAS  PubMed  Google Scholar 

  • Alani E (1996) The Saccharomyces cerevisiae Msh2 and Msh6 proteins form a complex that specifically binds to duplex oligonucleotides containing mismatched DNA base pairs. Mol Cell Biol 16: 5604–5615

    CAS  PubMed  Google Scholar 

  • Alani E, Reenan RAG, Kolodner RD (1994) Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae. Genetics 137: 19–39

    CAS  PubMed  Google Scholar 

  • Alani E, Chi N-W, Kolodner R (1995) The Saccharomyces cerevisiae Msh2 protein specifically binds to duplex oligonucleotides containing mismatched DNA base pairs and insertions. Genes Dev 9: 234–247

    CAS  PubMed  Google Scholar 

  • Alani E, Lee S, Kane MF, Griffith J, Kolodner RD (1997a) Saccharomyces cerevisiae MSH2, a mispaired base recognition protein, also recognizes Holliday junctions in DNA. J Mol Biol 265: 289–301

    CAS  PubMed  Google Scholar 

  • Alani E, Sokolsky T, Studamire B, Miret JJ, Lahue RS (1997b) Genetic and biochemical analysis of Msh2p-Msh6p: role of ATP hydrolysis and Msh2p-Msh6p subunit interactions in mismatch base pair recognition. Mol Cell Biol 17: 2436–2447

    CAS  PubMed  Google Scholar 

  • Allen DJ, Makhov A, Grilley M, Taylor J, Thresher R, et al. (1997) MutS mediates heteroduplex loop formation by a translocation mechanism. EMBO J 16: 4467–4476

    CAS  PubMed  Google Scholar 

  • Andrew SE, Reitmair AH, Fox J, Hsiao L, Francis A, et al. (1997) Base transitions dominate the mutational spectrum of a transgenic reporter gene in MSH2 deficient mice. Oncogene 15: 123–129

    CAS  PubMed  Google Scholar 

  • Anthoney DA, McIlwrath AJ, Gallagher WM, Edlin AR, Brown R (1996) Microsatellite instability, apoptosis, and loss of p53 function in drug-resistant tumor cells. Cancer Res 56: 1374–1381

    CAS  PubMed  Google Scholar 

  • Aquilina G, Hess P, Branch P, MacGeoch C, Casciano I, et al. (1994) A mismatch recognition defect in colon carcinoma confers DNA microsatellite instability and a mutator phenotype. Proc Natl Acad Sci USA 91: 8905–8909

    CAS  PubMed  Google Scholar 

  • Armstrong MJ, Galloway SM (1997) Mismatch repair provokes chromosome aberrations in hamster cells treated with methylating agents or 6-thioguanine, but not with ethylating agents. Mutat Res 373: 167–178

    CAS  PubMed  Google Scholar 

  • Aronshtam A, Marinus MG (1996) Dominant negative mutator mutations in the mutL gene of Escherichia coli. Nucleic Acids Res 24: 2498–2504

    CAS  PubMed  Google Scholar 

  • Au KG, Cabrera M, Miller JH, Modrich P (1988) Escherichia coli mutY gene product is required for specific A/G to C/G mismatch correction. Proc Natl Acad Sci USA 85: 9163–9166

    CAS  PubMed  Google Scholar 

  • Au KG, Welsh K, Modrich P (1992) Initiation of methyl-directed mismatch repair. J Biol Chem 267: 12142–12148

    CAS  PubMed  Google Scholar 

  • Bailis AM, Rothstein R (1990) A defect in mismatch repair in Saccharomyces cerevisiae stimulates ectopic recombination between homeologous genes by an excision repair dependent process. Genetics 126: 535–547

    CAS  PubMed  Google Scholar 

  • Baker SM, Bronner CE, Zhang L, Plug AW, Robatzek M, et al. (1995) Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell 82: 309–319

    CAS  PubMed  Google Scholar 

  • Baker SM, Plug AW, Prolla TA, Bronner CE, Harris AC, et al. (1996) Involvement of mouse Mihi in DNA mismatch repair and meiotic crossing over. Nature Genet 13: 336–342

    CAS  PubMed  Google Scholar 

  • Bawa S, Xiao W (1997) A mutation in the MSH5 gene results in alkylation tolerance. Cancer Res 57: 2715–2720

    CAS  PubMed  Google Scholar 

  • Bhattacharyya NP, Ganesh A, Phear G, Richards B, Skandalis A, et al. (1995) Molecular analysis of mutations in mutator colorectal carcinoma cell lines. Hum Mol Genet 4: 2057–2064

    CAS  PubMed  Google Scholar 

  • Bishop DK, Andersen J, Kolodner RD (1989) Specificity of mismatch repair following transformation of Saccharomyces cerevisiae with heteroduplex plasmid DNA. Proc Natl Acad Sci USA 86: 3713–3717

    CAS  PubMed  Google Scholar 

  • Borts RH, Haber JE (1987) Meiotic recombination in yeast: alteration by multiple heterozygosities. Science 237: 1459–1465

    CAS  PubMed  Google Scholar 

  • Borts RH, Leung WY, Kramer W, Kramer B, Williamson M, et al. (1990) Mismatch repair-induced meiotic recombination requires the pms1 gene product. Genetics 124: 573–584

    CAS  PubMed  Google Scholar 

  • Branch P, Aquilina G, Bignami M, Karran P (1993) Defective mismatch binding and a mutator phenotype in cells tolerant to DNA damage. Nature 362: 652–654

    CAS  PubMed  Google Scholar 

  • Bronner CE, Baker SM, Morrison PT, Warren G, Smith LG, et al. (1994) Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368: 258–261

    CAS  PubMed  Google Scholar 

  • Brown TC, Jiricny J (1987) A specific mismatch repair event protects mammalian cells from loss of 5-methylcytosine. Cell 50: 945–950

    CAS  PubMed  Google Scholar 

  • Brown TC, Jiricny J (1988) Different base/base mispairs are corrected with different efficiencies and specificities in monkey kidney cells. Cell 54: 705–711

    CAS  PubMed  Google Scholar 

  • Bruni R, Martin D, Jiricny J (1988) d(GATC) sequences influence Escherichia coli mismatch repair in a distance-dependent manner from positions both upstream and downstream of the mismatch. Nucleic Acids Res 16: 4875–4890

    CAS  PubMed  Google Scholar 

  • Ceccotti S, Aquilina G, Macpherson P, Yamada M, Karran P, et al. (1996) Processing of O6-methylguanine by mismatch correction in human cell extracts. Curr Biol 6: 1528–1531

    CAS  PubMed  Google Scholar 

  • Chi NW, Kolodner RD (1994) Purification and characterization of MSH1, a yeast mitochondrial protein that binds to DNA mismatches. J Biol Chem 269: 29984–29992

    CAS  PubMed  Google Scholar 

  • Chu G (1994) Cellular responses to cisplatin. The roles of DNA-binding proteins and DNA repair. J Biol Chem 269: 787–790

    CAS  PubMed  Google Scholar 

  • Claverys JP, Lacks SA (1986) Heteroduplex deoxyribonucleic acid base mismatch repair in bacteria. Microbiol Rev 133–165

    Google Scholar 

  • Cooper DL, Lahue RS, Modrich P (1993) Methyl-directed mismatch repair is bidirectional. J Biol Chem 268: 11823–11829

    CAS  PubMed  Google Scholar 

  • Datta A, Adjiri A, New L, Crouse GF, Jinks RS (1996) Mitotic crossovers between diverged sequences are regulated by mismatch repair proteins in Saccharomyces cerevisiae. Mol Cell Biol 16: 1085–1093

    CAS  PubMed  Google Scholar 

  • Datta A, Hendrix M, Lipsitch M, Jinks RS (1997) Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. Proc Natl Acad Sci USA 94: 9757–9762

    CAS  PubMed  Google Scholar 

  • deMassy B, Rocco V, Nicolas A (1995) The nucleotide mapping of DNA double-strand breaks at the CYS3 initiation site of meiotic recombination in Saccharomyces cerevisiae. EMBO J 14: 4589–4598

    CAS  Google Scholar 

  • Detloff P, Sieber J, Petes TD (1991) Repair of specific base pair mismatches formed during meiotic recombination in the yeast Saccharomyces cerevisiae. Mol Cell Biol 11: 737–745

    CAS  PubMed  Google Scholar 

  • Detloff P, Petes TD (1992) Measurements of excision repair tracts formed during meiotic recombination in Saccharomyces cerevisiae. Mol Cell Biol 12: 1805–1814

    CAS  PubMed  Google Scholar 

  • de Wind N, Dekker M, Berns A, Radman M, te Riele H (1995) Inactivation of the mouse MSH2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82: 321–330

    PubMed  Google Scholar 

  • Drummond JT, Li GM, Longley MJ, Modrich P (1995) Isolation of an hMSH2-p160 heterodimer that restores DNA mismatch repair to tumor cells. Science 268: 1909–1912

    CAS  PubMed  Google Scholar 

  • Drummond JT, Anthoney A, Brown R, Modrich P (1996) Cisplatin and adriamycin resistance are associated with MutLα and mismatch repair deficiency in an ovarian tumor cell line. J Biol Chem 271: 19645–19648

    CAS  PubMed  Google Scholar 

  • Drummond JT, Genschel J, Wolf E, Modrich P (1997) DHFR/MSH3 amplification in methotrexate-resistant cells alters the hMutSα/hMutSβ ratio and reduces the efficiency of base-base mismatch repair. Proc Natl Acad Sci USA 94: 10144–10149

    CAS  PubMed  Google Scholar 

  • Duckett DR, Drummond JT, Murchie AI, Reardon JT, Sancar A, et al. (1996) Human MutSα recognizes damaged DNA base pairs containing O6-methylguanine, O4-methylthymine, or the cisplatin-d(GpG) adduct. Proc Natl Acad Sci USA 93: 6443–6447

    CAS  PubMed  Google Scholar 

  • Edelmann W, Cohen PE, Kane M, Lau K, Morrow B, et al. (1996) Meiotic pachytene arrest in MLH1-deficient mice. Cell 85: 1125–1134

    CAS  PubMed  Google Scholar 

  • Edelmann W, Yang K, Umar A, Heyer J, Lau K, et al. (1997) Mutation in the mismatch repair gene Msh6 causes cancer susceptibility. Cell 91: 467–477

    CAS  PubMed  Google Scholar 

  • Eshleman JR, Markowitz SD (1995) Microsatellite instability in inherited and sporadic neoplasms. Curr Opin Oncol 7: 83–89

    CAS  PubMed  Google Scholar 

  • Eshleman JR, Markowitz SD (1996) Mismatch repair defects in human carcinogenesis. Hum Mol Genet 5: 1489–1494

    CAS  PubMed  Google Scholar 

  • Eshleman JR, Lang EZ, Bowerfind GK, Parsons R, Vogelstein B, et al. (1995) Increased mutation rate at the HPRT locus accompanies microsatellite instability in colon cancer. Oncogene 10: 33–37

    CAS  PubMed  Google Scholar 

  • Fang W-H, Modrich P (1993) Human strand-specific mismatch repair occurs by bidirectional mechanisms similar to that of the bacterial reaction. J Biol Chem 268: 11838–11844

    CAS  PubMed  Google Scholar 

  • Feng WY, Lee EH, Hays JB (1991) Recombinagenic processing of UV-light photoproducts in nonreplicating phage DNA by the Escherichia coli methyl-directed mismatch repair system. Genetics 129: 1007–1020

    CAS  PubMed  Google Scholar 

  • Fink D, Zheng H, Nebel S, Nords PS, Aebi S, et al. (1997) In vitro and in vivo resistance to cisplatin in cells that have lost DNA mismatch repair. Cancer Res 57: 1841–1845

    CAS  PubMed  Google Scholar 

  • Fishel R, Lescoe MK, Rao MRS, Copeland NG, Jenkins NA, et al. (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75: 1027–1038

    CAS  PubMed  Google Scholar 

  • Fishel R, Ewel A, Lee S, Lescoe MK, Griffith J (1994a) Binding of mismatched microsatellite DNA sequences by the human MSH2 protein. Science 266: 1403–1405

    CAS  PubMed  Google Scholar 

  • Fishel R, Ewel A, Lescoe MK (1994b) Purified human MSH2 protein binds to DNA containing mismatched nucleotides. Cancer Res 54: 5539–5542

    CAS  PubMed  Google Scholar 

  • Fleck O, Michael H, Heim L (1992) The swi4 gene of Schizosaccharomyces pombe encodes a homologue of mismatch repair enzymes. Nucleic Acids Res 20: 2271–2278

    CAS  PubMed  Google Scholar 

  • Fleck O, Rudolph C, Albrecht A, Lorentz A, Schär P, et al. (1994a) The mutator gene swi8 effects specific mutations in the mating-type region of Schizosaccharomyces pombe. Genetics 138: 621–632

    CAS  PubMed  Google Scholar 

  • Fleck O, Schär P, Kohli J (1994b) Identification of two mismatch-binding activities in protein extracts of Schizosaccharomyces pombe. Nucleic Acids Res 22: 5289–5295

    CAS  PubMed  Google Scholar 

  • Fogel S, Mortimer R, Lusnak K, Tavares T (1979) Meiotic gene conversion: a signal of the basic recombination event in yeast. Cold Spring Harbor Symp Quant Biol 43: 1325–1341

    CAS  PubMed  Google Scholar 

  • Fogel S, Mortimer RK, Lusnak K (1981) Mechanisms of meiotic gene conversion, or “wandering on a foreign strand”. In: Strathern N, Jones EW, Broach JW (eds) The molecular biology of the yeast Saccharomyces, 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 289–339

    Google Scholar 

  • Folger KR, Thomas K, Capecchi MR (1985) Efficient correction of mismatched bases in plasmid heteroduplexes injected into cultured mammalian cell nuclei. Mol Cell Biol 5: 70–74

    CAS  PubMed  Google Scholar 

  • Fram RJ, Cusick PS, Wilson JM, Marinus MG (1985) Mismatch repair of cis-diamminedichloroplatinum(II)-induced DNA damage. Mol Pharmacol 28: 51–55

    CAS  PubMed  Google Scholar 

  • Gallinari P, Jiricny J (1996) A new class of uracil-DNA glycosylases related to human thymine-DNA glycosylase. Nature 383: 735–738

    CAS  PubMed  Google Scholar 

  • Galloway SM, Greenwood SK, Hill RB, Bradt CI, Bean CL (1995) A role for mismatch repair in production of chromosome aberrations by methylating agents in human cells. Mutat Res 346: 231–245

    CAS  PubMed  Google Scholar 

  • Glaab WE, Tindall KR (1997) Mutation rate at the hprt locus in human cancer cell lines with specific mismatch repair-gene defects. Carcinogenesis 18: 1–8

    CAS  PubMed  Google Scholar 

  • Goldmacher VS, Cuzick RJ, Thilly WG (1986) Isolation and partial characterization of human cell mutants differing in sensitivity to killing and mutation by methylnitrosourea and N-methyl-N‵-nitro-N-nitrosoguanidine. J Biol Chem 261: 12462–12471

    CAS  PubMed  Google Scholar 

  • Griffin S, Karran P (1993) Incision at DNA GT mispairs by extracts of mammalian cells occurs preferentially at cytosine methylation sites and is not targeted by a separate G-T binding reaction. Biochemistry 32: 13032–13039

    CAS  PubMed  Google Scholar 

  • Griffin S, Branch P, Xu YZ, Karran P (1994) DNA mismatch binding and incision at modified guanine bases by extracts of mammalian cells: implications for tolerance to DNA methylation damage. Biochemistry 33: 4787–4793

    CAS  PubMed  Google Scholar 

  • Grilley M, Welsh KM, Su S-S, Modrich P (1989) Isolation and characterization of the Escherichia coli mutL gene product. J Biol Chem 264: 1000–1004

    CAS  PubMed  Google Scholar 

  • Haber JE, Ray BL, Kolb JM, White CI (1993) Rapid kinetics of mismatch repair of heteroduplex DNA that is formed during recombination in yeast. Proc Natl Acad Sci USA 90: 3363–3367

    CAS  PubMed  Google Scholar 

  • Habraken Y, Sung P, Prakash L, Prakash S (1996) Binding of insertion/deletion DNA mismatches by the heterodimer of yeast mismatch repair proteins MSH2 and MSH3. Curr Biol 6: 1185–1187

    CAS  PubMed  Google Scholar 

  • Habraken Y, Sung P, Prakash L, Prakash S (1997) Enhancement of MSH2-MSH3 mediated mismatch recognition by the yeast MLH1-PMS1 complex. Curr Biol 7: 790–793

    CAS  PubMed  Google Scholar 

  • Hare JT, Taylor JH (1985) One role for DNA methylation in vertebrate cells is strand discrimination in mismatch repair. Proc Natl Acad Sci USA 82: 7350–7354

    CAS  PubMed  Google Scholar 

  • Harris RS, Feng G, Ross KJ, Sidhu R, Thulin C, et al. (1997) Mismatch repair protein MutL becomes limiting during stationary-phase mutation. Genes Dev 11: 2426–2437

    CAS  PubMed  Google Scholar 

  • Hawn MT, Umar A, Carethers JM, Marra G, Kunkel TA, et al. (1995) Evidence for a connection between the mismatch repair system and the G2 cell cycle checkpoint. Cancer Res 55: 3721–3725

    CAS  PubMed  Google Scholar 

  • Hennecke F, Kolmar H, Brundl K, Fritz HJ (1991) The vsr gene product of E. coli K-12 is a strand-and sequence-specific DNA mismatch endonuclease. Nature 353: 776–778

    CAS  PubMed  Google Scholar 

  • Hoffmann JS, Pillaire MJ, Lesca C, Burnouf D, Fuchs RP, et al. (1996) Fork-like DNA templates support bypass replication of lesions that block DNA synthesis on single-stranded templates. Proc Natl Acad Sci USA 93: 13766–13769

    CAS  PubMed  Google Scholar 

  • Hoffmann JS, Locker D, Villani G, Leng M (1997) HMG1 protein inhibits the translesion synthesis of the major DNA cisplatin adduct by cell extracts. J Mol Biol 270: 539–543

    CAS  PubMed  Google Scholar 

  • Holliday R (1964) A mechanism for gene conversion in fungi. Genet Res 5: 282–304

    Google Scholar 

  • Hollingsworth NM, Ponte L, Hasley C (1995) MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev 9: 1728–1739

    CAS  PubMed  Google Scholar 

  • Holmes JJ, Clark S, Modrich P (1990) Strand-specific mismatch correction in nuclear extracts of human and Drosophila melanogaster cell lines. Proc Natl Acad Sci USA 87: 5837–5841

    CAS  PubMed  Google Scholar 

  • Huang JC, Hsu DS, Kazantsev A, Sancar A (1994) Substrate spectrum of human excinuclease: repair of abasic sites, methylated bases, mismatches, and bulky adducts. Proc Natl Acad Sci USA 91: 12213–12217

    CAS  PubMed  Google Scholar 

  • Humbert O, Prudhomme M, Hakenbeck R, Dowson CG, Claverys JP (1995) Homeologous recombination and mismatch repair during transformation in Streptococcus pneumoniae: saturation of the Hex mismatch repair system. Proc Natl Acad Sci USA 92: 9052–9056

    CAS  PubMed  Google Scholar 

  • Hunter N, Borts RH (1997) Mihi is unique among mismatch repair proteins in its ability to promote crossing-over during meiosis. Genes Dev 11: 1573–1582

    CAS  PubMed  Google Scholar 

  • Hunter N, Chambers SR, Louis EJ, Borts RH (1996) The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid. EMBO J 15: 1726–1733

    CAS  PubMed  Google Scholar 

  • Iaccarino I, Palombo F, Drummond J, Totty NF, Hsuan JJ, et al. (1996) MSH6, a Saccharomyces cerevisiae protein that binds to mismatches as a heterodimer with MSH2. Curr Biol 6: 484–486

    CAS  PubMed  Google Scholar 

  • Iaccarino I, Marra G, Palombo F, Jiricny J (1998) hMSH2 and hMSH6 play distinct roles in mismatch binding and contribute differently to the ATPase activity of hMutsa. EMBO J 17: 2677–2686

    CAS  PubMed  Google Scholar 

  • Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363: 558–561

    CAS  PubMed  Google Scholar 

  • Jiricny J (1996) Mismatch repair and cancer. Cancer Surv 28: 47–68

    CAS  PubMed  Google Scholar 

  • Johnson RE, Kovvali GK, Prakash L, Prakash S (1995) Requirement of the yeast RTH1 5′ to 3′ exonuclease for the stability of simple repetitive DNA. Science 269: 238–240

    CAS  PubMed  Google Scholar 

  • Johnson RE, Kovvali GK, Guzder SN, Amin NS, Holm C, et al. (1996a) Evidence for involvement of yeast proliferating cell nuclear antigen in DNA mismatch repair. J Biol Chem 271: 27987–27990

    CAS  PubMed  Google Scholar 

  • Johnson RE, Kovvali GK, Prakash L, Prakash S (1996b) Requirement of the yeast MSH3 and MSH6 genes for MSH2-dependent genomic stability. J Biol Chem 271: 7285–7288

    CAS  PubMed  Google Scholar 

  • Kane MF, Loda M, Gaida GM, Lipman J, Mishra R, et al. (1997) Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 57: 808–811

    CAS  PubMed  Google Scholar 

  • Karran P, Bignami M (1996) Drug-related killings: a case of mistaken identity. Chem Biol 3: 875–879

    CAS  PubMed  Google Scholar 

  • Karran P, Marinus MG (1982) Mismatch correction at O6-methylguanine residues in E. coli DNA. Nature 296: 868–869

    CAS  PubMed  Google Scholar 

  • Kat A, Thilly WG, Fang WH, Longley MJ, Li GM, et al. (1993) An alkylation-tolerant, mutator human cell line is deficient in strand-specific mismatch repair. Proc Natl Acad Sci USA 90: 6424–6428

    CAS  PubMed  Google Scholar 

  • Kirkpatrick DT, Petes TD (1997) Repair of DNA loops involves DNA-mismatch and nucleotide-excision repair proteins. Nature 387: 929–931

    CAS  PubMed  Google Scholar 

  • Koi M, Umar A, Chauhan DP, Cherian SP, Carethers JM, et al. (1994) Human chromosome 3 corrects mismatch repair deficiency and microsatellite instability and reduces N-methyl-N′-nitro-N-nitrosoguanidine tolerance in colon tumor cells with homozygous hMLH1 mutation. Cancer Res 54: 4308–4312

    CAS  PubMed  Google Scholar 

  • Kolodner R (1995) Mismatch repair: mechanisms and relationship to cancer susceptibility. TIBS 20: 397–401

    CAS  PubMed  Google Scholar 

  • Kolodner R (1996) Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev 10: 1433–1442

    CAS  PubMed  Google Scholar 

  • Kramer B, Kramer W, Williamson MS, Fogel S (1989a) Heteroduplex DNA correction in Saccharomyces cerevisiae is mismatch specific and requires functional PMS genes. Mol Cell Biol 9: 4432–4440

    CAS  PubMed  Google Scholar 

  • Kramer W, Kramer B, Williamson MS, Fogel S (1989b) Cloning and nucleotide sequence of DNA mismatch repair gene PMS1 from Saccharomyces cerevisiae: homology of PMS1 to procaryotic MutL and HexB. J Bacteriol 171: 5339–5346

    CAS  PubMed  Google Scholar 

  • Kramer W, Fartmann B, Ringbeck EC (1996) Transcription of mutS and mutL-homologous genes in Saccharomyces cerevisiae during the cell cycle. Mol Gen Genet 252: 275–283

    CAS  PubMed  Google Scholar 

  • Lahue RS, Au KG, Modrich P (1989) DNA mismatch correction in a defined system. Science 245: 160–164

    CAS  PubMed  Google Scholar 

  • Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J, et al. (1993) Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75: 1215–1225

    CAS  PubMed  Google Scholar 

  • Li G-M, Modrich P (1995) Restoration of mismatch repair to nuclear extracts of H6 colorectal tumor cells by a heterodimer of human MutL homologs. Proc Natl Acad Sci USA 92: 1950–1954

    CAS  PubMed  Google Scholar 

  • Li GM, Wang H, Romano LJ (1996) Human MutSα specifically binds to DNA containing aminofluorene and acetylaminofluorene adducts. J Biol Chem 271: 24084–24088

    CAS  PubMed  Google Scholar 

  • Lichten M, Goyon C, Schultes NP, Treco D, Szostak JW, et al. (1990) Detection of heteroduplex DNA molecules among the products of Saccharomyces cerevisiae meiosis. Proc Natl Acad Sci USA 87: 7653–7657

    CAS  PubMed  Google Scholar 

  • Lieb M (1987) Bacterial genes mutL, mutS, and dcm participate in repair of mismatches at 5-methylcytosine sites. J Bacteriol 169: 5241–5246

    CAS  PubMed  Google Scholar 

  • Lieber MR (1997) The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. BioEssays 19: 233–240

    CAS  PubMed  Google Scholar 

  • Liu J, Wu T-C, Lichten M (1995) The location and structure of double-strand DNA breaks induced during yeast meiosis: evidence for a covalently linked DNA-protein intermediate. EMBO J 14: 4599–4608

    CAS  PubMed  Google Scholar 

  • Loeb LA, Springgate CF, Battula N (1974) Errors in DNA replication as a basis of malignant changes. Cancer Res 34: 2311–2321

    CAS  PubMed  Google Scholar 

  • Longerich S, Galloway AM, Harris RS, Wong C, Rosenberg SM (1995) Adaptive mutation sequences reproduced by mismatch repair deficiency. Proc Natl Acad Sci USA 92: 12017–12020

    CAS  PubMed  Google Scholar 

  • Longley MJ, Pierce AJ, Modrich P (1997) DNA polymerase delta is required for human mismatch repair in vitro. J Biol Chem 272: 10917–10921

    CAS  PubMed  Google Scholar 

  • Lu AL, Chang DY (1988) A novel nucleotide excision repair for the conversion of an A/G mismatch to C/G base pair in E. coli. Cell 54: 805–812

    CAS  PubMed  Google Scholar 

  • Lynch HT, Smyrk TC, Watson P, Lanspa SJ, Lynch JF, et al. (1993) Genetics, natural history, tumor spectrum, and pathology of hereditary nonpolyposis colorectal cancer: an updated review. Gastroenterology 104: 1535–1549

    CAS  PubMed  Google Scholar 

  • Malkhosyan S, McCarty A, Sawai H, Perucho M (1996) Differences in the spectrum of spontaneous mutations in the hprt gene between tumor cells of the microsatellite mutator phenotype. Mutat Res 316: 249–259

    CAS  PubMed  Google Scholar 

  • Manivasakam P, Rosenberg SM, Hastings PJ (1996) Poorly repaired mismatches in heteroduplex DNA are hyper-recombinagenic in Saccharomyces cerevisiae. Genetics 142: 407–416

    CAS  PubMed  Google Scholar 

  • Marra G, Boland CR (1995) Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives. J Natl Cancer Inst 87: 1114–1125

    CAS  PubMed  Google Scholar 

  • Marra G, Boland CR (1996) DNA repair and colorectal cancer. Gastroenterol Clin North Am 25: 755–772

    CAS  PubMed  Google Scholar 

  • Marra G, Chang CL, Laghi LA, Chauhan DP, Young D, et al. (1996) Expression of human MutS homolog 2 (hMSH2) protein in resting and proliferating cells. Oncogene 13: 2189–2196

    CAS  PubMed  Google Scholar 

  • Marra G, Iaccarino I, Lettiem T, Roscilli G, Delmastro P, Jiricny J (1998) Mismatch repair deficiency associated with overexpression of the MSH3 gene. Proc Natl Acad Sci 95 (in press)

    Google Scholar 

  • Marsischki GT, Filosi N, Kane MF, Kolodner R (1996) Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev 10: 407–420

    Google Scholar 

  • Matic I, Rayssiguier C, Radman M (1995) Interspecies gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species. Cell 80: 507–515

    CAS  PubMed  Google Scholar 

  • McGoldrick JP, Yeh Y-C, Solomon M, Essigman JM, Lu A-L (1995) Characterization of a mammalian homolog of the Escherichia coli MutY mismatch repair protein. Mol Cell Biol 15: 989–996

    CAS  PubMed  Google Scholar 

  • Mello JA, Acharya S, Fishel R, Essigmann JM (1996) The mismatch-repair protein hMSH2 binds selectively to DNA adducts of the anticancer drug cisplatin. Chem Biol 3: 579–589

    CAS  PubMed  Google Scholar 

  • Mellon I, Champe GN (1996) Products of DNA mismatch repair genes mutS and mutL are required for transcription-coupled nucleotide-excision repair of the lactose operon in Escherichia coli. Proc Natl Acad Sci USA 93: 1292–1297

    CAS  PubMed  Google Scholar 

  • Mellon I, Rajpal DK, Koi M, Boland CR, Champe GN (1996) Transcription-coupled repair deficiency and mutations in human mismatch repair genes. Science 272: 557–560

    CAS  PubMed  Google Scholar 

  • Meyers M, Theodosiou M, Acharya S, Odegaard E, Wilson T, et al. (1997) Cell cycle regulation of the human DNA mismatch repair genes hMSH2, hMLH1, and hPMS2. Cancer Res 57: 206–208

    CAS  PubMed  Google Scholar 

  • Mezard C, Pompon D, Nicolas A (1992) Recombination between similar but not identical DNA sequences during yeast transformation occurs within short stretches of identity. Cell 70: 659–670

    CAS  PubMed  Google Scholar 

  • Michaels ML, Cruz C, Grollman AP, Miller JH (1992) Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Proc Natl Acad Sci USA 89: 7022–7025

    CAS  PubMed  Google Scholar 

  • Miret JJ, Milla MG, Lahue RS (1993) Characterization of a DNA mismatch-binding activity in yeast extracts. J Biol Chem 268: 3507–3513

    CAS  PubMed  Google Scholar 

  • Miyaki M, Konishi M, Tanaka K, Ky R. Muraoka M, et al. (1997) Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet 17: 271–272

    CAS  PubMed  Google Scholar 

  • Modrich P (1991) Mechanisms and biological effects of mismatch repair. Annu Rev Genet 25: 229–253

    CAS  PubMed  Google Scholar 

  • Modrich P, Lahue R (1996) Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem 65: 101–133

    CAS  PubMed  Google Scholar 

  • Moggs JG, Szymkowski DE, Yamada M, Karran P, Wood RD (1997) Differential human nucleotide excision repair of paired and mispaired cisplatin-DNA adducts. Nucleic Acids Res 25: 480–491

    CAS  PubMed  Google Scholar 

  • Moore CW, Hampsey DM, Ernst JF, Sherman F (1988) Differential mismatch repair can explain the disproportionalities between physical distances and recombination frequencies of cycl mutations in yeast. Genetics 21: 21–34

    Google Scholar 

  • Mu D, Tursun M, Duckett DR, Drummond JT, Modrich P, et al. (1997) Recognition and repair of compound DNA lesions (base damage and mismatch) by human mismatch repair and excision repair systems. Mol Cell Biol 17: 760–769

    CAS  PubMed  Google Scholar 

  • Munz P (1975) On some properties of five mutator alleles in Schizosaccharomyces pombe. Mutat Res 29: 155–157

    CAS  PubMed  Google Scholar 

  • Muster-Nassal C, Kolodner R (1986) Mismatch correction catalyzed by cellfree extracts of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 83: 7618–7622

    CAS  PubMed  Google Scholar 

  • Nag DK, White MA, Petes TD (1989) Palindromic sequences in heteroduplex DNA inhibit mismatch repair in yeast. Nature 340: 318–320

    CAS  PubMed  Google Scholar 

  • Narayanan L, Fritzell JA, Baker SM, Liskay RM, Glazer PM (1997) Elevated levels of mutation in multiple tissues of mice deficient in the DNA mismatch repair gene Pms2. Proc Natl Acad Sci USA 94: 3122–3127

    CAS  PubMed  Google Scholar 

  • Nassif N, Engels W (1993) DNA homology requirements for mitotic gap repair in Drosophila. Proc Natl Acad Sci USA 90: 1262–1266

    CAS  PubMed  Google Scholar 

  • Neddermann P, Jiricny J (1993) The purification of a mismatch-specific thymine DNA glycosylase from HeLa cells. J Biol Chem 268: 21218–21224

    CAS  PubMed  Google Scholar 

  • Neddermann P, Jiricny J (1994) Efficient removal of uracil from G U mispairs by the mismatch-specific thymine DNA glycosylase from HeLa cells. Proc Natl Acad Sci USA 91: 1642–1646

    CAS  PubMed  Google Scholar 

  • Neddermann P, Gallinary P, Lettieri T, Schmid D, Truong O, et al. (1996) Cloning and expression of Human G/T mismatch-specific thymine-DNA glycosylase. J Biol Chem 271: 12767–12774

    CAS  PubMed  Google Scholar 

  • New L, Liu K, Crouse GF (1993) The yeast gene MSH3 defines a new class of eukaryotic MutS homologues. Mol Gen Genet 239: 97–108

    CAS  PubMed  Google Scholar 

  • Nicolaides NC, Papadopoulos N, Liu B, Wei Y-F, Carter KC, et al. (1994) Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371: 75–80

    CAS  PubMed  Google Scholar 

  • Nicolas A, Petes TD (1994) Polarity of meiotic gene conversion in fungi: contrasting views. Experientia 50: 242–252

    CAS  PubMed  Google Scholar 

  • Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194: 23–28

    CAS  PubMed  Google Scholar 

  • Ohzeki S, Tachibana A, Tatsumi K, Kato T (1997) Spectra of spontaneous mutations at the hprt locus in colorectal carcinoma cell lines defective in mismatch repair. Carcinogenesis 18: 1127–1133

    CAS  PubMed  Google Scholar 

  • Palombo F, Gallinari P, Iaccarino I, Lettieri T, Hughes M, et al. (1995) GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science 268: 1912–1914

    CAS  PubMed  Google Scholar 

  • Palombo F, Iaccarino I, Nakajima E, Ikejima M, Shimada T, et al. (1996) hMutSβ, a heterodimer of hMSH2 and hMSH3, binds to insertion/deletion loops in DNA. Curr Biol 6: 1181–1184

    CAS  PubMed  Google Scholar 

  • Pang Q, Prolla TA, Liskay RM (1997) Functional domains of the Saccharomyces cerevisiae Mlhlp and Pmslp DNA mismatch repair proteins and their relevance to human hereditary nonpolyposis colorectal cancer-associated mutations. Mol Cell Biol 17: 4465–4473

    CAS  PubMed  Google Scholar 

  • Papadopoulos N, Nicolaides NC, Wei Y-F, Ruben SM, Carter KC, et al. (1994) Mutation of a mutL homolog in hereditary colon cancer. Science 263: 1625–1629

    CAS  PubMed  Google Scholar 

  • Papadopoulos N, Nicolaides NC, Liu B, Parsons R, Lengauer C, et al. (1995) Mutations of GTBP in genetically unstable cells. Science 1915–1917

    Google Scholar 

  • Paquette N, Rossignol JL (1978) Gene conversion spectrum of 15 mutants giving postmeiotic segregation in the b2 locus of Ascobolus immersus. Mol Gen Genet 163: 313–326

    Google Scholar 

  • Parker BO, Marinus MG (1992) Repair of DNA heteroduplexes containing small heterologous sequences in Escherichia coli. Proc Natl Acad Sci USA 89: 1730–1734

    CAS  PubMed  Google Scholar 

  • Parsons R, Li G-M, Longley MJ, Fang W-H, Papadopoulos N, et al. (1993) Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75: 1227–1236

    CAS  PubMed  Google Scholar 

  • Parsons R, Li GM, Longley M, Modrich P, Liu B, et al. (1995) Mismatch repair deficiency in phenotypically normal human cells. Science 268: 738–740

    CAS  PubMed  Google Scholar 

  • Petes TD, Malone RE, Symington LS (1991) Recombination in yeast. In: Broach JR, Jones E, Pringle J (eds) The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis and energetics, 1. Cold Spring Harbor Press, Cold Spring Harbor, New York, pp 407–521

    Google Scholar 

  • Prolla TA, Christie D-M, Liskay RM (1994a) Dual requirement in yeast DNA mismatch repair for MLH1 and PMS1, two homologs of the bacterial mutL gene. Mol Cell Biol 14: 407–415

    CAS  PubMed  Google Scholar 

  • Prolla TA, Pang Q, Alani E, Kolodner RD, Liskay RM (1994b) MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast. Science 265: 1091–1093

    CAS  PubMed  Google Scholar 

  • Radicella JP, Clark EA, Fox MS (1988) Some mismatch repair activities in Escherichia coli. Proc Natl Acad Sci USA 85: 9674–9678

    CAS  PubMed  Google Scholar 

  • Radicella JP, Dherin C, Desmaze C, Fox MS, Boiteux S (1997) Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94: 8010–8015

    CAS  PubMed  Google Scholar 

  • Radman M, Wagner R (1993) Mismatch recognition in chromosomal interactions and speciation. Chromosoma 102: 369–373

    CAS  PubMed  Google Scholar 

  • Rao BJ, Chiu SK, Bazemore LR, Reddy G, Radding CM (1995) How specific is the first recognition step of homologous recombination? Trends Biochem Sci 20: 109–113

    CAS  PubMed  Google Scholar 

  • Rasouli NA, Sibghat U, Mirzayans R, Paterson MC, Day Rr (1994) On the quantitative relationship between O6-methylguanine residues in genomic DNA and production of sister-chromatid exchanges, mutations and lethal events in a Mer- human tumor cell line. Mutat Res 314: 99–113

    Google Scholar 

  • Reenan RAG, Kolodner RD (1992a) Isolation and characterization of two Saccharomyces cerevisiae genes encoding homologs of the bacterial HexA and MutS mismatch repair proteins. Genetics 132: 963–973

    CAS  PubMed  Google Scholar 

  • Reenan RAG, Kolodner RD (1992b) Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes: evidence for separate mitochondrial and nuclear functions. Genetics 132: 975–985

    CAS  PubMed  Google Scholar 

  • Reitmair AH, Redston M, Cai JC, Chuang TC, Bjerknes M, et al. (1996) Spontaneous intestinal carcinomas and skin neoplasms in Msh2-deficient mice. Cancer Res 56: 3842–3849

    CAS  PubMed  Google Scholar 

  • Risinger JI, Umar A, Boyd J, Berchuck A, Kunkel TA, et al. (1996) Mutation of MSH3 in endometrial cancer and evidence for its functional role in heteroduplex repair. Nat Genet 14: 102–105

    CAS  PubMed  Google Scholar 

  • Rodel C, Kirchhoff S, Schmidt H (1992) The protein sequence and some intron positions are conserved between the switching gene swi10 of Schizosaccharomyces pombe and the human excision repair gene ERCC1. Nucleic Acids Res 20: 6347–6353

    CAS  PubMed  Google Scholar 

  • Roeder GS (1995) Sex and the single cell: meiosis in yeast. Proc Natl Acad Sci USA 92: 10450–10456

    CAS  PubMed  Google Scholar 

  • Ross-Macdonald P, Roeder GS (1994) Mutation of a meiosis-specific MutS homolog decreases crossing over but not mistmatch correction. Cell 79: 1069–1080

    CAS  PubMed  Google Scholar 

  • Sakumi K, Furuichi M, Tsuzuki T, Kakuma T, Kawabata S, et al. (1993) Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP, a mutagenic substrate for DNA synthesis. J Biol Chem 268: 23524–23530

    CAS  PubMed  Google Scholar 

  • Sancar A, Hearst JE (1993) Molecular matchmakers. Science 259: 1415–1420

    CAS  PubMed  Google Scholar 

  • Saparbaev M, Prakash L, Prakash S (1996) Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1-RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae. Genetics 142: 727–736

    CAS  PubMed  Google Scholar 

  • Schär P, Kohli J (1993) Marker effects of G to C transversions on intragenic recombination and mismatch repair in Schizosaccharomyces pombe. Genetics 133: 825–835

    PubMed  Google Scholar 

  • Schär P, Kohli J (1994) Preferential strand transfer and hybrid DNA formation at the recombination hotspot ade6-M26 of Schizosaccharomyces pombe. EMBO J 13: 5212–5219

    PubMed  Google Scholar 

  • Schär P, Munz P, Kohli J (1993) Meiotic mismatch repair quantified on the basis of segregation patterns in Schizosaccharomyces pombe. Genetics 133: 815–824

    PubMed  Google Scholar 

  • Schär P, Baur M, Schneider C, Kohli J (1997) Mismatch repair in Schizosaccharomyces pombe requires the mutL homologous gene pmsl: molecular cloning and functional analysis. Genetics 146: 1275–1286

    PubMed  Google Scholar 

  • Schärer OD, Kawate T, Gallinari P, Jiricny J, Verdine GL (1997) Investigation of the mechanisms of DNA binding of the human G T glycosylase using designed inhibitors. Proc Natl Acad Sci USA 94: 4878–4883

    PubMed  Google Scholar 

  • Selva EM, New L, Crouse GF, Lahue RS (1995) Mismatch correction acts as a barrier to homeologous recombination in Saccharomyces cerevisiae. Genetics 139: 1175–1188

    CAS  PubMed  Google Scholar 

  • Shibata D, Peinado MA, Ionov Y, Malkhosyan S, Perucho M (1994) Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nat Genet 6: 273–281

    CAS  PubMed  Google Scholar 

  • Sibghat U, Day Rr (1995) Site specificity of incisions at G-T and O6-methylguanine-T base mismatches in DNA by human cell-free extracts. Biochemistry 34: 6869–6875

    Google Scholar 

  • Sibghat U, Xu YZ, Day Rr (1995) Incision at diaminopurine: thymine base pairs but not at guanine: O4-methylthymine base pairs in DNA by extracts of human cells. Biochemistry 34: 7438–7442

    Google Scholar 

  • Sibghat U, Gallinari P, Xu YZ, Goodman MF, Bloom LB, et al. (1996) Base analog and neighboring base effects on substrate specificity of recombinant human G: T mismatch-specific thymine DNA-glycosylase. Biochemistry 35: 12926–12932

    Google Scholar 

  • Strand M, Prolla TA, Liskay RM, Petes TD (1993) Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365: 274–276

    CAS  PubMed  Google Scholar 

  • Strand M, Earley MC, Crouse GF, Petes TD (1995) Mutations in the MSH3 gene preferentially lead to deletions within tracts of simple repetitive DNA in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 92: 10418–10421

    CAS  PubMed  Google Scholar 

  • Sugawara N, Paques F, Colaiacovo M, Haber JE (1997) Role of Saccharomyces cerevisiae msh2 and msh3 repair proteins in double-strand break-induced recombination. Proc Natl Acad Sci USA 94: 9214–9219

    CAS  PubMed  Google Scholar 

  • Swann PF, Waters TR, Moulton DC, Xu YZ, Zheng Q, et al. (1996) Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science 273: 1109–1111

    CAS  PubMed  Google Scholar 

  • Szankasi P, Smith GR (1995) A role for exonuclease I from S. pombe in mutation avoidance and mismatch correction. Science 267: 1166–1169

    CAS  PubMed  Google Scholar 

  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33: 25–35

    CAS  PubMed  Google Scholar 

  • te Riele H, Maandag ER, Berns A (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc Natl Acad Sci USA 89: 5128–5132

    Google Scholar 

  • Thuriaux P, Minet M, Munz P, Ahmad A, Zbaeren D, et al. (1980) Gene conversion in nonsense suppressors of Schizosaccharomyces pombe. II. Specific marker effects. Curr Genet 1: 89–95

    Google Scholar 

  • Tishkoff DX, Boerger AL, Bertrand P, Filosi N, Gaida GM, et al. (1997a) Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2. Proc Natl Acad Sci USA 94: 7487–7492

    CAS  PubMed  Google Scholar 

  • Tishkoff DX, Filosi N, Gaida GM, Kolodner RD (1997b) A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell 88: 253–263

    CAS  PubMed  Google Scholar 

  • Tsai W-J, Liu HF, Lu AL (1992) Escherichia coli MutY protein has both N-glycosylase and apurinic/apyrimidinic endonuclease activities on AC and AG mispairs. Proc Natl Acad Sci USA 89: 8779–8783

    Google Scholar 

  • Umar A, Buermeyer AB, Simon JA, Thomas DC, Clark AB, et al. (1996) Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87: 65–73

    CAS  PubMed  Google Scholar 

  • Varlet I, Radman M, Brooks P (1990) DNA mismatch repair in Xenopus egg extracts: repair efficiency and DNA repair synthesis for all single base-pair mismatches. Proc Natl Acad Sci USA 87: 7883–7887

    CAS  PubMed  Google Scholar 

  • Varlet I, Pallard C, Radman M, Moreau J, de Wind N (1994) Cloning and expression of the Xenopus and mouse Msh2 DNA mismatch repair genes. Nucleic Acids Res 22: 5723–5728

    CAS  PubMed  Google Scholar 

  • Vogelstein B, Kinzler KW (1993) The multistep nature of cancer. Trends Genet 9: 138–141

    CAS  PubMed  Google Scholar 

  • Vulic M, Dionisio F, Taddei F, Radman M (1997) Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc Natl Acad Sci USA 94: 9763–9767

    CAS  PubMed  Google Scholar 

  • Waldman AS, Liskay RM (1987) Differential effects of base-pair mismatch on intrachromosomal versus extrachromosomal recombination in mouse cells. Proc Natl Acad Sci USA 84: 5340–5344

    CAS  PubMed  Google Scholar 

  • Waters TR, Swann PF (1997) Cytotoxic mechanism of 6-thioguanine: hMutSα, the human mismatch binding heterodimer, binds to DNA containing S6-methylthioguanine. Biochemistry 36: 2501–2506

    CAS  PubMed  Google Scholar 

  • White JH, Lusnak K, Fogel S (1985) Mismatch-specific post-meiotic segregation frequency in yeast suggests a heteroduplex recombination intermediate. Nature 315: 350–353

    CAS  PubMed  Google Scholar 

  • Wiebauer K, Jiricny J (1989) In vitro correction of G-T mispairs to G-C pairs in nuclear extracts from human cells. Nature 339: 234–236

    CAS  PubMed  Google Scholar 

  • Wiebauer K, Jiricny J (1990) Mismatch-specific thymine DNA glycosylase and DNA polymerase β mediate the correction of G-T mispairs in nuclear extracts from human cells. Proc Natl Acad Sci USA 87: 5842–5845

    CAS  PubMed  Google Scholar 

  • Williamson MS, Game JC, Fogel S (1985) Meiotic gene conversion mutants in Saccharomyces cerevisiae. I. Isolation and characterization of PMS1-1 and PMS2-2. Genetics 110: 609–646

    CAS  PubMed  Google Scholar 

  • Witkin EM (1964) Pure clones of lactose-negative mutants obtained in Escherichia coli after treatment with 5-bromouracil. J Mol Biol 8: 610–613

    CAS  PubMed  Google Scholar 

  • Worth LJ, Clark S, Radman M, Modrich P (1994) Mismatch repair proteins MutS and MutL inhibit RecA-catalyzed strand transfer between diverged DNAs. Proc Natl Acad Sci USA 91: 3238–3241

    CAS  PubMed  Google Scholar 

  • Wu TH, Marinus MG (1994) Dominant negative mutator mutations in the mutS gene of Escherichia coli. J Bacteriol 176: 5393–5400

    CAS  PubMed  Google Scholar 

  • Xiao W, Rathgeber L, Fontanie T, Bawa S (1995) DNA mismatch repair mutants do not increase N-methyl-N‵-nitro-N-nitrosoguanidine tolerance in O6-methylguanine DNA methyltransferase-deficient yeast cells. Carcinogenesis 16: 1933–1939

    CAS  PubMed  Google Scholar 

  • Zahrt TC, Maloy S (1997) Barriers to recombination between closely related bacteria: MutS and RecBCD inhibit recombination between Salmonella typhimurium and Salmonella typhi. Proc Natl Acad Sci USA 94: 9786–9791

    CAS  PubMed  Google Scholar 

  • Zambie DB, Lippard SJ (1995) Cisplatin and DNA repair in cancer chemotherapy. Trends Biochem Sci 20: 435–439

    Google Scholar 

  • Zell R, Fritz HJ (1987) DNA mismatch-repair in Escherichia coli counteracting the hydrolytic deamination of 5-methyl-cytosine residues. EMBO J 6: 1809–1815

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schär, P., Jiricny, J. (1998). Eukaryotic Mismatch Repair. In: Eckstein, F., Lilley, D.M.J. (eds) DNA Repair. Nucleic Acids and Molecular Biology, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48770-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48770-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48772-9

  • Online ISBN: 978-3-642-48770-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics