Skip to main content

Algae as tools in studying the biosynthesis of cellulose, nature’s most abundant macromolecule

  • Chapter
Cell Walls and Surfaces, Reproduction, Photosynthesis

Part of the book series: Experimental Phycology ((PHYCOLOGY,volume 1))

Abstract

The most dominant polysaccharide of the cell wall is cellulose. The universal distribution of this natural polymer among procaryotic and eucaryotic organisms attests to its ancient evolutionary history. Not only is cellulose found among photosynthetic and protistan cells, it is present in animals such as the Ascidians (Wardrop, 1970). Furthermore, levels of elevated cellulose synthesis have been suggested in humans with the disease scleroderma (Hall, et al, 1960).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blackwell J, Lee DM, Kurz D, Su MY (1986) Structure of cellulose-solvent complexes. In: Young R, Rowell RM (eds) Cellulose-Structure, Modification, and Hydrolysis. John Wiley and Sons, New York, p 51–66.

    Google Scholar 

  • Brown Jr RM, Montezinos DL (1976) Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc Natl Acad Sci USA 73: 143–147.

    Article  PubMed  CAS  Google Scholar 

  • Brown Jr RM, Willison JHM, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci USA 73: 4565–4569.

    Article  PubMed  CAS  Google Scholar 

  • Brown Jr RM, Colpitts TJ (1978) Direct visualization of cellulose synthesis by high resolution darkfield microscopy and time-lapse cinematography. J Cell Biol 79 (2): 157a.

    Google Scholar 

  • Brown Jr RM (1985) John Innes Symposium–Cellulose microfibril assembly and orientation: recent developments. J Cell Sci Suppl 2: 13–32.

    PubMed  Google Scholar 

  • Brown Jr RM, Lin FC (1989) Time lapse video microscopy of cellulose assemby by Acetobacter xylinum. J Cell Biol 109 (No 4, Pt 2) 90a.

    Google Scholar 

  • Bureau TE, Brown Jr RM (1987) In vitro synthesis of cellulose II from a cytoplasmic membrane fraction of Acetobacter xylinum. Proc Natl Acad Sci USA 84:6985–6989.

    Google Scholar 

  • Canale-Parola E, Borasky R, Wolfe RS (1961) Studies on Sarcina ventriculi. III. Localization of cellulose. J Bacteriol 81: 311–318.

    Google Scholar 

  • Deinema MH, Zevenhuizen LPTM (1971) Formation of cellulose fibrils by gram-negative bacteria and their role in bacterial flocculation. Archiv Mikrobiol 78: 42–57.

    Article  CAS  Google Scholar 

  • Duchesne LC, Larson DW (1989) Cellulose and the evolution of plant life. BioScience 39 (4): 238–241.

    Article  Google Scholar 

  • Frey-Wyssling A (1976). In: Zimmerman W, Carlquist S, Ozenda P, Wulff HD (eds) The Plant Cell Wall. Gebruder Borntraeger, Berlin Stuttgart, p 277.

    Google Scholar 

  • Gibbs SP (1981) The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann New York Acad Sci 361: 193–208.

    Article  CAS  Google Scholar 

  • Giddings TH, Brower DL, Staehelin LA (1980) Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils. J Cell Biol 84: 327–339.

    Article  PubMed  Google Scholar 

  • Glaser L (1958) The synthesis of cellulose in cell-free extracts of Acetobacter xylinum. J Biol Chem 232: 627–636.

    PubMed  CAS  Google Scholar 

  • Gunderson JH, Elwood H, Ingold A, Kindle K, Sogin ML (1987) Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc Natl Acad Sci USA 84: 5823–5827.

    Article  PubMed  CAS  Google Scholar 

  • Haigler CH, Brown Jr RM, Benziman M (1980) Calcofluor white ST alters cellulose synthesis in Acetobacter xylinum. Science 210: 903–906.

    Article  PubMed  CAS  Google Scholar 

  • Hall DA, Happey F, Lloyd PJ, Saxl H (1959) Oriented cellulose as a component of mammalian tissue. Proc R Soc London Ser B 151: 497–516.

    Article  Google Scholar 

  • Hotchkiss Jr AT, Brown Jr RM (1987) The Association of rosette and globule terminal complexes with cellulose microfibril assembly in Nitella translucens var. axillaris ( Charophyceae ). J Phycol 23: 229–237.

    Google Scholar 

  • Hotchkiss A, and Brown Jr RM (1989) Evolution of the cellulosic cell wall in the charophyceae. In: Schuerch C (ed) Cellulose and Wood–Chemistry and Technology. John Wiley & Sons, New York, p 591–609.

    Google Scholar 

  • Hotchkiss A, Gretz MR, Hicks KB, Brown Jr RM (1989) The composition and phylogenetic significance of the Mougeotia (Charophyceae) cell wall. J Phycol In press.

    Google Scholar 

  • Lin FC, Brown Jr RM, Cooper JB, Delmer DP (1985) Synthesis of fibrils in vitro by a solubilized cellulose synthase from Acetobacter xylinum. Science 230: 822–825.

    Article  PubMed  CAS  Google Scholar 

  • Matthysee AG (1983) Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection. J Bacteriol 154 (2): 906–915.

    Google Scholar 

  • McLean B, Juniper BE (1986) The plasma membrane of young Chara internodal cells revealed by rapid freezing. Planta 169: 153–161.

    Article  Google Scholar 

  • Mizuta S, Roberts EM, Brown Jr RM, (1989) A new cellulose synthesizing complex in Vaucheria hamata and its relation to microfibril assembly. In: Schuerch, C (ed) Cellulose and Wood–Chemistry and Technology. John Wiley & Sons, New York, p 659–676.

    Google Scholar 

  • Mueller SC, Brown Jr RM, Scott TK (1976) Cellulosic microfibrils: nascent stages of synthesis in a higher plant cell. Science 194: 949–951.

    Article  PubMed  CAS  Google Scholar 

  • Mueller SC, Brown Jr RM (1980) Evidence for an Intramembranous component associated with a cellulose microfibril synthesizing complex in higher plants. J Cell Biol 84: 315–326.

    Article  PubMed  CAS  Google Scholar 

  • Pearasso R, Baroin A., Qu LH, Bachellerie JP, Adoutte A (1989) Origin of the algae. Nature 339: 142–144.

    Article  Google Scholar 

  • Pickett-Heaps JD, Marchant H (1972) The phylogeny of the green algae: a new proposal. Cytobios 6: 255–264.

    Google Scholar 

  • Preston RD (1964) Structural and mechanical aspects of plant cell walls with particular reference to synthesis and growth. In: Zimmermann, MH (ed) Formation of Wood in Forest Trees. Academic Press, New York, p 169–201.

    Google Scholar 

  • Preston RD (1974) The physical biology of plant cell walls. Chapman and Hall, London.

    Google Scholar 

  • Roberts EM, Saxena IM, Brown Jr RM (1989) Biosynthesis of Cellulose II in Acetobacter xylinum. In: Schuerch C (ed) Cell Wall and Wood–Chemistry and Technology. John Wiley and Sons, New York, p 689–704.

    Google Scholar 

  • Roelofsen A (1958) Cell-wall structure as related to surface growth. Acta Bot Neerl 7: 77–89.

    Google Scholar 

  • Rolfe BG, Gresshoff PM (1988) Genetic analysis of legume nodule initiation. Ann Rev Plant Physiol and Plant Mol Biol 39: 297–319.

    Article  Google Scholar 

  • Ross P, Aloni Y, Weinhouse C, Michaeli D, Weinberger-Ohana P, Meyer R, Benziman M (1985) An unusual oligonucleotide regulates cellulose synthesis in Acetobacter xylinum. FEBS Lett 186 (2): 191–196.

    Article  PubMed  CAS  Google Scholar 

  • Saxena IM, Brown Jr RM (1989) Cellulose biosynthesis in Acetobacter xylinum: a genetic approach. In: Schuerch C (ed) Cellulose and Wood–Chemistry and Technology. John Wiley and Sons, New York, p 537–557.

    Google Scholar 

  • Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11: 123–129.

    PubMed  CAS  Google Scholar 

  • Sisson W (1938) The existence of mercerized cellulose and its orientation in Halicystis as indicated by x-ray diffraction analysis. Science 87: 350–351.

    Article  PubMed  CAS  Google Scholar 

  • Stewart KD, Mattox KR (1978) Structural evolution in the flagellated cells of green algae and land plants. Biosystems 10: 145–152.

    Article  PubMed  CAS  Google Scholar 

  • Stewart KD, Mattox KR (1982) Phylogeny of phytoflagellates. In Rosowski JR, and Parker BC (ed) Selected Papers in Phycology II. Phycological Soc Amer, Lawrence, Kan p 626–640.

    Google Scholar 

  • Wardrop AB (1970) The structure and formation of the test of Pyura stolonifera (Tunicata). Protoplasma 70: 73–86.

    Article  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Reviews 51 (2): 221–271.

    CAS  Google Scholar 

  • Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR (1985) Mitochondrial origins. Proc Natl Acad Sci USA 82: 4443–4447.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brown, R.M. (1990). Algae as tools in studying the biosynthesis of cellulose, nature’s most abundant macromolecule. In: Wiessner, W., Robinson, D.G., Starr, R.C. (eds) Cell Walls and Surfaces, Reproduction, Photosynthesis. Experimental Phycology, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48652-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48652-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48654-8

  • Online ISBN: 978-3-642-48652-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics