Skip to main content

Early Biogeochemical Systems

  • Conference paper
  • 193 Accesses

Abstract

Biogeochemical systems are a product of the interacting evolutions of biosphere, atmosphere, hydrosphere, and lithosphere. They began with the appearance of life on Earth. But the appearance of objects we would unhesitatingly pronounce to be living is itself presumably only the end stage of a transitional process whose nature and antecedents are important parts of the story. If we include prebiotic chemistry, the process may have started in the space between the stars. That follows from the discovery by X-ray astronomers of interstellar hydrogen cyanide, formaldehyde, and the other important polyatomic organic molecules listed in Table 1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, R.L., 1968. A model for the evolution of strontium and lead isotopes in a dynamic earth: Rev. Geophys?, 6: 175–199.

    Article  Google Scholar 

  • Barton, J.M., Jr., Fripp, R.E.P. and Ryan, B., 1977. Rb/Sr ages and geological setting of ancient, dykes in the Sand River area, Limpopo Mobile Belt, South Africa. Nature, 267: 487–490.

    Article  Google Scholar 

  • Becker, R.H. and Clayton, R.N., 1972. Carbon isotopic evidence for the origin of a banded iron formation in western Australia. Geochim. Cosmochim. Acta?, 36: 577–595.

    Article  Google Scholar 

  • Berkner, L.V. and Marshall, L.C., 1965. History of major atmospheric components. Proc. Natl. Acad. Sci. U.S.A, 53: 1215–1225.

    Article  Google Scholar 

  • Bogorad, L., 1966. The biosynthesis of chlorophylls. In: L.P. Vernon and G.R. Seely (Eds.), The Chlorophylls, Academic Press, NY, pp. 481–510.

    Google Scholar 

  • Bogorad, L., 1976. Chlorophyll biosynthesis. In: T.W. Goodwin (Ed.), Chemistry and Biochemistry of Plant Pigments, V. 1, Academic Press, NY, pp. 64–148.

    Google Scholar 

  • Bridgwater, D., Escher, A., Jackson, G.D., Taylor, F.C. and Windley, B.F., 1973. Development of the Precambrian Shield in West Greenland, Labrador, and Baffin Island. Am. Assoc. Petr. Geol. Mem 19: 99–116.

    Google Scholar 

  • Bridgwater, D., McGregor, V.R. and Myers, J.S., 1974. A horizontal tectonic regime in the Archean of Greenland and its implications for early crustal thickening. Precambr. Res?, 1: 179–197.

    Article  Google Scholar 

  • Brinkman, R.T., 1969. Dissociation of water vapour and evolution of oxygen in the terrestrial atmosphere. J. Geophys. Res?, 74: 5355–5367.

    Article  Google Scholar 

  • Broecker, W.S., 1970. A boundary condition on evolution of atmospheric oxygen. J. Geophys. Res?, 75: 3553–3557.

    Article  Google Scholar 

  • Button, A., 1980. Early Proterozoic Weathering Profile on the 2200 m.y. Old Hekpoort Basalt, Pretoria Group, South Africa: Preliminary Results? Univ. Witwatersrand, Econ. Geol. Research Unit, Information Circular, in press.

    Google Scholar 

  • Calvin, M., 1965. Chemical evolution. Proc. R. Soc., A 288: 441–446.

    Article  Google Scholar 

  • Cameron, A.G.W., 1973, Accumulation processes in the primitive solar nebula. Icarus, 18: 407–450.

    Article  Google Scholar 

  • Cameron, A.G.W., 1977. The primitive solar accretion disk (sic) and the formation of the planets: Proc. NATO Adv. Study Inst. on the Origin of the Solar System, Newcastle-upon-Tyne, pp. 49–74.

    Google Scholar 

  • Cameron, A.G.W. and Truron, J.W., 1977. The supernova trigger for the formation of the solar system: Icarus, 30: 447–461.

    Article  Google Scholar 

  • Carver, J.H., 1980. Oxygen and ozone evolution in palaeo-atmospheres. This volume pp.

    Google Scholar 

  • Chase, C.G. and Perry, C., Jr., 1972. The Oceans: growth and oxygen isotope evolution. Science, 177: 992–994.

    Article  Google Scholar 

  • Cloud, P., 1965. Significance of the Gunflint (Precambrian) microflora. Science, 148: 27–35.

    Article  Google Scholar 

  • Cloud, P., 1968. Pre-Metazoan evolution and the origins of the Metazoa. In: E.T. Drake (Ed.), Evolution and Environment, Yale Univ. Press, pp. 1–72.

    Google Scholar 

  • Cloud, P., 1973. Paleoecological significance of the banded iron-formation. Econ. Geol., 68: 1135–1143.

    Article  Google Scholar 

  • Cloud, P., 1974. Evolution of ecosystems. Am. Sci., 62: 54–66.

    Google Scholar 

  • Cloud, P., 1976a. Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiol., 2: 351–387.

    Google Scholar 

  • Cloud, P., 1976b. Major features of crustal evolution. Geol Soc. S. Afr., Annexure to v. 79 (Alex L. DuToit Memorial Lecture No. 14), 33 pp.

    Google Scholar 

  • Cloud, P., 1978. Cosmos, Earth, and Man. Yale Press, 372 p.

    Google Scholar 

  • Cloud, P. and Gibor, A., 1970. The oxygen cycle. Sci. Am., Offprint No. 1192, 12 pp.

    Google Scholar 

  • Demoulin, V., 1979. Early Precambrian oxygen. Nature, 278: 479.

    Article  Google Scholar 

  • Dimroth, E., 1968. The evolution of the central segment of the Labrador Geosyncline, Part I: Stratigraphy, facies and paleogeography. Neues Jb. Geol. Paläont. Abh., 132: 22–24.

    Google Scholar 

  • Dimroth, E., 1970. Evolution of the Labrador Geosyncline. Bull. Geol. Soc. Am., 81: 2717–2742.

    Article  Google Scholar 

  • Fanale, F.P., 1971. A case for catastrophic early degassing of the earth. Chem. Geol., 8: 79–105.

    Article  Google Scholar 

  • Ferris, J.P., Joshi, P.C., Edelson, E.H. and Lawless, J.C., 1978. HCN: A plausible source of purines, pyrimidines and amino acids on the primitive earth. J. Mol. Evol., II: 293–311.

    Article  Google Scholar 

  • Fox, S.W. and Yuyama, S., 1973. Abiotic production of primitive protein and formed micro-particles, Ann. New York Acad. Sci., 108: 487–494.

    Article  Google Scholar 

  • Garrison, W.M., Hamilton, J.G., Morrison, D.C., Benson, A.A. and Calvin, M., 1951. Reduction of carbon dioxide in aqueous solutions by ionizing radiations. Science, 114: 416–418.

    Article  Google Scholar 

  • Gilbert, G.K., 1886. The inculcation of scientific method by example. Am. J. Sci., Ser. 3, 31: 284–299.

    Google Scholar 

  • Goldich, S.S., 1973. Ages of Precambrian banded iron-formations. Econ. Geol., 68: 1126–1134.

    Article  Google Scholar 

  • Holland, H.D., 1978, The Chemistry of the Atmosphere and Oceans. Wiley-Interscience, NY, 351 pp.

    Google Scholar 

  • Hoyle, F. and Wickramasinghe, Harper and Row, 189 pp.

    Google Scholar 

  • Hunten, D.M., 1973. The escape of light gases from panetary atmospheres. J. Atmos. Sci., 30: 1481–1494.

    Article  Google Scholar 

  • Hunten, D.M. and Strobel, D.T., 1973. Production and escape of terrestrial hydrogen. J. Atmos. Sci., 31: 305–317.

    Article  Google Scholar 

  • Jacobs, J.A., 1961. Some aspects of the thermal history of the earth. Geophys. J., 4: 267–275.

    Article  Google Scholar 

  • James, H.L. and Sims, P.K. (Eds.), 1973. Pre-Cambrian iron-formations of he world. Econ. Geol., 68: 913–1179.

    Article  Google Scholar 

  • Lambert, I.B., Donnelly, T.H., Dunlop, J.S.R. and Groves, D.I., 1978. Stable isotope compositions of early Archean sulphate deposits of probable evaporitic and volcanogenic origins: Nature, 276: 808–810.

    Article  Google Scholar 

  • Lee, T., Papanastassiou, D.A. and Wasserburg, G.J., 1976. Demonstration of 26Mg excess in Allende and evidence for A1: Geophys. Res. Lett., 3: 109–112.

    Article  Google Scholar 

  • Lee, T., Papanastassiou, D.A. and Wasserburg, G.J., 1978. Calcium isotopic anomalies in the Allende Meteorite. Astrophys. J., 220, L21 - L25.

    Article  Google Scholar 

  • Macdonald, G.J.F., 1959. Calculations on the thermal his tory of the earth. J. Geophys. Res., 65: 2173–2190.

    Article  Google Scholar 

  • Macgregor, A.M., 1927. The problem of the Precambrian at mosphere. South Afr. J. Sci., 24: 155–172.

    Google Scholar 

  • Mastenbrook, H.J., 1971. The variability of water vapor in the stratosphere. J. Atmos. Sci., 28: 1495–1501.

    Article  Google Scholar 

  • Miller, S.L., 1953. A production of amino acids under primitive earth conditions. Science, 117: 528–529.

    Article  Google Scholar 

  • Miller, S.L. and Orgel, L.E., 1974. The Origins of Life on Earth. Prentice Hall Inc., NY, 229 pp.

    Google Scholar 

  • Nagy, L.A., 1974. Transvaal stromatolite: First evidence for the diversification of cells about 2.2 x 109 years ago. Science, 183: 514–516.

    Article  Google Scholar 

  • Nagy, L.A., 1978. New filamentous and cystous microfossils, 2,300 m.y. old from the Transvaal Sequence. J. Paleontol., 52: 141–154.

    Google Scholar 

  • Perry, E.C., Monster, J. and Reimer, T., 1971. Sulfur isotopes in Swaziland system barites and the evolution of the earth’s atmosphere. Science, 171: 1015–1016.

    Article  Google Scholar 

  • Pirie, N.W., 1953. Ideas and assumptions about the origin of life. Discovery, 14: 238–242

    Google Scholar 

  • Oren,, A., Padan, E. and Avron, M., 1977. Quantum yields for oxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Proc. Natl. Acad. Sci. U.S.A., 74: 2152–2156.

    Article  Google Scholar 

  • Ringwood, A.E., 1966. The chemical composition and origin of the earth. In: P.M. Hurley (Ed.), Advances in Earth Science, MIT Press, pp. 287–356.

    Google Scholar 

  • Ringwood, A.E., 1975. Composition and Petrology of the Earth’s Mantle. McGraw Hill Book Co., NY, 618 pp.

    Google Scholar 

  • Ringwood, A.E., 1977. Composition of the Core and Implications for Origin of the Earth. Australian National University, Research School of Earth Sciences, Publ. No. 1227, 45 pp.

    Google Scholar 

  • Rubey, W.W., 1951. Geologic history of sea water. Bull. Geol. Soc. Am., 62: 1111–1148.

    Article  Google Scholar 

  • Russell, H.N. and Menzel, D.W., 1933. The terrestrial abundance of the permanent gases. Proc. Natl. Acad. Sci, U.S.A., 19: 997–1001.

    Article  Google Scholar 

  • Sagan, C. and Mullen, G., 1972. Earth and Mars: evolution of atmospheres and surface temperatures. Science, 177: 52–56.

    Article  Google Scholar 

  • Schidlowski, M. and Eichman, R., 1977. Evolution of the terrestrial oxygen budget. In: C. Ponnamperuma (Ed.), Chemical Evolution of the Early Precambrian, Academic Press, NY, pp. 87–89.

    Google Scholar 

  • Schidlowski, M., Appel, P.W.U., Eichmann, R. and Junge, C.E., 1979. Carbon isotope geochemistry of the 3.7 x 109-yr-old Isua sediments, West Greenland: implications for the Archean carbon and oxygen cycles. Geochim. Cosmochim. Acta, 43: 189–199.

    Article  Google Scholar 

  • Schopf, J.W., 1978. The evolution of the earliest cells. Sci. Am., 239: 111–120, 126–134.

    Article  Google Scholar 

  • Schramm, D.N. and Clayton, R.N., 1978. Did a supernova trigger the formation of the solar system? Sci. Am., 239: 124–139.

    Article  Google Scholar 

  • Shimizu, M., 1979. An evolutionary model of the terrestrial atmosphere from a comparative planetological view. Precambr. Res., 9: 311–324.

    Article  Google Scholar 

  • Siever, R., 1977. Early Precambrian weathering and sedimentation: an impressionistic view. In: C. Ponnamperuma (Ed.), Chemical Evolution of the Early Precambrian, Academic press, NY, pp. 13–24.

    Google Scholar 

  • Towe, K.M., 1978. Early Precambrian oxygen: a case against photosynthesis. Nature, 274: 657–661.

    Article  Google Scholar 

  • Towe, K.M., 1979. Early Precambrian oxygen: Towe replies. Nature, 278: 479.

    Article  Google Scholar 

  • Turekian, K.K. and Clark, S.P., 1969. Inhomogeneous accumulation of the earth from the primitive solar nebula. Earth Planet. Sci. Lett., 6: 346–348.

    Article  Google Scholar 

  • Urey, H.C., 1959. The atmospheres of the planets. In: S. Fugge (Ed.), Handbuch der Physik. Vol. 52, Springer Verlag, Berlin, pp. 363–418.

    Google Scholar 

  • von Brunn, V. and Mason, T.R., 1977. 3-Gyr-old stromatolites from South Africa. Nature, 266: 47–49.

    Article  Google Scholar 

  • Walker, J.C.G., 1976. Implications for atmospheric evolution of the inhomogeneous accretion model of the origin of Earth. In: B.F. Windley (Ed.), The Early History of the Earth. Wiley-Interscience, NY, pp. 537–546.

    Google Scholar 

  • Walker, J.C.G., 1977. Evolution of the Atmosphere. MacMillan Publishing Co., Inc. 318 pp.

    Google Scholar 

  • Walker, R.N., Muir, M.D., Diver, W.L., Williams, N. and Wilkins, N., 1977, Evidence of major sulphate evaporite deposits in the Proterozoic McArthur Group, Northern Territory, Australia. Nature, 265: 526–529.

    Article  Google Scholar 

  • Weisskopf, V.F., 1979, Contemporary frontiers in physics. Science, 230: 240–244.

    Article  Google Scholar 

  • Wetherill, G.W., 1971. The beginning of continental evolution. In: A. R. Ritsema (Ed.), The Upper Mantle. Tectonophysics, 13: 31–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Australian Academy of Science

About this paper

Cite this paper

Cloud, P. (1980). Early Biogeochemical Systems. In: Trudinger, P.A., Walter, M.R., Ralph, B.J. (eds) Biogeochemistry of Ancient and Modern Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48739-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48739-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48741-5

  • Online ISBN: 978-3-642-48739-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics