Advertisement

Grundlagen II pp 213-269 | Cite as

Die Lipoide und Eiweißstoffe des Gehirns

  • H. Debuch
  • G. Uhlenbruck
Part of the Handbuch der Neurochirurgie book series (NEUROCHIRURGIE, volume 1 / 2)

Zusammenfassung

Unter der Bezeichnung „Lipoide“ versteht man fettähnliche Stoffe, die in bezug auf gewisse physikalische Eigenschaften den eigentlichen Fetten ähnlich sind. Das gilt besonders im Hinblick auf die Löslichkeit. Sie lösen sich vor allem oder zum Teil ausschließlich in organischen Lösungsmitteln wie Äther, Alkohol, Chloroform usw.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Agiris, A.: Zur Kenntnis des Neurokeratins. Hoppe-Seylers Z. physiol. Chem. 54, 87 (1907).Google Scholar
  2. Allen, N., and E. Reagan: Glucoronidase in cerebrospinal fluid. Arch. Neurol. (Chic.) 11, 144 (1964).Google Scholar
  3. Ansell, G. B., and R. M. C. Dawson: Ethanolamine-o-phosphoric acid in rat brain. Biochem. J. 50, 241 (1952).Google Scholar
  4. Ansell, G. B., and J. N. Hawthorne: Phospholipids, chemistry, metabolism and function. London: Elsevier Publ. 1964.Google Scholar
  5. Ansell, G. B., and S. Spanner: The enzymic cleavage of the vinyl ether linkage in brain ethanolamine plasmalogen. Biochem. J. 90, No 1, 19 (1964).Google Scholar
  6. Arcus, C. L., and I. Smedley-Maclean: The structure of arachidonic and linoleic acids. Biochem. J. 37, 1 (1943).PubMedGoogle Scholar
  7. Artom, C.: Lipid metabolism. Ann Rev. Biochem. 22, 211 (1953).PubMedGoogle Scholar
  8. Austin, J. H.: A controlled study of enzymic activities in three human disorders of glycolipid metabolism. J. Neurochem. 10, 805 (1963).PubMedGoogle Scholar
  9. Austin, J. H.: Studies in globoid (Krabbe) leukodystrophy. Arch. Neurol. (Chic.) 9, 207 (1963a).Google Scholar
  10. Austin, J. H.: Studies in globoid (Krabbe) leukodystrophy. II. J. Neurochem. 10, 921 (1963b).Google Scholar
  11. Austin, J. H.: Mental retardation, metachromic leucodystrophy. Med. Asp. Mental Retard., No 768. Springfield (Ill.): Ch. C. Thomas 1965.Google Scholar
  12. Austin, J. H., and W. E. Maxwell: Significance of plasma glycolipid levels in normals and in 3 disorders of brain glycolipids. Proc. Soc. exp. Biol. (N.Y.) 107, 197 (1961).Google Scholar
  13. Awapara, J., A. J. Landua, and R. Fuerst: Free aminoethylphosphoric ester in rat organs and human tumors. J. biol. Chem. 183, 545 (1950).Google Scholar
  14. Baer, E., and M. Kates: Migration during hydrolysis of esters of glycerophosphoric acid. I. The chemical hydrolysis of L-a-glycerylphosphorylcholine. J. biol. Chem. 175, 79 (1948).PubMedGoogle Scholar
  15. Baer, E., and M. Kates: Synthesis of enatiomeric a-lecithins. J. Amer. chem. Soc. 72, 942 (1950).Google Scholar
  16. Baer, E., and J. Maurukas: Phosphatidylserine. J. biol. Chem. 212, 25 (1955a).Google Scholar
  17. Baer, E., and J. Maurukas: The diazometholysis of glycerol phosphatides. A novel method of determination of the configuration of phosphatidylserines and cephalins. J. biol. Chem. 212, 39 (1955b).Google Scholar
  18. Baer, E., H. C. Stancer, and I. A. Korman: Migration during hydrolysis of ester of glycerophosphoric acid. III. Cephalin and glycerylphosphorylethanolamine. J. biol. Chem. 200, 251 (1953).PubMedGoogle Scholar
  19. Baer, E., Y. Suzuki, and J. Blackwell: The synthesis of a-cephalins by a new procedure. Biochemistry 2, 1227 (1963).PubMedGoogle Scholar
  20. Bailly, M. C.: Sur une mode et presque quantitatif de passage des a-aux ß-glycérophosphate. C. R. Acad. Sci. (Paris) 206, 1902 (1938).Google Scholar
  21. Bailly, M. C.: Sur la réversibilité de la transposition glycérophosphorique. C. R. Acad. Sci. (Paris) 208, 443 (1939a).Google Scholar
  22. Bailly, M. C.: Sur l’hydrolyse de monoethers a-et ß-glycérophosphoriques. C. R. Acad. Sci. (Paris) 208, 1820 (1939b).Google Scholar
  23. Bailly, O.: Sur la constitution de l’acide glycérophosphorique de la lécithine. C. R. Acad. Sci. (Paris) 160, 395 (1915).Google Scholar
  24. Bailly, O.: Sur la constitution des acides glycérophosphoriques. Bull. Soc. Chim. biol. (Paris) 1, 152 (1919).Google Scholar
  25. Bammer, H.: Nachweis des ß1U Globulins als normaler Bestandteil des Liquors durch Immunelektrophorese. Klin. Wschr. 41, 1084 (1963).Google Scholar
  26. Bauer, E.: Tumorzellen im Liquor cerebrospinalis. Z. Laryng. Rhinol. 43, 191 (1964).Google Scholar
  27. Bauer, H., D. Habeck: Fortschritte in der Liquorforschung. Internist (Berl.) 4, 535 (1963).Google Scholar
  28. Bauer, H., D. Matzelt, I. Sorwarze: Untersuchungen über Hirnproteine bei Einwirkung von Lysolecithin auf Hirnhomogenate. Klin. Wschr. 40, 251 (1962).Google Scholar
  29. Baumann, A.: Über den stickstoffhaltigen Bestandteil des Kephalins. Biochem. Z. 54, 30 (1913).Google Scholar
  30. Bernhard, K., P. Lesch: Ein Beitrag zur Fettsäurezusammensetzung der Cerebroside, Sphingomyeline und Lecithine aus menschlichem Hirn. Rely. chim. Acta 46, 1798 (1963a).Google Scholar
  31. Bernhard, K., W. Peersen: Fettsäuresynthese im Rattenhirn. Helv. chim. Acta 46, 2363 (1963b).Google Scholar
  32. Bernhard, K., and R. Schoenheimer: The inertia of highly unsaturated fatty acids in the animal, investigated with deuterium. J. biol. Chem. 133, 707 (1940).Google Scholar
  33. Bernhard, K., H. Steinhauser, F. Bullet: Fettstoffwechseluntersuchungen mit Hilfe von Deuterium als Indikator. I. Zur Frage der lebensnotwendigen Fettsäuren. Helv. chim. Acta 25, 1313 (1942).Google Scholar
  34. Bernhard, K., E. Vischer: Der Abbau der Behensäure im Tierkörper. Hell. chim. Acta 29, 929 (1946).Google Scholar
  35. Berry, J. F., and W. C. Mcmurray: Aerobic and anaerobic P32 labelling of phospholipids and adenosinephosphates in hypotonie homogenates of rat brain. Canad. J. Biochem. 35, 799 (1957).Google Scholar
  36. Beveridge, J. M. R.: The function of phospholipids. Canad. J. Biochem. 34, 361 (1956).Google Scholar
  37. Blietz, R. J.: Über die Struktur der Aldehyde liefernden Seitenketten im Plasmalogen. Hoppe-Seylers Z. physiol. Chem. 310, 120 (1958).Google Scholar
  38. Blix, G.: Zur Kenntnis der schwefelhaltigen Lipoidstoffe des Gehirns. Über Cerebronschwefelsäure. Hoppe Seylers Z. physiol. Chem. 219, 82 (1933).Google Scholar
  39. Blix, G.: Sialic acids. Carbohydrate chemistry of substances of biological interest. Symp. I. Fourth intern. Congr. of Biochemistry, Vienna, p. 94. New York: Pergamon Press 1958.Google Scholar
  40. Blix, G., and L. Odin: Isolation of sialic acid from gangliosides. Acta them. scand. 9, 1541 (1955).Google Scholar
  41. Blix, G., L. Svennerholm, and I. Werner: Chondrosamine as a component of gangliosides and of submaxillary mucin. Acta them. scand. 4, 717 (1950).Google Scholar
  42. Blix, G., L. Svennerholm, and I. Werner: The isolation of chondrosamine from gangliosides and from submaxillary mucin. Acta chem. scand. 6, 358 (1952).Google Scholar
  43. Block, R. J.: Chemical studies on the neuroproteins. I. The amino acid composition of various mammalian brain proteins. J. biol. Chem. 119, 765 (1937a).Google Scholar
  44. Block, R. J.: Chemical studies on the neuroproteins. II. The effect of age on the amino acid composition of human and mammalian brain proteins. J. biol. Chem. 120, 467 (1937b).Google Scholar
  45. Block, R. J.: Chemical studies on the neuroproteins. III. An indication for sex differences in the amino acid composition of primate brain proteins. J. biol. Chem. 121, 411 (1937c).Google Scholar
  46. Block, R. J.: A comparative study on two samples of neurokeratin. Arch. Biochem. 31, 266 (1951).Google Scholar
  47. Blomstrand, R., S. J. Dencker, and B. Swahn: The fatty acid profile of cerebrospinal fluid. Kgl. Fysiogr. Sällsk. Lund, Förh. 30, No 2 (1960).Google Scholar
  48. Bogoch, S.: Studies on the structure of brain ganglioside. Biochem. J. 68, 319 (1958).PubMedGoogle Scholar
  49. Bogoch, S.: Glycoproteins of human cerebrospinal fluid. Nature (Lond.) 184, 1628 (1959).Google Scholar
  50. Bogoch, S.: Studies on cerebrospinal fluid. I. Quantitative fractionation of carbohydrate constituents. J. biol. Chem. 235, 16–22 (1960).PubMedGoogle Scholar
  51. Bogoch, S., K. T. Dussik, C. Fender, and P. Conran: Longitudinal clinical and neurochemical studies on schizophrenic and manic-depressive psychoses. Amer. J. Psychiat. 117, 409 (1960).Google Scholar
  52. Bogoch, S., P. C. Rajah, and P. C. Belval: Separation of cerebroproteins of human brain. Nature (Lond.) 204, 73 (1964).Google Scholar
  53. Borkenhagen, L. F., and E. P. Kennedy: The enzymatic synthesis of cytidine diphosphate choline. J. biol. Chem. 227, 951 (1957).PubMedGoogle Scholar
  54. Bornstein, M. B., M. Ellan, and C. Klibansky: Juvenile amaurotic idiocy. Confin neurol. (Basel) 24, 62 (1964).Google Scholar
  55. Bradley, R. M., and J. N. Kanfer: The action of galactose oxidase on several sphingoglycolipids. Biochim. biophys. Acta (Amst.) 84, 210 (1964).Google Scholar
  56. Brady, R. O., J. N. Kanfer, and D. Shapiro: Metabolism of glucocerebrosides. II. Evidence of an enzymatic deficiency in Gaucher’s disease. Biochem. biophys. Res. Commun. 18, No 2 (1965).Google Scholar
  57. Brady, R. O., and G. J. Koval: Biosynthesis of sphingosine in vitro. J. Amer. chem. Soc. 79, 2648 (1957).Google Scholar
  58. Brady R. O., and G. J. Koval: The enzymatic synthesis of sphingosine. J. biol. Chem. 233, 26 (1958).PubMedGoogle Scholar
  59. Brady, R. O., and E. G. Trams: The chemistry of lipids. Ann. Rev. Biochem. 33, 75 (1964).PubMedGoogle Scholar
  60. Brante, G.: Studies on lipids in the nervous system with special references to quantitative determination and topical distribution. Upsala Läk. Fören. 53, 301 (1948).Google Scholar
  61. Brante, G.: Zit. nach G. Brante. Acta physiol. scand. 18, Suppl. 63 (1949).Google Scholar
  62. Brante, G.: On the role of some polysaccharidic substances in the development of nervous tissue. In: Biochemistry of the developing nervous system (ed. H. Waelsch). New York: Academic Press 1955.Google Scholar
  63. Brante, G.: In: Metabolism of the nervous system, p. 112 (ed. D. RICHTER). London: Pergamon Press 1957.Google Scholar
  64. Brante, G.: In Symposium III. Biochemistry of the nervous systems, p. 291 (ed. F. BRÜCKE). London: Pergamon Press 1959.Google Scholar
  65. Brown, H. T., and G. H. Morris: Note on the identity of cerebrose and galactose. J. chem. Soc. (Lond.) 57, 57 (1890).Google Scholar
  66. Brown, I. B.: The occurrence of a new highly unsaturated fatty acid in the lipids of the brain. J. biol. Chem. 83, 783 (1929).Google Scholar
  67. Burr, G. O., and M. M. Burr: A new deficiency disease produced by the rigid exclusion of fat from the diet. J. biol. Chem. 82, 345 (1929).Google Scholar
  68. Burton, R. M., M. A. Sodd, and R. O. Brady: The incorporation of galactose into galactolipides. J. biol. Chem. 233, 1053 (1958a).Google Scholar
  69. Burton, R. M., M. A. Sodd, and R. O. Brady: Studies on the biosynthesis of galactolipides. Neurology (Minneap.) 8, 84 (1958b).Google Scholar
  70. Burton, R. M., M. A. Sodd, and R. O. Brady, L. Garcia-Bunuel, M. Golden, and Y. Mcbride Balfour: Incorporation of radioactivity of n-glucosamine-1-C14, n-glucose-1–04, D-galactose-1-Cm, and DL-serine-3-C14 into rat brain glycolipids. Biochemistry 2, 580 (1963).PubMedGoogle Scholar
  71. Burton, R. M., R. E. Howard, S. Baer, and Y. M. Balfour: Gangliosides and acetylcholine of the central nervous system. Biochim. biophys. Acta (Amst.) 84, 441 (1964).Google Scholar
  72. Campbell, P. N., D. H. Simmonds, and T. S. Work: The occurrence of glycerylphosphorylethanolamine in extracts of liver and yeast. Biochem. J. 49, Proc. XVI (1951).PubMedGoogle Scholar
  73. Campbell, P. N., and T. S. Work: Fractionation of the nitrogenous water soluble constituents of liver. I. The isolation of glycerylphosphorylethanolamine and of taurine. Biochem. J. 50, 449 (1952).PubMedGoogle Scholar
  74. Caravaglios, R., and P. Chiaverini: Paper electrophoresis of the soluble proteins of the central nervous tissue. Experientia (Basel) 12, 303 (1956).Google Scholar
  75. Carson, N. A. J., D. C. Cusworth, C. E. Dent, C. M. B. Field, D. W. Neill, and R. G. Westall: Homocystinuria: a new inborn error of metabolism associated with mental deficiency. Arch. Dis. Childh. 38, 425 (1963).Google Scholar
  76. Carter, H. E., B. E. Betts, and D. R. Strobach: Biochemistry of the sphingolipids. XVII. The nature of the oligosaccharide component of phytoglycolipid. Biochemistry 3, 1103 (1964).PubMedGoogle Scholar
  77. Carter, H. E., and Y. Fujino: Biochemistry of the sphingolipides. IX. Configuration of cerebrosides. J. biol. Chem. 221, 879 (1956).PubMedGoogle Scholar
  78. Carter, H. E., F. J. Glick, W. Norris, and G. E. Phillips: The structure of sphingosine. J. biol. Chem. 142, 449 (1942).Google Scholar
  79. Carter, H. E.: Biochemistry of the sphingolipides. III. Structure of sphingosine. J. biol. Chem. 170, 285 (1947a).Google Scholar
  80. Carter, H. E., and F. L. Greenwood: Biochemistry of the sphingolipides. VII. Structure of the cerebroside. J. biol. Chem. 199, 283 (1952).PubMedGoogle Scholar
  81. Carter, H. E., and C. G. Humiston: Biochemistry of the sphingolipides. V. The structure of sphingine. J. biol. Chem. 191, 727 (1951).PubMedGoogle Scholar
  82. Carter, H. E., and W. P. Norris: Isolation of dihydrosphingosine from brain and spinal cord. J. biol. Chem. 145, 709 (1942).Google Scholar
  83. Carter, H. E., and W. P. Norris, F. J. Glick, G. E. Phillips, and R. Harris: Biochemistry of sphingolipides. II. Isolation of dihydrosphingosine from the cerebrosides fractions of brain and cord. J. biol. Chem. 170, 269 (1947b).Google Scholar
  84. Century, B.: Interrelationships of dietary lipids upon fatty acid composition of brain mitochondria, erythrocytes and heart tissue in chicks. Amer. J. clin. Nutr. 13, 362 (1963).PubMedGoogle Scholar
  85. Chaikoff, I. L., and C. Entenman: Lipid metabolism. Ann. Rev. Biochem. 17, 253 (1948).PubMedGoogle Scholar
  86. Channon, H. J., and A. C. Chibnall: The ether-soluble substances of cabbage leaf cytoplasm. IV. Further observations on diglyceride phosphoric acid. Biochem. J. 21, 1112 (1927).PubMedGoogle Scholar
  87. Chargaff, E.: Note on the mechanism of conversion of ß-glycero-phosphoric acid into the a-form. J. biol. Chem. 144, 455 (1942).Google Scholar
  88. Chargaff, E., and S. S. Cohen: On lysophosphatides. J. biol. Chem. 129, 619 (1939).Google Scholar
  89. Chargaff, E., and A. S. Keston: The metabolism of aminoethylphosphoric acid, followed by means of the radioactive phosphorus isotope. J. biol. Chem. 134, 515 (1940).Google Scholar
  90. Chatagnon, C., P. Chatagnon: Propriétés chimiques du strandin de Folch. Strandin et acide neuraminique. Bull. Soc. Chim. biol. (Paris) 36, 373 (1954).Google Scholar
  91. Chatagnon, C., M. Mortreuil, J. P. Zalta, P. Chatagnon: Analyse de proteins protéolipidiques de cerveau humain et bovin. Bull. Soc. Chim. biol. (Paris) 35, 419 (1953).Google Scholar
  92. Chevalier, J.: Chemische Untersuchung der Nervensubstanz. Hoppe-Seylers Z. physiol. Chem. 10, 97 (1885).Google Scholar
  93. Chibnall, A. C., and H. J. Channon: The ether-soluble substances of cabbage leaf cytoplasm. I. Preparation and general characters. Biochem. J. 21, 225 (1927a).Google Scholar
  94. Chibnall, A. C.: The ether-soluble substances of cabbage leaf cytoplasm. II. Calcium salts of glyceride phosphoric acids. Biochem. J. 21, 233 (1927b).Google Scholar
  95. Chibnall, A. C.: The ether-soluble substances of cabbage leaf cytoplasm. VI. Summary and general conclusions. Biochem. J. 23, 176 (1929).PubMedGoogle Scholar
  96. Contardi, A., A. Ercoli: Über die enzymatische Spaltung der Lecithine und Lysocithine. Biochem. Z. 261, 275 (1933).Google Scholar
  97. Contardi, A., P. Latzer: Die tierischen Gifte in der Chemie. Biochem. Z. 197, 222 (1928).Google Scholar
  98. Cook, R. P.: Cholesterol. Chemistry, biochemistry and pathology, XII. New York: Academic Press 1958.Google Scholar
  99. Cornelius, C. E., and J. K. Kaneko: Clinical biochemistry of domestic animals. New York and London: Academic Press 1963.Google Scholar
  100. Cousin, H.: Sur les acides gras de la céphaline. J. Pharm. Chim. (Paris) 24, 101 (1906).Google Scholar
  101. Cumings, J. N.: The cerebral lipids in disseminated sclerosis and amaurotic family idiocy. Brain 76, 551 (1953).PubMedGoogle Scholar
  102. Cumings, J. N.: Some lipid diseases of the brain section of neurology. Proc. roy. Soc. Med. 58, 21 (1965).Google Scholar
  103. Cumings, J. N., H. Goodwin, E. M. Woodward, and G. Curzon: Lipids in the brain of infants and children. J. Neurochem. 2, 289 (1958).PubMedGoogle Scholar
  104. Cutler, R. W. P., G. V. Watters, and CH. F. Barlow: I125-labeled protein in experimental brain edema. Arch. Neurol. (Chic.) 11, 225 (1964).Google Scholar
  105. Daun, H.: Zur Kenntnis des Folch’schen Strandins. Diss. Univ. Köln (1952).Google Scholar
  106. Dawson, R. M. C.: The incorporation of labelled phosphate into the lipids of a brain dispersion. Biochem. J. 55, 507 (1953).PubMedGoogle Scholar
  107. Dawson, R. M. C.: The measurement of P32-labelling of individual kephalin and lecithin in a small sample of tissue. Biochim. biophys. Acta (Amst) 14, 374 (1954).Google Scholar
  108. Dawson, R. M. C.: Phosphorylcholine in rat tissue. Biochem. J. 60, 325 (1955).PubMedGoogle Scholar
  109. Dawson, R. M. C.: Liver glycerylphosphorylcholine diesterase. Biochem. J. 62, 689 (1956a).Google Scholar
  110. Dawson, R. M. C.: The phospholipase B of liver. Biochem. J. 64, 192 (1956b).Google Scholar
  111. Dawson, R. M. C.: The enzymic breakdown of monophosphoinositide by phospholipase B preparations. Biochim. biophys. Acta (Amst.) 27, 228 (1958).Google Scholar
  112. Dawson, R. M. C., T. Mann, and I. G. White: Glycerylphosphorylcholine and phosphorylcholine in semen and their relation to choline. Biochem. J. 65, 627 (1957).PubMedGoogle Scholar
  113. Debuch, H.: Beitrag zur chemischen Konstitution der Acetalphosphatide und zur Frage des Vorkommens des Colamin-Kephalins im Gehirn. Hoppe-Seylers Z. physiol. Chem. 304, 109 (1956).Google Scholar
  114. Debuch, H.: Nature of the linkage of the aldehyde residue in natural plasmalogens. Biochem. J. 67, 27 p. (1957).Google Scholar
  115. Debuch, H.: Nature of the linkage of the aldehyde residue of natural plasmalogens. J. Neurochem. 2, 243 (1958a).Google Scholar
  116. Debuch, H.: Die Bindung des Aldehyds im Colamin-Plasmalogen (Acetalphosphatid) aus Gehirn. Hoppe-Seylers Z. physiol. Chem. 311, 266 (1958b).Google Scholar
  117. Debuch, H.: Über die Stellung des Aldehyds im Colaminplasmalogen aus Gehirn. Hoppe-Seylers Z. physiol. Chem. 314, 49 (1959a).Google Scholar
  118. Debuch, H.: Über die Stellung des Aldehyds im Colaminplasmalogen aus Gehirn. Hoppe-Seylers Z. physiol. Chem. 317, 182 (1959b).Google Scholar
  119. Debuch, H.: Biochemie der Fette und Lipoide. In: Handbuch der Histochemie, Bd. V/1, S. 1. 1965.Google Scholar
  120. Debuch, H.: Über die Bildung der Plasmalogene zur Zeit der Myelinisierung bei der Ratte. Hoppe-Seylers Z. physiol. Chem. 338, 1 (1964).Google Scholar
  121. Delezenne, C., S. Ledebt: Action du venin de cobra sur le serum de cheval. Ses rapports avec l’hemolyse. C. R. Acad. Sci. (Paris) 152, 790 (1911a).Google Scholar
  122. Delezenne, C., S. Ledebt: Formation de substances hemolytiques et de substances toxiques aux dépence du vitellus de l’eeuf, soumis à l’action du cobra. C. R. Acad. Sci. (Paris) 153, 81 (1911b).Google Scholar
  123. Delezenne, C., S. Ledebt: Nouvelle contribution à l’étude des substances hemolytiques derivées du serum et du vitellus de l’oeuf. soumis it l’action des venins. C. R. Acad. Sci. (Paris) 155, 1101 (1912).Google Scholar
  124. Demling, L., H. Kinzelmeyer, U. Henning: Über die quantitative Zusammensetzung der Organproteide. (Elektrophoretische Untersuchungen.) Z. exp. Med. 122, 416 (1954).Google Scholar
  125. Deuel, H. J.: The lipids, vol. I—III. New York: Interscience Publ. 1951, 1955, 1957.Google Scholar
  126. Deuticxe, H. J., O. Hovels, K. Lauenstein: Über Proteine des peripheren Nerven. Pflügers Arch. ges. Physiol. 255, 46 (1952).Google Scholar
  127. Diakonow, C.: Das Lecithin im Gehirn. Zbl. med. Wiss. 1868a, 97.Google Scholar
  128. Diakonow, C.: Über die chemische Konstitution des Lecithins. 2. Mitteilung. Zbl. med. Wiss. 1868b, 434.Google Scholar
  129. Dobbing, J.: The influence of early nutrition on the development and myelination of the brain. Proc. roy. Soc. 159, 503 (1964).Google Scholar
  130. Dolby, D. E., L. C. A. Nuxx, and I. Smedley-Maclean: The constitution of arachidonic acid. (Preliminary communication.) Biochem. J. 34, 1422 (1940).PubMedGoogle Scholar
  131. Doss, M., H. Matiar-Vahar: Neurolipoidosen und angeborene Entmarkungskrankheiten. Fortschr. Neurol. Psychiat. 33, 617 (1965).Google Scholar
  132. Druzhinina, K. V., M. G. Kritzmann: Biokhimiya 17, 77 (1952).Google Scholar
  133. Dyken, P. R., and W. Zeman: A clinical, pathological, and genetic study of an unusual form of Tay-Sachs disease with macular degeneration in the family. J. Neurol. Neurosurg. Psychiat. 27, 29 (1964).PubMedGoogle Scholar
  134. Ehrenpreis, S.: Acetylcholine and nerve activity. Nature (Loud.) 201, 887 (1964).Google Scholar
  135. Eiben, R. M., and ST. M. Gartler: Neuraminic acid investigations of human cell strains derived from ex-plants of skin in cell culture. Nature (Loud.) 201, 1050 (1964).Google Scholar
  136. Einset, E., and W. L. Clark: The enzymatically catalyzed release of choline from lecithin. J. biol. Chem. 231, 703 (1958).PubMedGoogle Scholar
  137. Eldjarn, L.: Heredopathia atactica polyneuritiformis (Refsum’s disease). — A defect in the omega-oxidation mechanism of fatty acids. Scand. J. clin. Lab. Invest. 17, 178 (1965).PubMedGoogle Scholar
  138. Eldredge, N. T., G. Read, and W. Cutting: Sialic acids in the brain and tissues of various animals: analytical and physiological data. Med. Exp. 8, 265 (1963).Google Scholar
  139. Elliott, K. A., I. H. Page, and J. H. Quastel: Neurochemistry. Springfield (Ill.): Ch. C. Thomas 1955.Google Scholar
  140. Elliott, K. A. C., D. R. Dahl, and R. Balazs: Bound and free amino acids in brain. Biochem. J. 90, 42 (1964).Google Scholar
  141. Ewald, A., W. Kühne: Über einen neuen Bestandteil des Nervensystems. Verh. naturhist. — med. Vereins zu Heidelberg, N. F., 1, 357 (1877).Google Scholar
  142. Fairbairn, D.: The phospholipase of the venom of the cottonmouth moccasin (Agkistrodon piscivorus). J. biol. Chem. 157, 633 (1945).Google Scholar
  143. Fairbairn, D.: The preparation and properties of a lysophospholipase from penicillium notatum. J. biol. Chem. 173, 705 (1948).PubMedGoogle Scholar
  144. Fardeau, M., J. Lapresle: Maladie de Tay-Sachs avec atteinte importante de la substance blanche. A propos de deux observations anatomo-cliniques. Rev. neurol. 109, 157 (1963).PubMedGoogle Scholar
  145. Farstad, M.: Determination of fatty acids in cerebrospinal fluid. II. Quantitative and qualitative studies by a combination of alkali titration and gas chromatography. Scand. J. clin. Lab. Invest. 16, 139 (1964).PubMedGoogle Scholar
  146. Faure, M., M. J. Morelec-Coulon: Isolement d’un acide glycéroinositophosphatidique contenu dans le germe de blé. C. R. Acad. Sci. (Paris) 236, 1104 (1953).Google Scholar
  147. Faure, M., M. J. Morelec-Coulon: Isolement d’un phosphatide cristallisé à partir du muscle cardiaque: l’acide glycéro-inositophosphatidique. C. R. Acad. Sci. (Paris) 238, 411 (1954).Google Scholar
  148. Feulgen, R., TX. Bersin: Zur Kenntnis des Plasmalogens. 4. Mitteilung. Eine neuartige Gruppe von Phosphatiden (Acetalphosphatide). Hoppe-Seylers Z. physiol. Chem. 260, 217 (1939).Google Scholar
  149. Feulgen, R., K. Imhäuser, M. Behrens: Zur Kenntnis des Plasmalogens. 1. Mitteilung. Hoppe- Seylers Z. physiol. Chem. 180, 161 (1929).Google Scholar
  150. Feulgen, R., R. Voit: Tuber einen weit verbreiteten festen Aldehyd. Pflügers Arch. ges. Physiol. 206, 389 (1924).Google Scholar
  151. Folcii, J.: The isolation of phosphatidyl serine from brain cephalin and identification of the serine component. J. biol. Chem. 139, 973 (1941).Google Scholar
  152. Folcii, J.: Brain cephalin a mixture of phosphatides. Separation from it of phosphatidyl serin, phosphatidyl ethanol-amine and a fraction containing an inositol phosphatide. J. biol. Chem. 146, 35 (1942).Google Scholar
  153. Folcii, J.: The chemical structure of phosphatidyl serine. J. biol. Chem. 174, 439 (1948).Google Scholar
  154. Folcii, J.: Complete fractionation of brain cephalin: isolation from it of phosphatidyl serine, phosphatidyl ethanol-amine and diphosphoinositide. J. biol. Chem. 177, 497 (1949a).Google Scholar
  155. Folcii, J.: Brain diphosphoinositide, a new phosphatide having inositol metadiphosphate as a constituent. J. biol. Chem. 177, 505 (1949b).Google Scholar
  156. Folcii, J., S. Arsove, and J. A. Meath: Isolation of brain strandin, a new type of large molecule tissue component. J. biol. Chem. 191, 819 (1951).Google Scholar
  157. Folcii, J., and F. N. LE Baron: Biochemistry of inositol-lipides of the central nervous system. IV. Intern. Congr. Wien, Symp. No III, Preprint 10 (1958).Google Scholar
  158. Folcii, J., and F. N. LE Baron: A trypsin resistant lipide protein complex isolated from brain white matter proteins. Fed. Proc. 10, 183 (1951).Google Scholar
  159. Folcii, J., and M. B. Lees: Proteolipids, a new type of tissue lipoproteins. J. biol. Chem. 191, 807 (1951).Google Scholar
  160. Folcii, J., and H. A. Schneider: An amino acid constituent of ox brain cephalin. J. biol. Chem. 137, 51 (1941).Google Scholar
  161. Folcii, J., and D. W. Woolley: Inositol, a constituent of a brain phosphatide. J. biol. Chem. 142, 963 (1942).Google Scholar
  162. Folchpi, J.: Chemical pathology of the nervous system. Oxford: Pergamon Press 1961.Google Scholar
  163. Folchpi, J., and H. Bauer: Brain lipids and lipoproteins, and the leucodystrophies. Amsterdam: Elsevier Publ. Co. 1963.Google Scholar
  164. Fränkel, S., F. Bielschowsky: Untersuchungen über die Lipoide der Säugetierleber. II. Mitteilung: Tuber das Vorkommen des Lignoceryl-sphingosins in der Schweineleber. Hoppe-Seylers Z. physiol. Chem. 213, 58 (1932).Google Scholar
  165. Fränkel, S., E. Neubauer: Tiber Lipoide. VII. Mitteilung: Tuber Kephalin. Biochem. Z. 21, 321 (1909).Google Scholar
  166. Francioli, M.: Spontane Lysocithinbildung in getrockneten Tierorganen. Fermentforsch. 14, 241 (1935).Google Scholar
  167. Francioli, M.: Contributo alla conoscensa della lecitasi A e B. Enzymologia 3, 204 (1937).Google Scholar
  168. Friede, R. L.: Arrested cerebellar development: a type of cerebellar degeneration in amaurotic idiocy. J. Neurol. Neurosurg. Psychiat. 27, 41 (1964).PubMedGoogle Scholar
  169. Friede, R. L, and R. J. Allen: Enzyme histochemical studies of Tay-Sachs disease. J. Neuropath. exp. Neurol. 23, 619 (1964).PubMedGoogle Scholar
  170. Fujino, Y.: Studies on the conjugated lipids. III. On the configuration of sphingomyelin. J. Biochem. (Tokyo) 39, 45 (1952).Google Scholar
  171. Gamgee, A.: Textbook of the physiological chemistry of the animal body. London: McMillan & Co. 1880.Google Scholar
  172. Garrigan, O. W., and E. Chargaff: Studies on the mucolipids and the cerebrosides of chicken brain during embryonic development. Biochim. biophys. Acta (Amst) 70, 452 (1963).Google Scholar
  173. Gasic, G., and L. Berwick: Hale stain for sialic acid-containing mutins. J. Cell Biol. 19, 223 (1962).Google Scholar
  174. Gatt, S.: Enzymic hydrolysis and synthesis of ceramides. J. biol. Chem. 238, No 9, 3131 (1963).PubMedGoogle Scholar
  175. Gatt, S., and E. R. Berman: A new glycolipoid in Tay-Sachs brain. Biochem. biophys. Res. Commun. 4, 9 (1961).Google Scholar
  176. Geoghegan, E. G.: Über die Konstitution des Cerebrins. Hoppe-Seylers Z. physiol. Chem. 3, 322 (1879).Google Scholar
  177. Gobley, M.: Recherches chimiques sur le jaune d’ceuf. J. Pharm. Chim. (Paris) 9, 1 (1846a).Google Scholar
  178. Gobley, M.: Recherches chimiques sur le jaune d’ceuf. Cholestérine. J. Pharm. Chim. (Paris) 9, 81 (1846b).Google Scholar
  179. Gobley, M.: Recherches chimiques sur le jaune d’ceuf. Acide phosphoré. J. Pharm. Chim. (Paris) 9, 161 (1846c).Google Scholar
  180. Gobley, M.: Examen comparativ de jaune d’ceuf et de la matière cerebrale. J. Pharm. Chim. (Paris) 11, 409 (1847a).Google Scholar
  181. Gobley, M.: Recherches chimiques sur le jaune d’ceuf. 2. mémoire. J. Pharm. Chim. (Paris) 12, 1 (1847b).Google Scholar
  182. Goldman, D. S., I. L. Chaikoff, W. O. Reinhardt, C. Entenman, and W. G. Dauben: Site of formation of plasma phospholipides studied with C14-labelled palmitic acid. J. biol. Chem. 184, 727 (1950).PubMedGoogle Scholar
  183. Gomirato, G., and H. Hydén: A biochemical glia error in the parkinson disease. Brain 86, 773 (1963).PubMedGoogle Scholar
  184. Gonatas, N. K., S. R. Korey, C. I. Gomez, and A. Stein: A case of juvenile lipidosis: the significance of electron microscopic and biochemical observations of a cerebral biopsy. J. Neuropath. exp. Neurol. 22, 557 (1963).PubMedGoogle Scholar
  185. Gotham, J. E., H. Wein, and J. S. Meyer: Clinical studies of neuropathy due to macroglobulinemia (Waldenström’s syndrome). Canad. med. Ass. J. 89, 806 (1963).PubMedGoogle Scholar
  186. Gottschalk, A.: Virus enzymes and virus templates. Physiol. Rev. 37, 66 (1957).Google Scholar
  187. Gottschalk, A.: The chemistry and biology of sialic acids and related substances. Cambridge: University Press 1960.Google Scholar
  188. Gray, G. M.: The position of the aldehyde residue in natural plasmalogens. Biochem. J. 67, 26 (1957).Google Scholar
  189. Gray, G. M.: The structure of the plasmalogen of ox heart. Biochem. J. 70, 425 (1958).PubMedGoogle Scholar
  190. Green, J. B., and M. Perry: Leucine aminopeptidase activity in cerebrospinal fluid. Neurology (Minneap.) 13, 924 (1963).Google Scholar
  191. Green, J. P., R. P. Atwood, and D. X. Freedman: Studies on neuraminic acids. In the cerebrospinal fluid in schizophrenia. Arch. gen. Psychiat. 12, 90 (1965).Google Scholar
  192. Greenhouse, A. H., and L. B. Speck: The electrophoresis of spinal fluid proteins. Amer. J. med. Sci. 248, 333 (1964).PubMedGoogle Scholar
  193. Grimbert, L., O. Bailly: Sur une procédé de diagnose de monoethers glycérophosphorique et sur la constitution du glycérophosphate de sodium crystallisé. C. R. Acad. Sci. (Paris) 160, 207 (1915).Google Scholar
  194. Grün, A., R. Limpacher: Synthese der Lecithine. 2. Mitteilung. Chem. Ber. 60, 147 (1927).Google Scholar
  195. Grüsser, O. J., U. GRÜSSER-CORNEHLS: Die Signalübertragung durch Nervenzellen. Dtsch. med. Wschr. 89, 1037 (1964).Google Scholar
  196. Gurin, S., and D. I. Crandall: Lipid metabolism. Ann. Rev. Biochem. 20, 179 (1951).PubMedGoogle Scholar
  197. Haberland, C.: Primary systemic amyloidosis. J. Neuropath. exp. Neurol. 23, 135 (1964).PubMedGoogle Scholar
  198. Hagberg, B., G. Hultquist, R. Hman, and L. Svennerholm: Congenital amaurotic idiocy. Acta paediat. (Uppsala) 54, 116 (1965).Google Scholar
  199. Hajra, A. K., and N. S. Radin: In vivo conversion of labeled fatty acids to the sphingolipid fatty acids in rat brain. J. Lipid Res. 4, No 4, 448 (1963).PubMedGoogle Scholar
  200. Hakomori, S. I., and R. W. Jeanloz: Isolation of a glycolipid containing fructose, galactose, glucose and glucosamin from human cancerous tissue. J. biol. Chem. 239, PC 3606 (1964).Google Scholar
  201. Halliburton, W. D.: The proteids of nervous tissues. J. Physiol. 15, 90 (1894).Google Scholar
  202. Halliday, N., H. J. Deuel jr., L. J. Tragerman, and W. E. Ward: On the isolation of a glucose-containing cerebroside from spleen in a case of Gaucher’s disease. J. biol. Chem. 132, 171 (1940).Google Scholar
  203. Hanahan, D. J.: The site of action of lecithinase A on lecithin. J. biol. Chem. 207, 879 (1954a).Google Scholar
  204. Hanahan, D. J.: Positional asymmetry of fatty acids on lecithin. J. biol. Chem. 211, 313 (1954b).Google Scholar
  205. Hanahan, D. J.: A convenient route to (distearoyl)-L-a-and ß-monostearoyllecithin. Position of fatty acids on the lecithins of egg. J. biol. Chem. 211, 321 (1954e).Google Scholar
  206. Hanahan, D. J., and I. L. Chaikoff: The phosphorus-containing lipides of the carrot. J. biol. Chem. 168, 233 (1947a).Google Scholar
  207. Hanahan, D. J., and I. L. Chaikoff: A new phospholipide-splitting enzyme specific for the ester linkage between the nitrogenous base and the phosphoric acid grouping. J. biol. Chem. 169, 699 (1947b).Google Scholar
  208. Hanahan, D. J., and I. L. Chaikoff: On the nature of the phosphorus-containing lipides of cabbage leaves and their relation to a phospholipide-splitting enzyme contained in these leaves. J. biol. Chem. 172, 191 (1948).PubMedGoogle Scholar
  209. Hanahan, D. J., and J. N. Olley: Chemical nature of monophosphoinositides. J. biol. Chem. 231, 813 (1958).PubMedGoogle Scholar
  210. Hanahan, D. J., M. Rodbell, and L. D. Turner: Enzymatic formation of monopalmitoleyl-and monopalmitoyllecithin (lysolecithins). J. biol. Chem. 206, 431 (1954).PubMedGoogle Scholar
  211. Hanahan, D. J., and R. Vercamer: The action of lecithinase D on lecithin. The enzymatic preparation of D-1,2-dipalmitolin and D-1,2-dipalmitin. J. Amer. them. Soc. 76, 1804 (1954).Google Scholar
  212. Harders, H., and H. Dieckmann: Heredopathia atactica polyneuritiformis. Dtsch. med. Wschr. 89.248 (1964).PubMedGoogle Scholar
  213. Hauser, G.: Labeling of cerebrosides and sulfatide in rat brain. Biochim. biophys. Acta (Amst) 84, 212 (1964).Google Scholar
  214. Hauser, H. H., H. J. Svien, B. F. Mckenzie, W. F. Mcguckin, and N. P. Goldstein: A study of cerebral protein and polysaccharide in the dog. III. “Albumin” changes in experimental cerebral edema. Neurology (Minneap.) 13, 945 (1963).Google Scholar
  215. Hawthorne, J. N.: The inositol phosphatides. J. Lipid Res. 1, 255 (1960).PubMedGoogle Scholar
  216. Hawthorne, J. N., and J. Hawthorne: Ethanol insoluble phosphatides of ox liver. In: G. POPJAK and LE BRETON, Biochemical problems of lipids. London: Butterworths Sci. Publ. 1956.Google Scholar
  217. Hayaishi, O., and A. Kornberg: Metabolism of phospholipids by bacterial enzymes. J. biol. Chem. 206, 647 (1954).PubMedGoogle Scholar
  218. Heald, P. J.: Analysis of radioactive phosphates in extracts of cerebral tissues. Biochem. J. 63, 235 (1956).PubMedGoogle Scholar
  219. Heald, P. J.: The incorporation of phosphate into cerebral phosphoprotein promoted by electrical impulses. Biochem. J. 66, 659 (1957a).Google Scholar
  220. Heald, P. J.: Guanosine di-and tri-phosphates in the phosphate metabolism of cerebral tissues promoted by electrical impulses. Biochem. J. 67, 529 (1957b).Google Scholar
  221. Heald, P. J.: Phosphorylserine and cerebral phosphoprotein. Biochem. J. 68, 580 (1958).PubMedGoogle Scholar
  222. Heller, M., and B. Shapiro: The hydrolysis of sphingomyelin by rat liver. Israel J. Chem. 1, 204 (1963).Google Scholar
  223. Helm, H. J. Van Der, H. A. Zondag, and F. Klein: On the source of lactic dehydrogenase in cerebrospinal fluid. Clin. chim. Acta 8, 193 (1963).Google Scholar
  224. Hendrickson, H. S., and C. E. Ballou: Ion exchange chromatography of intact brain phosphoinositides on diethylaminoethyl cellulose by gradient salt elution in a mixed solvent system. J. biol. Chem. 239, No 5 (1964).Google Scholar
  225. Herschkowitz, N., and J. N. Cumings: Creatine kinase in cerebrospinal fluid. J. Neurol. Neurosurg. Psychiat. 27, 247 (1964).PubMedGoogle Scholar
  226. Hess, H. H., and E. Rolde: Fluorometric assay of sialic acid in brain gangliosides. J. biol. Chem. 239, 3215 (1964).PubMedGoogle Scholar
  227. Heyningen, W. E. VAN: Tentative identification of the tetanus-toxin receptor in nervous tissue. J. gen. Mikrobiol. 20, 310 (1959).Google Scholar
  228. Heyningen, W. E. VAN: The fixation of tetanus-toxin by ganglioside. J. gen. Mikrobiol. 24, 107 (1961).Google Scholar
  229. Heyningen, W. E. VAN: The fixation of tetanus-toxin, strichnine, serotine and other substances by ganglioside. J. gen. Mikrobiol. 31, 375 (1963).Google Scholar
  230. Heyningen, W. E. VAN: The fixation of tetanus-toxin by gangliosides. J. gen. Mikrobiol. 31, 437 (1963).Google Scholar
  231. Heyningen, W. E. VAN, and P. A. Miller: The fixation of tetanus-toxin by gangliosides. J. gen. Mikrobiol. 24, 107 (1961).Google Scholar
  232. Heyningen, W. E. VAN, and R. J. Woodman: The fixation by tetanus by frog brain. J. gen. Mikrobiol. 31, 389 (1963).Google Scholar
  233. Hillborg, P.-O., and B. Estborn: Acid phosphatase activity of serum, thrombocytes and erythrocytes in a juvenile form of Gaucher’s disease. Acta paediat. (Uppsala) 53, 558 (1964).Google Scholar
  234. Himwich, H. E.: Brain metabolism and cerebral disorders. Baltimore: Williams & Wilkins Co. 1951.Google Scholar
  235. Hochwald, G. M., and G. J. Thorbecke: Trace proteins in cerebrospinal fluid and other biological fluids. H. Effect of storage and enzymes on the electrophoretic mobility of y-trace and ß-trace proteins in cerebrospinal fluid. Clin. chim. Acta 8, 678 (1963).PubMedGoogle Scholar
  236. Hörhammer, L., H. Wagner, J. Hölzl: Über die Inositphosphatide des Rinderhirns und der Sojabohne. Biochem. Z. 330, 591 (1958).PubMedGoogle Scholar
  237. Hörhammer, L., H. Wagner, J. Hölzl: Über die Inositphosphatide des Rinderhirns. Biochem. Z. 332, 269 (1960).Google Scholar
  238. Hoerr, N. C.: Cytological studies by the Altmann-Gersh freezing-drying method. III. The preexistence of neurofibrillae and their disposition in the nerve fiber. Anat. Rec. 66, 81 (1936a).Google Scholar
  239. Hoerr, N. C.: Cytological studies by the Altmann-Gersh freezing-drying method. IV. The structure of the myelin sheath of nerve fibers. Anat. Rec. 66, 91 (1936b).Google Scholar
  240. Hofmann, G., H. Schinko: Elektrophoretische Trennung von Hirngewebe. Klin. Wschr. 34, 86 (1956).PubMedGoogle Scholar
  241. Horin, L. E.: Isolation of the zymogen granules of dog pancreas and a study of their properties. Biochim. biophys. Acta (Amst.) 18, 379 (1955).Google Scholar
  242. Horin, L. E., and M. R. Hokin: The presence of phosphatidic acid in animal tissue. J. biol. Chem. 233, 800 (1958).Google Scholar
  243. Holman, R. T.: Metabolism of isomers of linoleic and linolenic acids. Proc. Soc. exp. Biol. (N.Y.) 76, 100 (1951).Google Scholar
  244. Honegger, C. G., T. A. Freyvogel: Lipide des Zentralnervensystems bei Wirbeltieren und einigen Wirbellosen. Helv. chim. Acta 46, 252 (1963).Google Scholar
  245. Howard, R. E., and R. M. Burton: Studies on the ganglioside micelle. Biochim. biophys. Acta (Amst.) 84, 435 (1964).Google Scholar
  246. Imhäuser, K.: Über das Vorkommen des Plasmalogens. II. Mitt.: Über das Vorkommen des Plasmalogens bei Tieren. Biochem. Z. 186, 360 (1927).Google Scholar
  247. James, F., and K. Fotherby: Distribution in brain of lipid-bound sialic acid and factors affecting its concentration. J. Neurochem. 10, 587 (1963).PubMedGoogle Scholar
  248. Jatzkewitz, H.: Zwei Typen von Cerebrosid-Schwefelsäureestern als sogenannte „Prälipoide“ und Speichersubstanzen bei der Leukodystrophie, Typ Scholz (metachromatische Form der diffusen Sklerose). Hoppe Seylers Z. physiol. Chem. 311, 279 (1958).PubMedGoogle Scholar
  249. Jatzkewitz, H.:Die Leukodystrophie, Typ Scholz (metachromatische Form der diffusen Sklerose) als Sphingolipoidose (Cerebrosid-schwefelsäureester-Speicherkrankheit). Hoppe-Seylers Z. physiol. Chem. 318, 265 (1960).PubMedGoogle Scholar
  250. Jatzkewitz, H.:Cerebron-und Kerasin-schwefelsäureester als Speichersubstanzen bei der Leukodystrophie, Typ Scholz (metachromatische Form der diffusen Sklerose). Hoppe-Seylers Z. physiol. Chem. 320, 134 (1960).PubMedGoogle Scholar
  251. Jatzkewitz, H.: Über die chemische Natur der sogenannten „Prälipoide“ bei der Leukodystrophie, Typ Scholz (metachromatische Form der cerebralen diffusen Sklerose). In: Chemical pathology of the nervous system. Oxford: Pergamon Press 1961.Google Scholar
  252. Jatzkewitz, H.: Zur Biochemie neurologischer und psychiatrischer Krankheitsbilder. Dtsch. med. Wschr. 86, 474 (1961).PubMedGoogle Scholar
  253. Jatzkewitz, H.: Eine neue Methode zur quantitativen Ultramikrobestimmung der Sphingolipoide aus Gehirn. Hoppe Seylers Z. physiol. Chem. 326, 61 (1961).PubMedGoogle Scholar
  254. Jatzkewitz, H.: Eine neue Methode zur quantitativen Ultramikrobestimmung der Sphingolipoide aus Gehirn. Hoppe Seylers Z. physiol. Chem. 336, 25 (1964).PubMedGoogle Scholar
  255. Jatzkewitz, H., E. Mehl: Zur Dünnschicht-Chromatographie der Gehirn-Lipoide, ihrer Um-und Abbauprodukte. Hoppe-Seylers Z. physiol. Chem. 320, 251 (1960).PubMedGoogle Scholar
  256. Jatzkewitz, H., E. Mehl: Zum Schicksal der C24-Fettsäuren beim sudanophilen Myelinabbau im Zentralnervensystem. I. C24Fettsäuren-Defizit in den lipophilen Abbau-und Umwandlungsprodukten. Hoppe-Seylers Z. physiol. Chem. 329, 264 (1962).PubMedGoogle Scholar
  257. Jatzkewitz, H., H. Pilz, K. Sandhoff: Quantitative Bestimmungen von Gangliosiden und ihren neuraminsäurefreien Derivaten bei infantilen, juvenilen und adulten Formen der amaurotischen Idiotie und einer spätinfantilen biochemischen Sonderform. J. Neurochem. 12, 135 (1965).PubMedGoogle Scholar
  258. Jatzkewitz, H., and K. Sandhoff: On a biochemically special form of infantile amaurotic idiocy. Biochim. biophys. Acta (Amst.) 70, 354 (1963).Google Scholar
  259. Johnson, A. C., A. R. Mcnabb, and R. J. Rossiter: Concentration of lipids in brain of infants and adults. Biochem. J. 44, 494 (1949).Google Scholar
  260. Johnson, A. C., A. R. Mcnabb: Lipids of normal brain. Biochem. J. 43, 573 (1948).Google Scholar
  261. Johnson, G. A., and R. H. Mccluer: Isolation and analysis of mono-, di-, and trisialogangliosides. Biochim. biophys. Acta (Amst.) 70, 487 (1963).Google Scholar
  262. Kabara, J. J.: Brain cholesterol. V. Effect of hereditary dystrophia muscularis on acetate incorporation. Texas Rep. Biol. Med. 22, 126 (1964a).Google Scholar
  263. Kabara, J. J.: Brain cholesterol. VI. The effect of hereditary dysthrophia muscularis on (14C) leucine and (2–3H) acetate incorporation. Texas Rep. Biol. Med. 22, 134 (1964b).Google Scholar
  264. Kabara, J. J.: Brain cholesterol. VII. The effect of hereditary dysthrophia muscularis on (2–14C) mevalonic and (2–3H) acetate incorporation. Texas Rep. Biol. Med. 22, 143 (1964c).Google Scholar
  265. Kahlke, W.: Über das Vorkommen von 3,7,11,15-Tetramethyl-Hexadecansäure im Blutserum bei RefsumSyndrom. Klin. Wschr. 41, 783 (1963).Google Scholar
  266. Kahlke, W.: Refsum-Syndrom. — Lipoidchemische Untersuchungen bei 9 Fällen. Klin. Wschr. 42, 1011 (1964).PubMedGoogle Scholar
  267. Kalsbeck, J. E., and J. N. Cumings: Experimental edema in the rat and cat brain. J. Neuropath. exp. Neurol. 22, No 2 (1962).Google Scholar
  268. Kanfer, J.: Observations on cerebroside metabolism in vivo. J. biol. Chem. 240, 609–612 (1965).PubMedGoogle Scholar
  269. Kanfer, J., R. S. Blacklow, L. Warren, and R. O. Brady: The enzymatic synthesis of gangliosides. I. The incorporation of labeled N-acetylneuraminic acid into monosialganglioside. Biochem. biophys. Res. Commun. 14, 287 (1964).PubMedGoogle Scholar
  270. Karlsson, K.-A.: Studies on sphingosines. III. C20-dihydrosphingosine, a hitherto unknown sphingosine. Acta chem. scand. 18, 565 (1964).Google Scholar
  271. Karrer, P., H. Salomon: Über die Glycerinphosphorsäuren aus Lecithin. Helv. chim. Acta 9, 3 (1926).Google Scholar
  272. Kates, M.: Hydrolysis of lecithin by plant plastic enzymes. Canad. J. Biochem. 33, 575 (1955).Google Scholar
  273. Kates, M.: Hydrolysis of glycerophosphatides by plastid phosphatidase. Canad. J. Biochem. 34, 967 (1956).Google Scholar
  274. Kates, M.: Effect of solvents and surface-active agents on plastid phosphatidase C activity. Canad. J. Biochem. 35, 127 (1957).PubMedGoogle Scholar
  275. Kates, M., and P. R. Gorham: Coalescence as factor in solvent stimulation of plastid phosphatidase C activity. Canad. J. Biochem. 35, 119 (1957).PubMedGoogle Scholar
  276. Kennedy, E. P.: Synthesis of phospholipids in isolated mitochondria. Fed. Proc. 11, 239 (1952).Google Scholar
  277. Kennedy, E. P.: Synthesis of phosphatides in isolated mitochondria. J. biol. Chem. 201, 399 (1953a).Google Scholar
  278. Kennedy, E. P.: The synthesis of lecithin in isolated mitochondria. J. Amer. them. Soc. 75, 249 (1953b).Google Scholar
  279. Kennedy, E. P.: The synthesis of cytidine diphosphate choline, cytidine diphosphate ethanolamine, and related compounds. J. biol. Chem. 222, 185 (1956a).Google Scholar
  280. Kennedy, E. P.: The biological synthesis of phospholipids. Canad. J. Biochem. 34, 334 (1956b).Google Scholar
  281. Kennedy, E. P., and S. B. Weiss: Cytidine diphosphate choline: a new intermediate in lecithin biosynthesis. J. Amer. them. Soc. 77, 250 (1955).Google Scholar
  282. Kennedy, E. P., and S. B. Weiss: Enzymic conversion of CDP-choline and CDP-ethanolamine to phospholipids. Fed. Proc. 15, 381 (1956a).Google Scholar
  283. Kennedy, E. P., and S. B. Weiss: The function of cytidine coenzymes in the biosynthesis of phospholipides. J. biol. Chem. 222, 193 (1956b).Google Scholar
  284. Kerr, S. E., G. A. Kfoury, and L. G. Djibelian: Preparation of brain polyphosphoinositides. J. Lipid Res. 5, 482 (1964a).Google Scholar
  285. Kerr, S. E., G. A. Kfoury, and F. S. Haddad: A comparison of the polyphosphoinositide in human and ox brain. Biochim. biophys. Acta (Amst) 84, 461 (1964b).Google Scholar
  286. Kishimoto, Y., and N. S. Radin: Structures of the normal unsaturated fatty acids of brain sphingolipids. J. Lipid Res. 4, No 4, 437 (1963).PubMedGoogle Scholar
  287. Kishimoto, Y., and N. S. Radin: Biosynthesis of nervonic acid and its homologues from carboxyl-labeled oleic acid. J. Lipid Res. 4, 444 (1963).PubMedGoogle Scholar
  288. Kiss, J., G. Fodor, D. Banfi: Zurückführung der Konfiguration des (natürlichen) Sphingosins auf die der D-erythro-2-amino-3,4-dioxybuttersäure. Helv. chim. Acta 37, 1471 (1954).Google Scholar
  289. Klatzo, I.: Observations on the passage of the fluorescin labeled serum proteins (FLSP) from the cerebrospinal fluid. J. Neuropath. exp. Neurol. 23, 18 (1964).PubMedGoogle Scholar
  290. Klenk, E.: Über ein neues Cerebrosid des Gehirns. Hoppe-Seylers Z. physiol. Chem. 145, 244 (1925).Google Scholar
  291. Klenk, E.: Über die partiellen Spaltungsprodukte von Cerebron. Hoppe-Seylers Z. physiol. Chem. 153, 74 (1926a).Google Scholar
  292. Klenk, E.: Über eine Säure C24H4B03 aus Cerebrosiden des Gehirns. Hoppe-Seylers Z. physiol. Chem. 157, 291 (1926b).Google Scholar
  293. Klenk, E.: Über die Cerebroside des Gehirns. Hoppe-Seylers Z. physiol. Chem. 166, 268 (1927).Google Scholar
  294. Klenk, E.: Über Sphingosin. 10. Mitteilung über Cerebroside. Hoppe-Seylers Z. physiol. Chem. 185, 169 (1929).Google Scholar
  295. Klenk, E.: Über die Fettsäuren der Kephalinfraktion des Gehirns. 1. Mitteilung über Phosphatide. Hoppe-Seylers Z. physiol. Chem. 192, 217 (1930).Google Scholar
  296. Klenk, E.: Über die Fettsäuren der ätherlöslichen Phosphatide und der Protagonfraktion des Gehirns (3. Mitteilung über Phosphatide). Hoppe-Seylers Z. physiol. Chem. 200, 51 (1931).Google Scholar
  297. Klenk, E.: Über die ungesättigten Fettsäuren der ätherlöslichen Phosphatide des Gehirns (4. Mitteilung über Phosphatide). Hoppe-Seylers Z. physiol. Chem. 206, 25 (1932).Google Scholar
  298. Klenk, E.: Über die Ganglioside, eine neue Gruppe von zuckerhaltigen Gehirnlipoiden. Hoppe-Seylers Z. physiol. Chem. 273, 76 (1942).Google Scholar
  299. Klenk, E.: Über die höheren Aldehyde der Acetalphosphatide des Gehirns. Hoppe- SeylersZ. physiol. Chem. 282, 18 (1945).Google Scholar
  300. Klenk, E.: Über die Verteilung der Neuraminsäure im Gehirn bei der familiären amaurotischen Idiotie und bei der Niemann-Pickschen Krankheit. Hoppe-Seylers Z. physiol. Chem. 282, 84 (1947).Google Scholar
  301. Klenk, E.: Zur Kenntnis der Ganglioside. Hoppe-Seylers Z. physiol. Chem. 288, 216 (1951).Google Scholar
  302. Klenk, E.: Die Lipoide im chemischen Aufbau des Nervensystems. Naturwissenschaften 40 449 (1953).Google Scholar
  303. Klenk, E.: Über die Bildung der C20- und C22-Polyenfettsäuren im Tierkörper. Naturwissenschaften 41, 68 (1954).Google Scholar
  304. Klenk, E.: La chimie des soi-disant thésaurismoses phosphatidiques du tissu nerveux. Acta neurol. belg. 8, 586 (1954).Google Scholar
  305. Klenk, E.: Über die Biogenese der C20- und C22-Polyensäuren in der Säugetierleber. Hoppe-Seylers Z. physiol. Chem. 302, 269 (1955a).Google Scholar
  306. Klenk, E.: The pathological chemistry of the developing brain. In: Biochemistry of the developing nervous system. New York: Academic Press 1955b.Google Scholar
  307. Klenk, E.: Die Chemie der Markreifung und das Problem der Entmarkung. Verh. Dtsch. Ges. f. inn. Med., 61. Kongr. 1955c.Google Scholar
  308. Klenk, E.: Chemie und Biochemie der Neuraminsäure. Angew. Chem. 68, 349 (1956).Google Scholar
  309. Klenk, E.: Incorporations of 14C-labelled acetate into some lipids of nervous tissue. In: Metabolism of the nervous system, p. 396. London: Pergamon Press 1957.Google Scholar
  310. Klenk, E.: Neuraminic acid: Chemistry and biology of mucopolysaccharides, p. 296. Ciba foundation, Symposium 1958.Google Scholar
  311. Klenk, E.: On gangliosides. J. Dis. Child. 97, 711 (1959).Google Scholar
  312. Klenk, E.: Chemie und Stoffwechsel der Polyenfettsäuren. Experientia (Basel) 17, 199 (1961).Google Scholar
  313. Klenk, E., P. BaHM: Zur Kenntnis der Kephalinfraktion des Gehirns. Hoppe-Seylers Z. physiol. Chem. 288, 98 (1951).Google Scholar
  314. Klenk, E., W. Bongard: Die Konstitution der ungesättigten C20- und C22-Fettsäuren der Glycerinphosphatide des Gehirns. Hoppe-Seylers Z. physiol. Chem. 291, 104 (1952).Google Scholar
  315. Klenk, E., H. Debuch: Zur Kenntnis der Acetalphosphatide. Hoppe-Seylers Z. physiol. Chem. 296, 179 (1954).Google Scholar
  316. Klenk, E., H. Debuch: The lipides. Ann. Rev. Biochem. 28, 39 (1959).Google Scholar
  317. Klenk, E., H. Debuch, H. Daun: Zur Kenntnis des Gehirnlecithins. Hoppe-Seylers Z. physiol. Chem. 292, 241 (1953).Google Scholar
  318. Klenk, E., H. Faillard: Über Sphingosin. Hoppe-Seylers Z. physiol. Chem. 299, 48 (1955).Google Scholar
  319. Klenk, E., H. Faillard, H. Lempfrid: Über die enzymatische Wirkung von Influenzavirus. Hoppe-Seylers Z. physiol. Chem. 301, 235 (1955).Google Scholar
  320. Klenk, E., G. Gehrmann: Über die Glycerinphosphatide des Rinderherzmuskels und das Vorkommen von cholinhaltigen Acetal-phosphatiden. Hoppe-Seylers Z. physiol. Chem. 292, 110 (1953).Google Scholar
  321. Klenk, E., W. Gielen: Zur Kenntnis der Ganglioside des Gehirns. Hoppe-Seylers Z. physiol. Chem. 319, 283 (1960a).Google Scholar
  322. Klenk, E., W. Gielen: On the carbohydrate groups of brain gangliosides. Bull. Soc. Chim. biol. (Paris) 42, 1395 (1960b).Google Scholar
  323. Klenk, E., W. Gielen: Über Gehirnganglioside. Hoppe-Seylers Z. physiol. Chem. 323, 126 (1961a).Google Scholar
  324. Klenk, E., W. Gielen: Untersuchungen über die Konstitution der Ganglioside aus Menschengehirn und die Trennung des Gemisches in die Komponenten. Hoppe-Seylers Z. physiol. Chem. 326, 144 (1961b).Google Scholar
  325. Klenk, E., W. Gielen: Über ein chromatographisch einheitliches hexosaminhaltiges Gangliosid aus Menschengehirn. Hoppe Seylers Z. physiol. Chem. 326, 158 (1961c).Google Scholar
  326. Klenk, E., W. Gielen: Über ein chromatographisch einheitliches hexosaminfreies Gangliosid aus Menschengehirn. Hoppe Seylers Z. physiol. Chem. 333, 162 (1963).Google Scholar
  327. Klenk, E., W. Gielen: Über ein zweites hexosaminhaltiges Gangliosid aus Menschengehirn. Hoppe-Seylers Z. physiol. Chem. 330, 218 (1963).Google Scholar
  328. Klenk, E., W. Gielen, and G. Padberg: The structure of the gangliosides. In: Cerebral sphingolipoides. New York: Academic Press Inc. 1962.Google Scholar
  329. Klenk, E., R. Harle: Über das Galaktosido-sphingosin, das partielle Spaltprodukt der Cerebroside. 8. Mitteilung über Cerebroside. Hoppe-Seylers Z. physiol. Chem. 178, 221 (1928).Google Scholar
  330. Klenk, E., and U. W. Hendricks: An inositol phosphatide containing carbohydrate, isolated from human brain. Biochim. biophys. Acta (Amst) 50, 602 (1961).Google Scholar
  331. Klenk, E., and U. W. Hendricks, W. Gielen: ß-D-Galaktosido-(1 3)-N-acetyl-D-Galaktosamin, ein kristallisiertes Disaccharid aus menschlichen Gehirngangliosiden. Hoppe-Seylers Z. physiol. Chem. 330, 140 (1962).Google Scholar
  332. Klenk, E., K. Heuer: Über die Ganglioside der Hundeerythrocyten. Dtsch. Z. Verdau.- u. Stoffwechselkr. 20, 180 (1960).Google Scholar
  333. Klenk, E., W. Kahlke: Über das Vorkommen der 3.7.11.15.-Tetramethylhexadecansäure (Phytansäure) in den Cholesterinestern und anderen Lipoidfraktionen der Organe bei einem Krankheitsfall unbekannter Genese (Verdacht auf heredopathia atactica polyneuritiformis (refsum-syndrom). Hoppe-Seylers Z. physiol. Chem. 333, 133 (1963).Google Scholar
  334. Klenk, E., W. Kunau: Beitrag zur Konstitution der Ganglioside. Hoppe-Seylers Z. physiol. Chem. 335, 275 (1964).Google Scholar
  335. Klenk, E., H. Lempfrid: Über die Natur der Zellreceptoren für das Influenzavirus. Hoppe-Seylers Z. physiol. Chem. 307, 278 (1957).Google Scholar
  336. Klenk, E., F. Leupold: Über eine vereinfachte Methode zur Darstellung von phosphorfreien Cerebrosiden und über die als Spaltprodukte auftretenden Fettsäuren. Hoppe-Seylers Z. physiol. Chem. 281, 208 (1944).Google Scholar
  337. Klenk, E., U. Liedtke, W. Gielen: Das Gangliosid des Gehirns bei der infantilen amaurotischen Idiotie vom Typ Tay-Sachs. Hoppe-Seylers Z. physiol. Chem. 334, 186 (1963).Google Scholar
  338. Klenk, E., F. Lindlar: Über die Docosapolyensäuren der Glycerinphosphatide des Gehirns. Hoppe-Seylers Z. physiol. Chem. 299, 74 (1955a).Google Scholar
  339. Klenk, E., F. Lindlar: Über die Eikosapolyensäuren der Glycerinphosphatide des Gehirns. Hoppe-Seylers Z. physiol. Chem. 301, 156 (1955b).Google Scholar
  340. Klenk, E., W. Montag: Über das Vorkommen der 49,12,15,18-n-Tetrakosatetraensäure in den Glycerinphosphatiden des Gehirns und deren Isolierung. J. Neurochem. 2, 226 (1958a).Google Scholar
  341. Klenk, E., W. Montag: Über die C22-Polyensäuren der Glycerinphosphatide des Gehirns. J. Neurochem. 2, 233 (1958b).Google Scholar
  342. Klenk, E., G. Padberg: Über die Ganglioside von Pferdeerythrocyten. Hoppe-Seylers Z. physiol. Chem. 327, 249 (1962).Google Scholar
  343. Klenk, E., H. Pflüger: Über die Synthese der (8–14C) cis-Q9-Octadecensäure. Hoppe- Seylers Z. physiol. Chem. 336, 20 (1964).Google Scholar
  344. Klenk, E., F. Rennkamp: Über die Ganglioside und Cerebroside der Rindermilz. Hoppe-Seylers Z. physiol. Chem. 273, 253 (1942).Google Scholar
  345. Klenk, E., O. V. Schoenebeck: Über die hochungesättigten Fettsäuren der Phosphatide aus verschiedenen Organen. Hoppe-Seylers Z. physiol. Chem. 194, 191 (1931).Google Scholar
  346. Klenk, E., E. Schumann: Über das Vorkommen einer N-Hexacosensäure unter den Fettsäuren der Gehirncerebroside. Hoppe-Seylers Z. physiol. Chem. 272, 177 (1942).Google Scholar
  347. Klenk, E., G. Uhlenbruck: Über die Abspaltung von N-Glycolyl-Neuraminsäure (p-Sialinsäure) aus dem Schweinesubmaxillarismucin durch das „Receptor-destroying enzyme“. Hoppe-Seylers Z. physiol. Chem. 307, 266 (1957).Google Scholar
  348. Klenk, E., G. Uhlenbruck: Über neuraminsäurehaltige Mucoide aus Menschenerythrocytenstroma, ein Beitrag zur Chemie der Agglutinogene. Hoppe-Seyler’s Z. physiol. Chem. 319, 151 (1960).Google Scholar
  349. Koch, W.: Zur Kenntnis des Lecithins, Kephalins und Cerebrins aus Nervensubstanz. Hoppe-Seylers Z. physiol. Chem. 36, 134 (1902).Google Scholar
  350. Koch, W.: Methods for the quantitative chemical analyses of the brain and cord. Amer. J. Physiol. 11, 303 (1904).Google Scholar
  351. Kochetkov, N. K., I. G. Zhukova, and I. S. Glukhoded: Sphingoplasmalogens. A new type of sphingolipid. Biochim. biophys. Acta (Amst.) 70, 716 (1963).Google Scholar
  352. Koechlin, B. A., and H. D. Parish: The amino acid composition of a protein isolated from lobster nerve. J. biol. Chem. 205, 597 (1953).PubMedGoogle Scholar
  353. Koenig, H., and A. Jibril: Acidic glycolipids and the role of ionic bonds in the structure-linked latency of lysosomal hydrolases. Biochim. biophys. Acta (Amst.) 65, 543 (1962).Google Scholar
  354. D. Gaines, T. Mcdonald, R. Gray, and J. Scott: Studies of brain lysosomes-I. Subcellular distribution of five acid hydrolases, succinate dehydrogenase and gangliosides in rat brain. J. Neurochem. 11, 729 (1964).PubMedGoogle Scholar
  355. Koning, A. J. DE: Structure of “complex” phospholipids. Nature (Lond.) 200, 1211 (1963).Google Scholar
  356. Korey, S. R., R. Katzman, and J. Orloff: A case of Jacob-Creutzfeldt decease. J. Neuropath. exp. Neurol. 20, 95 (1961).PubMedGoogle Scholar
  357. Korey, S. R., and A. Stein: A gangliosidase system. VII. Int. Congr. Neurol. 1961, p. 71. New York: Elsevier 1963.Google Scholar
  358. Kornberg, A., and W. E. Pricer: Studies on the enzymatic synthesis of phospholipides. Fed. Proc. 11, 242 (1952a).Google Scholar
  359. Kornberg, A., and W. E. Pricer: Enzymatic synthesis of phosphorus containing lipides. J. Amer. chem. Soc. 74, 1617 (1952b).Google Scholar
  360. Kornberg, A., and W. E. Pricer: Enzymatic synthesis of the coenzyme A derivates of long chain fatty acids. J. biol. Chem. 204, 329 (1953a).Google Scholar
  361. Kornberg, A., and W. E. Pricer: Enzymatic esterification of a-glycerophosphate by long chain fatty acids. J. biol. Chem. 204, 345 (1953b).Google Scholar
  362. Kossel, A., F. Freytag: Über einige Bestandteile des Nervenmarks und ihre Verbreitung in den Geweben des Tierkörpers. Hoppe-Seylers Z. physiol. Chem. 17, 431 (1893).Google Scholar
  363. Kühne, W., R. H. Chittenden: Über das Neurokeratin. Z. Biol. 26, 291 (1890).Google Scholar
  364. Kuhn, R., H.EGGE: Über Ergebnisse der Permethylierung der Ganglioside GI und Gil. Chem. Ber. 96, 3338 (1963).Google Scholar
  365. Kuhn, R., H. Müldner: Über Glyko-lipo-sialo-proteide des Gehirns. Naturwissenschaften 24, 635 (1964).Google Scholar
  366. Kuhn, R., H. Wiegandt: Die Konstitution der Ganglio-N-tetraose und des Gangliosids GI. Chem. Ber. 96, 866 (1963).Google Scholar
  367. Kuhn, R., H. Wiegandt: Die Konstitution der Ganglioside G11, Gm und GIv. Z. Naturforsch. 18b, 541 (1963).Google Scholar
  368. Kuhn, R., H. Wiegandt: Über ein glucosaminhaltiges Gangliosid. Z. Naturforsch. 19b, 80 (1964).Google Scholar
  369. Kuhn, R., H. Wiegandt: Weitere Ganglioside aus Menschenhirn. Z. Naturforsch. 19b, 256 (1964).Google Scholar
  370. Kuhn, R., H. Wiegandt, H. Egge: Zum Bauplan der Ganglioside. Angew. Chem. 73, 580 (1961).Google Scholar
  371. Kutscha, W.: Die Funktion der motorischen Endplatte. Dtsch. med. Wschr. 88, 331 (1963).Google Scholar
  372. Lapworth, A.: Oxidation of sphingosine and the isolation and purification of cerebron. J. chem. Soc. (London) 103, 1029 (1913).Google Scholar
  373. Lawler, H. C.: The preparation of a soluble acetylcholinesterase from brain. Biochem. biophys. Acta (Amst.) 81, 280 (1964).Google Scholar
  374. Leathes, J. B.: On the role of fats in vital phenomena. Lancet 1925 I, 803 (a).Google Scholar
  375. Leathes, J. B.: On the role of fats in vital phenomena. Lancet 1925 I, 853 (b).Google Scholar
  376. Leathes, J. B.: On the role of fats in vital phenomena. Lancet 1925 I, 957 (c).Google Scholar
  377. Leathes, J. B.: On the role of fats in vital phenomena. Lancet 1925 I, 1019 (d).Google Scholar
  378. Le Baron, F. N.: Neurochemistry. Ann. Rev. Biochem. 28, 579 (1959).Google Scholar
  379. Le Baron, F. N. The nature of the linkage between phosphoinositides and protein in brain. Biochim. biophys. Acta (Amst) 70, 658 (1963).Google Scholar
  380. Le Baron, F. N., and J. Foloh: The isolation from brain tissue of trypsin-resistent protein fraction containing combined inositol and its relation to neurokeratin. J. Neurochem. 1, 101 (1956).Google Scholar
  381. Ledeen, R., and K. Salsman: Structure of Tay-Sachs ganglioside. Biochemistry 4, 2225 (1965a).Google Scholar
  382. Ledeen, R., and K. Salsman, J. Gonatas, and A. Taghavy: Structure comparison of the major monosialogangliosides from brains of normal human, gargoylism, and late infantile systemic lipidosis. J. Neuropath. exp. Neurol. 24 341 (1965b).Google Scholar
  383. Lesch, P., K. Bernhard: Untersuchungen über die Fettsäurezusammensetzung aus verschiedenen Bezirken eines normalen Hirns isolierter Cerebroside, Sphingomyeline und Lecithine. HeIv. physiol. pharmacol. Acta 21, 37 (1963).Google Scholar
  384. Lesch, P., S. Meier: Unterschiede in der Fettsäurezusammensetzung der Lipide in verschiedenen Bezirken menschlicher Gehirne. Klin. Wschr. 42, 799 (1964).Google Scholar
  385. Leupold, F.: Über die Aldehyde der Acetalphosphatide des Gehirns. Hoppe-Seylers Z. physiol. Chem. 285, 182 (1950).Google Scholar
  386. Levene, P. A.: Sphingomyelin. I. On the presence of linnoceric acid among the products of hydrolysis of sphingomyelin. J. biol. Chem. 15, 153 (1913).Google Scholar
  387. Levene, P. A.: On sphingomyelin. II. J. biol. Chem. 18, 453 (1914).Google Scholar
  388. Levene, P. A.: Sphingomyelin. III. J. biol. Chem. 24, 69 (1916).Google Scholar
  389. Levene, P. A., and K. Landsteiner: On some new lipoides J. biol. Chem. 75, 607 (1927).Google Scholar
  390. Levene, P. A., and I. P. Rolf: Cephalin. VII. The glycerophosphoric acid of cephalin. J. biol. Chem. 40, 1 (1919).Google Scholar
  391. Levene, P. A., and I. P. Rolf: Lecithin. IV. Lecithin of the brain. J. biol. Chem46, 353 (1921).Google Scholar
  392. Levene, P. A., and I. P. Rolf: Unsaturated fatty acids of brain cephalins. J. biol. Chem. 54, 91 (1922a).Google Scholar
  393. Levene, P. A., and I. P. Rolf: Unsaturated fatty acids of brain lecithins. J. biol. Chem. 54, 99 (1922b).Google Scholar
  394. Levene, P. A., and I. P. Rolf: Lysolecithins and lysocephalins. J. biol. Chem. 55, 743 (1923).Google Scholar
  395. Levene, P. A., and I. P. Rolf: Synthetic lecithins. J. biol. Chem. 60, 677 (1924).Google Scholar
  396. Levene, P. A., and C. J. West: The saturated fatty acid of cephalin. J. biol. Chem. 16, 419 (1913).Google Scholar
  397. Levene, P. A., and C. J. West:On sphingosine. II. The oxidation of sphingosine and dihydrosphingosine. J. biol. Chem. 16, 549 (1914a).Google Scholar
  398. Levene, P. A., and C. J. West:On sphingosine. III. The oxidation of sphingosine and dihydrosphingosine. J. biol. Chem. 18, 481 (1914b).Google Scholar
  399. Levis, G. M., and J. F. Mead: An a-hydroxy acid decarboxylase in brain microsomes. J. biol. Chem. 239, 77 (1964).PubMedGoogle Scholar
  400. Loewenthal, A.: Agar gel elektrophoresis in neurology. New York: Elsevier Publ. 1964.Google Scholar
  401. Long, C., and M. F. Maguire: The structure of the naturally occurring phosphoglycerides. 1. Evidence derived from alkaline-hydrolysis studies. Biochem. J. 54, 612 (1953a).Google Scholar
  402. Long, C., and M. F. Maguire: Evidence for the structure of ovolecithin derived from a study of the action of lecithinase C. Biochem. J. 55, XV (1953b).Google Scholar
  403. Long, C., and I. F. Penny: The structure of the lysolecithin formed by the action of snake venom phospholipase A on ovolecithin. Biochem. J. 58, XV (1954).PubMedGoogle Scholar
  404. Long, C., and I. F. Penny: The structure of naturally occurring phosphoglycerides. 3. Action of mocassin-venom phospholipase A on ovolecithin and related substances. Biochem. J. 65, 382 (1957).PubMedGoogle Scholar
  405. Lowden, J. A., and L. S. Wolfe: Effect of hypoxia on brain gangliosides. Nature (Lond.) 197, 771 (1963).Google Scholar
  406. Lowden, J. A., and L. S. Wolfe: Studies on brain gangliosides. IV. The effect of hypercapnia on gangliosides in vivo. Canad. J. Biochem. 42, 1703 (1964).Google Scholar
  407. Lowry, O. H., D. R. Gilligan, and E. M. Katersky: The determination of collagen and elastin in tissues, with results obtained in various normal tissues from different species. J. biol. Chem. 139, 795 (1941).Google Scholar
  408. Lowry, O. H., N. R. Roberts, K. Y. Leiner, M. L. Wu, and A. L. Farr: The quantitative histochemistry of brain. I. Chemical methods. J. biol. Chem. 207, 1 (1954a).Google Scholar
  409. Lowry, O. H., N. R. Roberts, M. L. Wu, W. S. Hixon, and E. J. Crawford: The quantitative histochemistry of brain. II. Enzyme measurements. J. biol. Chem. 207, 19 (1954b).Google Scholar
  410. Lüdecke, K.: Zur Kenntnis der Glycerinphosphorsäure und des Lecithins. Diss. Munch. Phil. Fakultät II (1905).Google Scholar
  411. Macarthur, C. G.: Brain cephalin. I. Distribution of the nitrogeneous hydrolysis products of cephalin. J. Amer. them. Soc. 36, 2397 (1914).Google Scholar
  412. Macarthur, C. G., and L. V. Burton: Brain cephalin. II. Fatty acids. J. Amer. them. Soc. 38, 1375 (1916).Google Scholar
  413. Macfarlane, M. G.: The specificity of the lecithinase present in Cl. welchii toxin. Biochem. J. 36, III (1942).Google Scholar
  414. Macfarlane, M. G.: The biochemistry of bacterial toxins. 2. The enzymic specificity of Clostridium welchii lecithinase. Biochem. J. 42, 587 (1948a).Google Scholar
  415. Macfarlane, M. G.: The biochemistry of bacterial toxins. 3. The identification and immunological relations of lecithinases present in Clostridium oedematiens and Clostridium sordelli toxins. Biochem. J. 42, 590 (1948b).Google Scholar
  416. Macfarlane, M. G., and B. C. J. G. Knight: The biochemistry of bacterial toxins. 1. The lecithinase activity of Clostridium welchii toxins. Biochem. J. 35, 884 (1941).Google Scholar
  417. Maclean, H.: The composition of “lecithin” together with observations on the distribution of phosphatides in the tissue and methods of their extraction and purification. Biochem. J. 9, 351 (1915).PubMedGoogle Scholar
  418. Makita, A., M. Iwanaga, and T. Yamakawa: The chemical structure of human kidney globoside. J. Biochem. (Tokyo) 55, 202 (1964).Google Scholar
  419. Makita, A., and T. Yamakawa: The glycolipoids of the brain of Tay-Sachs disease. Jap. J. exp. Med. 33, 361 (1963).PubMedGoogle Scholar
  420. Manno, N. J., W. F. Mcguckin, and P. Goldstein: Cerebrospinal fluid total polysaccharide in diseases of the nervous system. Neurology (Minneap.) 15, 49 (1965).Google Scholar
  421. Marinetti, G. V., J. F. Berry, G. Rouser, and E. Stotz: Studies on the structure of sphingomyelin. II. Performic and periodic acid oxidation studies. J. Amer. chem. Soc. 75, 313 (1953).Google Scholar
  422. Marinetti, G. V., and J. Erbland: The structure of pig heart plasmalogens. Biochim. biophys. Acta (Amst.) 26, 429 (1957).Google Scholar
  423. Marinetti, G. V., and J. Erbland, and E. Stotz: The structure of pig heart plasmalogens. J. Amer. chem. Soc. 80, 1624 (1958).Google Scholar
  424. Marinetti, G. V., and J. Erbland, and E. Stotz: The hydrolysis of lecithins by snake venom phospholipase. Biochim. biophys. Acta (Amst.) 33. 403 (1959).Google Scholar
  425. Marinetti, G. V., and E. Stotz: Studies on the structure of sphingomyelin. IV. Configuration of double bond in sphingomyelin and related lipids and a study of their infrared spectra. J. Amer. chem. Soc. 76, 1347 (1954).Google Scholar
  426. Marks, N., and A. Lajtha: Protein breakdown in the brain. Subcellular distribution and properties of neutral and acid proteinases. Biochem. J. 89, 438 (1963).Google Scholar
  427. Maxfield, M., and R. W. Hartley: Dissociation of the fibrous protein of nerve. Biochim. biophys. Acta (Amst.) 24, 83 (1957).Google Scholar
  428. Mcgregor, H. H.: Proteins of the central nervous system. J. biol. Chem. 28, 403 (1916/17).Google Scholar
  429. Mcilwain, H.: Biochemistry and the central nervous system. Boston (Mass.): Little, Brown & Co. 1955.Google Scholar
  430. Mcilwain, H.: The chemical exploration of brain. New York: Elsevier Publ. 1963.Google Scholar
  431. Mckhann, G. M., R. Levy, and W. Ho: Metabolism of sulfatides. I. The effect of galactocerebrosides on the synthesis of sulfatides. Biochem. biophys. Res. Commun. 20, 109 (1965).Google Scholar
  432. Mckibbix, J. M.: A monophosphoinositide of liver. J. biol. Chem. 220, 537 (1956).Google Scholar
  433. Mcmurray, W. C., J. F. Berry, and R. J. Rossiter: Labelling of phospholipid phosphorus in rat brain-mitochondria. Biochem. J. 66, 629 (1957a).Google Scholar
  434. Mcmurray, W. C., J. F. Berry, and K. P. Strickland: Labelling of brain phospholipid in vitro. Fed. Proc. 15, 313 (1956).Google Scholar
  435. Mcmurray, W. C., K. P. Strickland, J. F. Berry, and R. J. Rossiter: Labelling of phospholipid phosphorus in rat brain dispersions. Biochem. J. 66, 621 (1957b).Google Scholar
  436. Mcmurray, W. C.: Incorporation of 321abelled intermediates into the phospholipids of cell-free preparations of rat brain. Biochem. J. 66, 634 (1957c).Google Scholar
  437. Mead, J. F., and W. H. Slaton jr.: Metabolism of essential fatty acids. III. Isolation of 5,8,11-eicosatrienoic acid from fat-deficient rats. J. biol. Chem. 219, 705 (1956a).Google Scholar
  438. Mead, J. F., W. H. Slaton, and A. B. Decker: Metabolism of the essential fatty acids. II. The metabolism of stearate, oleate, and linoleate by fat-deficient and normal mice. J. biol. Chem. 218, 401 (1956b).Google Scholar
  439. Mead, J. F., G. Steinberg, and D. R. Howton: Metabolism of essential fatty acids. Incorporation of acetate into arachidonic acid. J. biol. Chem. 205, 683 (1953).PubMedGoogle Scholar
  440. Mehl, E., and H. Jatzkewitz: Evidence of the genetic block in metachromatic leukodystrophy (ML). Biochem. biophys. Res. Commun. 19, 407 (1965).Google Scholar
  441. Merz, W.: Untersuchungen über das Sphingomyelin. Hoppe-Seylers Z. physiol. Chem.193, 59 (1930).Google Scholar
  442. Merz, W.: Über das Vorkommen von ätherunlöslichen Lecithinen im Gehirn. Hoppe-Seylers Z. physiol. Chem. 196, 10 (1931).Google Scholar
  443. Mislow, K.: The geometry of sphingosine. J. Amer. chem. Soc. 74, 5155 (1952).Google Scholar
  444. Morgan, E. H., and C. B. Laurell: Neuraminidase in mammalian brain. Nature (Lond.) 197, 921 (1963).Google Scholar
  445. Moser, H., and M. L. Karnovsky: Studies on the biosynthesis of cerebroside galactose. Neurology (Minneap.) 8, 81 (1958).Google Scholar
  446. Müldner, H. G., J. R. Wherrett, and J. N. Cumings: Some applications of thin-layer chromatography in the study of cerebral lipids. J. Neurochem. 9, 607 (1962).Google Scholar
  447. Nakayama, T.: Studies on the conjugated lipids. 1. On the configuration of cerebrosides. J. Biochem. (Tokyo) 37, 309 (1950).Google Scholar
  448. Nakayama, T.: Studies on the conjugated lipids. H. On cerebron sulfuric acid. J. Biochem. (Tokyo) 38, 157 (1951).Google Scholar
  449. Nelson, B. E.: The composition of neurokeratin. J. Amer. chem. Soc. 38, 2258 (1916).Google Scholar
  450. Nicholas, H. J., R. C. Hiltibran, and C. L. Wadkins: Isolation of a mixture of hydrocarbons from beef brains. Arch. Biochem. 59, 246 (1955).Google Scholar
  451. Norman, R. M., A. H. Tingey, C. G. H. Newman, and SH. P. Ward: Tay-Sachs disease with visceral involvement and its relation to gargoylism. Arch. Dis. Childh. 39, 634 (1964).PubMedGoogle Scholar
  452. Nunn, L. C. A., and I. Smedley-Maclean: The nature of the fatty acids stored by the liver in the fat-deficiency disease of rats. Biochem. J. 32, 2178 (1938).PubMedGoogle Scholar
  453. Obrien, J. S.: A molecular defect of myelination. Biochem. biophys. Res. Commun. 15, 484 (1964).Google Scholar
  454. Obrien, J. S., and G. Rouser: The fatty acid composition of brain sphingolipids-sphingomyelin, ceramide cerebroside, and cerebroside sulfate. J. Lipid Res. 5, 339 (1964).Google Scholar
  455. Obrien, J. S., M. B. Stern, B. J. Landing, J. K. Obrien, and G. N. Donnell: Generalized gangliosidosis. Amer. J. Dis. Child. 109, 338 (1965).Google Scholar
  456. Ogawa, K.: Über die fermentative Lysolecithinbildung. J. Biochem. (Tokyo) 24, 389 (1936).Google Scholar
  457. Okuhara, E., and T. Nakayama: Studies on the conjugated lipides. J. biol. Chem. 215, 295 (1955).PubMedGoogle Scholar
  458. Parcus, E.: Über einige neue Gehirnstoffe. J. prakt. Chem., N.F. 24, 310 (1881).Google Scholar
  459. Parnas, J.: Über Kephalin. Biochem. Z. 22, 411 (1909).Google Scholar
  460. Parnas, J.: Über die gesättigte Fettsäure des Kephalins. Biochem. Z. 56, 17 (1913).Google Scholar
  461. Petersen, V. P., and M. Schod: Intracellular distribution of brain phospholipides. Acta physiol. scand. 33, 309 (1955).Google Scholar
  462. Pette, D., I. Stupp: Die r-Fraktion im Liquor cerebrospinalis. Klin. Wschr. 38, 109 (1960).Google Scholar
  463. Pira, R. S., R. M. Bergström, L. Bergström, A. J. Uusitalo, and S. S. Oja: Studies in the metabolism of brain proteins. I. The metabolic turnover rate of brain proteins in the normal rat. Ann. Med. exp. Fenn. 41, 486 (1963).Google Scholar
  464. Pira, R. S., R. M. Bergström, L. Bergström, A. J. Uusitalo, and S. S. Oja: Studies in the metabolism of brain proteins. II. Effect of chlorpromazine and lysergic acid diethylamide on the turnover rate of rat brain proteins. Ann. Med. exp. Fenn. 41, 498 (1963).Google Scholar
  465. Pira, R. S., S. S. Oja, B.-K. Liewendahl, and F. Lampén: Studies in the metabolism of brain proteins. III. Distribution of the soluble proteins of the rat whole brain separated by continuous electrophoresis. Ann. Med. exp. Fenn. 41, 516 (1963).Google Scholar
  466. Pilz, H., H. Jatzkewitz: Diinnschichtchromatographische Bestimmungen von C18- und C24-Sphingomyelin in normalen und pathologischen Gehirnen einschließlich eines Falles von Niemann-Pickscher Erkrankung. J. Neurochem. 11, 603 (1964).PubMedGoogle Scholar
  467. Poliakowa, N. M., and K. S. Kabak: The albumin of peripheral nerves. Dokl. Akad. Nauk SSSR, Otd. Biokh. 122, 275 (1958).Google Scholar
  468. Popjak, G.: Metabolism of lipids. Brit. med. Bull. 14, 197 (1958).Google Scholar
  469. Popjak, G., and H. Muir: In search of a phospholipin-precursor. Biochem. J. 46, 103 (1950).PubMedGoogle Scholar
  470. Porter, H., and J. Folch: Brain copper-protein fractions in the normal and in Wilson’s disease. Arch. Neurol. Psychiat. (Chic.) 77, 8 (1957a).Google Scholar
  471. Porter, H., and J. Folch: Cerebrocuprein. I. A copper-containing protein isolated from brain. J. Neurochem. 1, 160 (1957b).Google Scholar
  472. Prokop, O., G. Uhlenbruck: Lehrbuch der menschlichen Blut-und Serumgruppen. Leipzig: VEB Thieme 1966.Google Scholar
  473. Radin, N. S., F. B. Martin, and J. R. Brown: Galactolipide metabolism. J. biol. Chem. 224, 499 (1957).PubMedGoogle Scholar
  474. Rahman, A. N., and R. Lindenberg: The neuropathology of hereditary dystopic lipidosis. Arch. Neurol. (Chic.) 9, 373 (1963).Google Scholar
  475. Rapport, M. M., and R. E. Franzl: The structure of plasmalogens. I. Hydrolysis of phosphatidal choline by lecithinase A. J. biol. Chem. 225, 851 (1957).PubMedGoogle Scholar
  476. Rapport, M. M., B. Lerner, N. Alonzo, and R. E. Franzl: The structure of plasmalogens. II. Cristaline lysophosphatidal ethanolamine (acetal phospholipide). J. biol. Chem. 225, 859 (1957).PubMedGoogle Scholar
  477. Ravetto, C., F. Galuzzo, and R. Siervo: On the presence of a ganglioside in bovine submaxillary gland. J. Histochem. Cytochem. 12, 791 (1964).PubMedGoogle Scholar
  478. Rennels, E. G., and J. F. Hood: Sialic acid concentrations in the pituitary glands of normal and ovariectomized rats. Rep. Inst. Sci. Lab. 144, 416 (1964).Google Scholar
  479. Rennkamp, F.: Untersuchungen über das Sphingomyelin und die ätherunlöslichen Glycerinphosphatide des Gehirns. Hoppe-Seylers Z. physiol. Chem. 284, 215 (1949).Google Scholar
  480. Richter, D.: Metabolism of the nervous system. London: Pergamon Press 1957.Google Scholar
  481. Richterich, R., W. Kahlke, P. VAN Mechelen, U. E. Rossi: Refsum’s-Syndrom (Heredopathia atactica polyneuritiformis): Ein angeborener Defekt im Lipid-Stoffwechsel mit Speicherung von 3,7,11,15-Tetramethyl-Hexadecansäure. Klin. Wschr. 41, 800 (1963).Google Scholar
  482. Riley, R. F.: Metabolism of phosphorylcholine. II. Partition of phosphorylcholine phosphorus between blood phosphate fractions. III. Partition of phosphorylcholine phosphorus between tissues. IV. Distribution of phosphorylcholine phosphorus in tissue lipids. J. biol. Chem. 153, 535 (1944).Google Scholar
  483. Robertson, D. M.: The electrophoretic separation of the soluble proteins of the brain. J. Neurochem. 1, 358 (1957).PubMedGoogle Scholar
  484. Robins, D. C.: Phosphatidylethanolamine and lysophosphatidylethanolamine. J. Pharm. Pharmacol. 15, 701 (1963).PubMedGoogle Scholar
  485. Robins, E., K. M. Eydt, and D. E. Smith: Distribution of lipides in the cerebellar cortex and its subjacent white matter. J. biol. Chem. 220, 677 (1956b).Google Scholar
  486. Robins, E., O. H. Lowry, K. M. Eydt, and R. E. Mccaman: Microdetermination of phospholipides and sphingolipides in brain. J. biol. Chem. 220, 661 (1956a).Google Scholar
  487. Robins, E., D. E. Smith, and K. M. Eydt: The quantitative histochemistry of the cerebral cortex. I. Architectonic distribution of ten chemical constituents in the motor and visual cortices. J. Neurochem. 1, 54 (1956c).Google Scholar
  488. Roboz, E., N. Henderson, and M. W. Kies: A collagen-like compound isolated from bovine spinal cord. I. J. Neurochem. 2, 254 (1958).PubMedGoogle Scholar
  489. Roots, B. I., and P. V. Johnston: Lipids of isolated neurons. Biochem. J. 94, 61 (1965).PubMedGoogle Scholar
  490. Rosenberg, A., and E. Chargaff: Nitrogenous constituents of an ox brain mucolipid. Biochim. biophys. Acta (Amst.) 21, 588 (1956).Google Scholar
  491. Rosenberg, A., C. Howe, and E. Chargaff: Inhibition of influenza virus hemagglutination by brain lipid fraction. Nature (Lond.) 177, 234 (1956).Google Scholar
  492. Rosenheim, O.: The galactosides of the brain. IV. The constitution of phrenosin and kerasin. Biochem. J. 10, 142 (1916).Google Scholar
  493. Rosenheim, O., and M. C. Tebb: The non-existence of “protagon” as a definite chemical compound. J. Physiol. (Lond.) 36, 1 (1907).Google Scholar
  494. Rosenheim, O., and M. C. Tebb: On so-called “protagon”. Quart. J. exp. Physiol. 1, 297 (1908a).Google Scholar
  495. Rosenheim, O., and M. C. Tebb: The optical activity of so-called “protagon”. J. Physiol. (Lond.) 37, 341 (1908b).Google Scholar
  496. Rosenheim, O., and M. C. Tebb: On a new physical phenomenon observed in connection with the optical activity of so-called “protagon”. J. Physiol. (Lond.) 37, 348 (1908c).Google Scholar
  497. Rosenheim, O., and M. C. Tebb: Further proofs of the non-existence of “protagon” as a definite chemical compound. J. Physiol. (Lond.) 37, Proc. I (1908d).Google Scholar
  498. Rosenheim, O., and M. C. Tebb.: The lipoids of the brain. Part I. Sphingomyelin. J. Physiol. (Lond.) 38, Proc. I (1909).Google Scholar
  499. Rosenheim, O., and M. C. Tebb.: The lipoids of the brain. Part II. A new method for the preparation of the galactosides and of sphingomyelin. J. Physiol. (Lond.) 41, Proc. I (1910/11).Google Scholar
  500. Ross, J., P. Böhm: Neuraminsäurehaltige Glykoproteide des Liquor cerebrospinalis bei Erkrankungen des Nervensystems. Min. Wschr. 35, 351 (1957).Google Scholar
  501. Rossiter, R. J., I. M. Mcleod, and K. P. Strickland: Biosynthesis of lecithin in brain and degenerating nerve. Participation of cytidine diphosphate choline. Canad. J. Biochem. 35, 946 (1957a).Google Scholar
  502. Rossiter, R. J., W. C. Mcmurray, and K. P. Strickland: Discussion. Biosynthesis of phosphatides in brain and nerve. Fed. Proc. 16, 853 (1957b).Google Scholar
  503. Rouser, G., J. F. Berry, G. Marinetti, and E. Stotz: Studies on the structure of sphingomyelin. I. Oxidation of products of partial hydrolysis. J. Amer. chem. Soc. 75, 310 (1953).Google Scholar
  504. Rouser, G., G. Kritchevsky, D. Heller, and E. Lieber: Lipid composition of beef brain, beef liver, and the sea anemone: two approaches to quantitative fraction of complex lipid mixture. J. Amer. Oil Chem. Soc. 40, 425 (1963).Google Scholar
  505. Saifer, A., and H. A. Siegel: The photometric determination of the sialic (N-acetylneuraminic) acid distribution in cerebrospinal fluid. J. Lab. clin. Med. 53, 474 (1959).PubMedGoogle Scholar
  506. Sandhoff, K., H. Pilz u. H. Jatzkewitz: Über den enzymatischen Abbau von N-acetylneuraminsäurefreien Gangliosidresten (Ceramid-oligosacchariden). Hoppe-Seylers Z. physiol. Chem. 338, 281 (1964).Google Scholar
  507. Schmidt, G., B. Hershman, and S. J. Thannhauser: The isolation of a-glycerylphosphorylcholine from incubated beef pancreas: its significance for the intermediary metabolism of lecithin. J. biol. Chem. 161, 523 (1945).PubMedGoogle Scholar
  508. Schmitt, F. O.: The ultrastructure of the nerve myelin sheath. Res. Publ. Ass. nerv. ment. Dis. 28, 247 (1950).Google Scholar
  509. Schneck, L., J. Maisel, and B. W. Volk: The startle response and serum enzyme profile in early detection of Tay-Sachs’ disease. J. Pediat. 65, 749 (1964).PubMedGoogle Scholar
  510. Schrader, A., u. K. Schwarz: Fettstoffwechsel und Liquor cerebrospinalis. Über den Gehalt an Metaboliten des Fettstoffwechsels im normalen und pathologischen Liquor. Minch. med. Wschr. 105, 2493 (1963).Google Scholar
  511. Schuwirth, K.: Serin als stickstoffhaltiger Bestandteil der Glycerinphosphatide aus Menschenhirn. Hoppe Seylers Z. physiol. Chem. 270, I-III (1941).Google Scholar
  512. Schuwirth, K.: Serin als stickstoffhaltiger Bestandteil der Glycerinphosphatide des Menschengehirns. Hoppe-Seylers Z. physiol. Chem. 277, 87 (1943).Google Scholar
  513. Scrignar, C. B.: The simultaneous paper chromatographic separation of phosphatides, cerebrosides and sulfatides. J. Chromatog. 14, 189 (1964).Google Scholar
  514. Seifert, H., G. Uhlenbruck: Über Ganglioside in Hirntumoren. Naturwissenschaften 52, 190 (1965).Google Scholar
  515. Seitelberger, F.: Über die Gehirnbeteiligung bei der Gaucherschen Krankheit im Kindesalter. Arch. Psychiat. Nervenkr. 206, 419 (1964).Google Scholar
  516. Sekeris, K. E.: Altersbedingte Veränderungen in der Zusammensetzung der Cerebrosidfettsäuren, Diss. Math.-Nat. Fakultät Köln 1964.Google Scholar
  517. Shanklin, W. M., M. Issidorides, and M. Salam: Histochemistry of the cerebral cortex from a case of amaurotic family idiocy. J. Neuropath. exp. Neurol. 21, 284 (1962).PubMedGoogle Scholar
  518. Shanklin, W. M., and M. Salam: A comparison of the histochemistry of the cerebral cortex from siblings with gargoylism and Tay-Sachs disease. Acta neuroveg. (Wien) 25, 297 (1963).Google Scholar
  519. Shear, M., and A. G. E. Pearse: A direct histochemical method for the demonstration of sialic acid. Nature (Lond.) 198, 1273 (1963).Google Scholar
  520. Shoyab, M., T. N. Pattabiraman, and B. K. Bachhawat: Purification and properties of the CMP-N-acetylneuraminic acid synthesizing enzyme from sheep brain. J. Neurochem. 11, 639 (1964).PubMedGoogle Scholar
  521. Skipsi, V. P., R. F. Peterson, and M. Barclay: Quantitative analysis of phospholipids by thin-layer chromatography. Biochem. J. 90, 374 (1964).Google Scholar
  522. Sloane-Stanley, G. H.: Anaerobic reactions of phospholipins in brain suspensions. Biochem. J. 53, 613 (1957).Google Scholar
  523. Smith, S. W., S. B. Weiss, and E. P. Kennedy: The enzymatic dephosphorylation of phosphatidic acids. J. biol. Chem. 228, 915 (1957).PubMedGoogle Scholar
  524. Snits, G.: Free and bound sialic acids. Chemistry and biological significance especially in relation to neuro-chemical research. Psychiat. Neurol. Neurochir. (Amst.) 64, 9 (1961).Google Scholar
  525. Spencer, W. A., and R. Schaffrin: The isolation of beef sphingomyelins. Canad. J. Biochem. 42, 1659 (1964).Google Scholar
  526. Sperry, M. W.: The biochemistry of the brain during early development. In: K. A. C. Elliot, J. H. Page and J. H. Quastel, Neurochemistry, pp. 55. Springfield (Ill.): Ch. C. Thomas 1962.Google Scholar
  527. Spiro, M. J., and J. M. Mckibbin: The lipids of rat liver cell fractions. J. biol. Chem. 219, 643 (1956).PubMedGoogle Scholar
  528. Sprinson, D. B., and A. Coulon: The precursors of sphingosine in brain tissues. J. biol. Chem. 207, 585 (1954).PubMedGoogle Scholar
  529. Sribney, M., and E. P. Kennedy: Enzymatic synthesis of sphingomyelin. Fed. Proc. 16, 235 (1957).Google Scholar
  530. Sribney, M., and E. P. Kennedy: The enzymatic synthesis of sphingomyelin. J. biol. Chem. 233, 1315 (1958).PubMedGoogle Scholar
  531. Stammler, A., H. Debuch: Die quantitative Verteilung des Plasmalogens im Gehirn. Hoppe-Seylers Z. physiol. Chem. 296, 80 (1954).Google Scholar
  532. Stary, Z., F. Arat: Über die Trypsinresistenz des Neurokeratins und seine Beziehungen zu den Keratinen. Biochem. Z. 329, 11 (1957).PubMedGoogle Scholar
  533. Statter, M., and B. Shapiro: Metabolism of glycolipids and its relation to Gaucher’s disease. Israel J. Chem. 1, 193 (1963).Google Scholar
  534. Stefanko, ST., M. Guminska B. Pietrzykowa: Histochemische und chemische Veränderungen im Gehirn bei einem Fall von familiärer amaurotischer Idiotie. Schweiz. Arch. Neurol, Neurochir. Psychiat. 90, 1413 (1962).Google Scholar
  535. Stevens, B. P., and I. P. Chaikoff: Incorporation of short chain fatty acids into phospholipids by the rat. J. biol. Chem. 193, 465 (1952).Google Scholar
  536. Strickland, K. P.: Factors effecting the incorporation of radioactive phosphate into the phospholipids of slices of cat brain. Canad. J. Biochem. 32, 50 (1954).Google Scholar
  537. Suzuki, K.: A simple and accurate micromethod for quantitative determination of ganglioside patterns. Life Sci.3, 1227 (1964).PubMedGoogle Scholar
  538. Suzuki, K., and S. R. Korey: Incorporation of D-(14C)glucose into individual gangliosides. Biochim. biophys. Acta (Amst.) 78, 388 (1963).Google Scholar
  539. Suzuki, K., and S. R. Korey: Study on ganglioside metabolism. I. Incorporation of D-(U-’4C)glucose into individual gangliosides. J. Neurochem. 11, 647 (1964).PubMedGoogle Scholar
  540. Svennerholm, L.: Isolation of sialic acid from brain gangliosides. Acta chem. scand. 9, 1033 (1955).Google Scholar
  541. Svennerholm, L.: On sialic acid in brain tissues. Acta chem. scand. 10, 694 (1956).Google Scholar
  542. Svennerholm, L.: The gangliosides. J. Lipid Res. 5, 145 (1964).PubMedGoogle Scholar
  543. Swanson, M. A., and C. Artom: The lipide composition of the large granules (mitochondria) from rat liver. J. biol. Chem. 187, 281 (1950).PubMedGoogle Scholar
  544. Sweeley, C. C., and B. Klionsky: Fabry’s disease: classification as a sphingolipidosis and partial characterization of a novel glycolipid. J. biol. Chem. 238, 3149 (1963).Google Scholar
  545. Sweeley, C. C., and B. Walker: Determination of carbohydrates in glycolipoides and gangliosides by gas chromatography. Analyt. Chem. 36, 1461 (1964).Google Scholar
  546. Taketomi, T., and K. Nishimura: Physiological activity of psychosine. Jap. J. exp. Med. 34, 255 (1964).PubMedGoogle Scholar
  547. Tattrie, N. H.: Positional distribution of saturated and unsaturated fatty acids on egg lecithin. J. Lipid Res. 1, 60 (1959).Google Scholar
  548. Terry, R. D., and S. R. Korey: Membranous cytoplasmic granules in infantile amaurotic idiocy. Nature (Lond.) 188 1000 (1960).Google Scholar
  549. Tettamanti, G., L. Bertona, and V. Zambotti: Evidence of a new ganglioside from pig brain. Biochim. biophys. Acta (Amst.) 84, 756 (1964).Google Scholar
  550. Thannhmtser, S. J., N. F. Boncoddo, and G. Schmidt: Studies of acetalphospholipids of brain. I. Procedure of isolation of crystallised acetalphospholipide from brain. J. biol. Chem. 188, 417 (1951a).Google Scholar
  551. Thannhmtser, S. J., N. F. Boncoddo, and G. Schmidt: Studies of acetalphospholipide of brain. II. The a-structure of acetalphospholipide of brain. J. biol. Chem. 188, 423 (1951b).Google Scholar
  552. Thannhmtser, S. J., J. Fellig, and G. Schmidt: The structure of cerebroside sulphuric ester of beef brain. J. biol Chem. 215, 211 (1955).Google Scholar
  553. Thiele, O. W.: Neues über Plasmalogene. Z. klin. Chem. 2, 33 (1964).Google Scholar
  554. Thierfelder, H.: Über die Identität des Gehirnzuckers mit Galactose. Hoppe-Seylers Z. physiol. Chem. 14, 209 (1890).Google Scholar
  555. Thomasson, H.: Biological standardisation of essential fatty acids. Int. Z. Vitamin-Forsch. 25, 62 (1953).Google Scholar
  556. Thomason, W., and M. C. Dawson: The hydrolysis of triphosphoinositide by extracts of ox brain. Biochem. J. 91, 233 (1964a).Google Scholar
  557. Thomason, W., and M. C. Dawson: The triphosphoinositide phosphodiesterase of brain tissue. Biochem. J. 91, 237 (1964b).Google Scholar
  558. Thudichum, J. L. W.: Researches on the chemical constitution of the brain. Rep. med. officer of Privy Council and Local Governm. Board, N.S., No III, 113, London (1874).Google Scholar
  559. Thudichum, J. L. W.: Further researches on the chemical constitution of the brain. Rep. med. officer of Privy Council and Local Governm. Board, N.S. No VIII, 117, London (1876).Google Scholar
  560. Thudichum, J. L. W.: Further researches on the chemical constitution of the brain and of the organoplastic substances. Ninth Ann. Rep. of Local Governm. Board 1879/1880. Suppl. containing Rep. of med. officer for 1879, 143 London.Google Scholar
  561. Thudichum, J. L. W.: A treatise on the chemical constitution of the brain. London: Ballière, Tindall & Cox 1884.Google Scholar
  562. Thudichum, J. L. W.: Die chemische Konstitution des Gehirns der Menschen und der Tiere. Tübingen: Franz Pietzcker 1901.Google Scholar
  563. Tookey, H. L., and A. K. Balls: Plant phospholipase D. I. Studies on cottonseed and cabbage phospholipase D. J. biol. Chem. 218, 213 (1956a).Google Scholar
  564. Tookey, H. L., and A. K. Balls: Plant phosphólipase D. II. Inhibition of succinic oxidase by cottonseed phospholipase D. J. biol. Chem. 220, 15 (1956b).Google Scholar
  565. Tschöpe, G.: Zur Methodik der gaschromatographischen Fettsäure-Analyse. Z. klin. Chem. 1, 167 (1963).Google Scholar
  566. Tyrrell, L. W.: A cephalinase in nervous tissue. Nature (Lond.) 166, 310 (1950).Google Scholar
  567. Uhlenbruck, G.: Über die Aldehyde der Glycerinphosphatide vom Rinderherz. Diss. Universität Köln 1955.Google Scholar
  568. Uhlenbruck, G.: Neuraminsäurehaltige Mucoide aus menschlichen Erythrocyten und ihr Verhalten gegenüber verschiedenen Enzymen. Zbl. Bakt., Ref. 177, 197 (1960).Google Scholar
  569. Uhlenbruck, G.: Zur Definition der Panhämagglutination unter besonderer Berücksichtigung des Thomas-Friedenreichschen Phänomens. Zbl. Bakt., I. Abt. Ref. 179, 155 (1961).Google Scholar
  570. Uzman, L. L.: Lipophilic peptides and proteins of brain. I. Their relation to development of the brain and myelin formation. Arch. Biochem. 76, 474 (1958).Google Scholar
  571. Uzman, L. L., E. A. Bering, and C. E. Morris: The neuraminic acid content of cerebrospinal fluid as affected by neurological diseases. J. clin. Invest. 38, 1756 (1959).PubMedGoogle Scholar
  572. Vauquelin, M.: De la matière cerebrale de l’homme et de quelques animaux. Ann. Chim. 81, 37 (1812).Google Scholar
  573. Verkade, P. E., J. C. Stoppelenburg. W. B. Cohen: Über die Stabilität der beiden Glycerolphosphorsäuren und diejenige ihrer Salze. Rec. Tray. chim. Pays-Bas 59, 886 (1940).Google Scholar
  574. Volk, B. W., S. M. Aronson, and A. Saifer: The biochemical recognition of the carrier state of infantile amaurotic family idiocy (Abstract). J. Génét. hum. 13, 22 (1964a).Google Scholar
  575. Volk, B. W., S. M. Aronson, and A. Saifer: Fructose-1-phosphate aldolase deficiency in Tay-Sachs disease. Amer. J. Med. 36, 481 (1964b).Google Scholar
  576. Vries, E. DE, and A. P. Amir: An atrophic type of amaurotic idiocy report of two cases. Psychiat. Neurol. Neurochir. (Amst.) 67, 231 (1964).Google Scholar
  577. Waelsch, H.: Biochemistry of the developing nervous system. New York: Academic Press 1955.Google Scholar
  578. Waelsch, H.: Protein metabolism of the nervous system. Swiss med. J. 93, 1289 (1963).Google Scholar
  579. Wallace, B. J., B. W. Volk, and S. S. Lazarus: Fine structural localization of acid phosphatase activity in neurons of Tay-Sachs disease. J. Neuropath. exp. Neurol. 23, 676 (1964).PubMedGoogle Scholar
  580. Walz, E.: Über das Vorkommen von Kerasin in der normalen Rindermilz. Hoppe-Seylers Z. physiol. Chem. 166, 210 (1927).Google Scholar
  581. Warren, L.: The thiobarbituric acid assay of sialic acids. J. biol. Chem. 234, 1971 (1959).PubMedGoogle Scholar
  582. Warren, L.: The distribution of sialic acids in nature. Comp. Biochem. Physiol. 10, 153 (1963).Google Scholar
  583. Warren, L., and S. S. Spicer: Biochemical and histochemical identification of sialic acid containing mucins of rodent vagina and salivary glands. J. Histochem. Cytochem. 9, 400 (1961).PubMedGoogle Scholar
  584. Webster, G. R., and R. J. Alpern: Studies on the acylation of lysolecithin by rat brain. Biochem. J. 90, 35 (1964).PubMedGoogle Scholar
  585. Weiss, S. B., and E. P. Kennedy: The enzymatic synthesis of triglycerides. J. Amer. chem. Soc. 78, 3550 (1956).Google Scholar
  586. Weiss, S. B., S. W. Smith, and E. P. Kennedy: Net synthesis of lecithin in an isolated enzyme system. Nature (Lond.) 178, 594 (1956).Google Scholar
  587. Weiss, S. B., S. W. Smith: The enzymatic formation of lecithin from cytidine diphosphate choline and n-1,2-diglyceride. J. biol. Chem. 231, 53 (1958).PubMedGoogle Scholar
  588. Wherrett, J. R., J. A. Lowden, and L. S. Wolfe: Studies on brain gangliosides. Canad. J. Biochem. 42, 1057 (1964).Google Scholar
  589. Wiechert, P., u. M. HOLTZ: Ein Beitrag zur Identität der Liquor-und Serummukoproteide. Acta biol. med. germ. 11, 307 (1963).PubMedGoogle Scholar
  590. Wieland, H., E. Dane: Untersuchungen über die Konstitution der Gallensiuren. Zur Kenntnis der 12-oxyCholansäure. XXXIX. Mitteilung. Hoppe-Seylers Z. physiol. Chem. 210, 268 (1932).Google Scholar
  591. Willstätter, R., u. K. LüDECKE: Zur Kenntnis des Lecithins. Chem. Ber. 37, 3753 (1904).Google Scholar
  592. Witten, P. W., and R. T. Holman: Polyethenoid fatty acid metabolism. V. Prooxidant-antioxidant effect. Arch. Biochem. 37 90 (1952a).Google Scholar
  593. Witten, P. W., and R. T. Holman: Polyethenoid fatty acid metabolism. VI. Effect of pyridoxine on essential fatty acid conversions. Arch. Biochem. 41, 266 (1952b).Google Scholar
  594. Wittenberg, J., and A. Kornberg: Choline phosphokinase. J. biol. Chem. 202, 431 (1953).PubMedGoogle Scholar
  595. Wörner, E., H. Trierfelder: Untersuchungen über die chemische Zusammensetzung des Gehirns. Hoppe Seylers Z. physiol. Chem. 30, 542 (1900).Google Scholar
  596. Wolfe, L. S., and J. A. Lowden: Studies on brain gangliosides. Canad. J. Biochem. 42, 1041 (1964).Google Scholar
  597. Woolley, D. W., and B. W. Gommi: Serotonin receptors. IV. Specific deficiency of receptors in galactose poisoning and its possible relationship to the idiocy of galactosemia. Proc. nat. Acad. Sci. (Wash.) 52, 14 (1964).Google Scholar
  598. Woolley, D. W., and B. W. Gommi: Serotonin receptors. V. Selective destruction by neuraminidase plus edta and reactivation with tissue lipids. Nature (Lond.) 202, 1074 (1964).Google Scholar
  599. Yamakawa, T., R. Trie, and M. Iwanaga: The chemistry of lipid of posthemolytic residue on stroma of erythrocytes. IX. Silicic acid chromatography of mammalian stroma glycolipids. J. Biochem. (Tokyo) 48, 490 (1960).Google Scholar
  600. Yamakawa, T., N. Kist, S. Handa, A. Makita, and S. Yokoyama: On the structure of brain cerebroside sulfuric ester and ceramide dihexoside of erythrocytes. J. Biochem. (Tokyo) 52, 226 (1962).Google Scholar
  601. Yamakawa, T., S. Suzrnu, and T. Hattori: The chemistry of the lipids of posthemolytic residue on stroma of erythrocytes. V. Glycolipides of erythrocytes stroma and ganglioside. J. Biochem. (Tokyo) 40, 611 (1953).Google Scholar
  602. Zarin, I., and J. F. Mead: The biosynthesis of sphingosine. I. The utilization of carboxyl-labeled acetate. J. biol. Chem. 205, 271 (1953).Google Scholar
  603. Zarin, I., and J. F. Mead: The biosynthesis of sphingosine. II. The utilization of methyl-labeled acetate, formate, and ethanol-amine. J. biol. Chem. 211, 87 (1954).Google Scholar
  604. Zamecnik, P. G., L. E. Brewster, and F. Lipmann: A manometric method for measuring the activity of the Cl. welchii lecithinase and a description of certain properties of this enzyme. J. exp. Med. 85, 381 (1947).PubMedGoogle Scholar
  605. Zeller, E. A.: Enzymes as essential components of bacterial and animal toxins. In: Sumner-Myrbäck, The enzymes, vol. I, pt. 2, p. 986. New York: Academic Press 1951.Google Scholar
  606. Zeller, E. A.: Action of cortisone acetate on hemolysis produced by enzymic formation of lysolecithin from dimyristoyllecithin. Fed. Proc. 11, 316 (1952).Google Scholar
  607. Zilversmit, D. B.: Metabolism of the complex lipides. Ann. Rev. Biochem. 24, 157 (1955).PubMedGoogle Scholar
  608. Zilversmit, D. B., C. Entenman, and I. L. Chaikoff: The measurement of turnover of the various phospholipides in liver and plasma of the dog and its application to the mechanism of action of choline. J. biol. Chem. 176, 193 (1948).PubMedGoogle Scholar
  609. Zlotnick, A., E. Weisenberg, and I. Chowers: Mucoproteins of cerebrospinal fluid and blood in neurologic disorders. J. Lab. clin. Med. 54, 207 (1959).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1968

Authors and Affiliations

  • H. Debuch
  • G. Uhlenbruck

There are no affiliations available

Personalised recommendations