Skip to main content

Part of the book series: Experimental Phycology ((PHYCOLOGY,volume 1))

Abstract

Light harvesting pigments in the photosynthetic apparatus of plants function in light absorption and transfer of excited state energy to the reaction centres of the photosystems. In the evolution of antenna pigment systems in photoautotrophic plants the development of phycobiliproteins has played a decisive role. 1. The phycobiliproteins are present in the prokaryotic cyanobacteria which are virtually the first oxygen producing photosynthetic organisms, arising about 3 billion years ago (33). 2. There is increasing evidence that many recent species of cyanobacteria are capable not only of oxygenic, but also of (facultative) anoxygenic photosynthesis under appropriate conditions (26). This ability is reminiscent of the corresponding step from anaerobic to microaerobic life in the evolution of photosynthetic organisms in the Precambrium era. 3. Structurally and biochemically the chloroplasts of eukaryotic red algae show a high similarity with the photosynthetic apparatus of cyanobacteria and it is suspected have evolved from a cyanobacterium after an endosymbiotic event. Phycobiliproteins have thus successfully survived the evolutionary transition from pro- to eukaryotic cells (40). 4. Measurements of the photosynthetic action spectra of cyanobacteria and red algae show that most of the light responsible for oxygen production is captured by phycobiliproteins in an absorption range between 450 and 650 nm, whereas wavelengths absorbed by chlorophyll and carotenoids make little or no contribution. The functional importance of phycobiliproteins is therefore well established (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bittersmann E, Reuter W, Wehrmeyer W, Holzwarth AR (1988) Picosecond energy transfer kinetics in allophycocyanin aggregates from Mastigocladus laminosus. In: Scheer H, Schneider S (eds) Photosynthetic Light-Harvesting Systems, de Gruyter, Berlin New York, p 451–455

    Google Scholar 

  2. Blinks Lk (1964) Accessory pigments and photosynthesis. In: Giese AC (ed) Photophysiology. Academic Press, New York, 1: 199–221

    Google Scholar 

  3. Bryant DA, Guglielmi G Tandeau de Marsac N, Castets AM, Cohen-Bazire G (1979) The structure of cyanobacterial phycobilisomes: a model. Arch Microbiol 123: 113–127

    CAS  Google Scholar 

  4. Cohen-Bazire G, Bryant DA (1982) Phycobilisomes: composition and structure. In: Carr NG, Whitton BA (eds) The Biology of Cyanobacteria. Blackwell, Oxford London, p 143–190

    Google Scholar 

  5. Förster T (1967) Mechanisms of energy transfer. In:Florkin, M, Stotz EH (eds) Comprehensive Biochemistry, Elsevier, Amsterdam London New York 22: 61–80

    Google Scholar 

  6. Füglistaller P, Mimuro M, Suter F, Zuber H (1987) Allophycocyanin complexes of the phycobilisomes from Mastigocladus laminosus. Influence of the linker polypeptide L 8.9 on the spectral properties of the phycobiliprotein subunits. Biol Chem Hoppe-Seyler 368: 353–367

    Article  PubMed  Google Scholar 

  7. Gantt E (1981) Phycobilisomes. Ann Rev Plant Physiol 33: 327–347

    Article  Google Scholar 

  8. Gillbro T, Sandström A, Sandström V, Wendler J, Holzwarth AR (1985) Picosecond study of energy transfer kinetics in phycobilisomes of Synechococcus 63o1 and the mutant AN 112. Biochim Biophys Acta 8o8: 52–65

    Google Scholar 

  9. Glazer AN (1984,) Phycobilisome. A macromolecular complex optimized for light energy transfer. Biochim Biophys Acta 768: 29–51

    Google Scholar 

  10. Glazer AN (1985) Light harvesting by phycobilisomes. Ann Rev Biophys Biophys Chem 14: 47–77

    Article  CAS  Google Scholar 

  11. Glazer AN, Yeh SW, Webb SP, Clark JH (1985) Disk-to-disk transfer as the rate-limiting step for energy flow in phycobilisomes. Science 227: 419–423

    Article  PubMed  CAS  Google Scholar 

  12. Holzwarth AR, Wendler J, Wehrmeyer W (1982) Picosecond time resolved energy transfer in isolated phycobilisomes from Rhodella violacea ( Rhodophyceae ). Photochem Photobiol 36: 479–487

    Article  CAS  Google Scholar 

  13. Holzwarth AR (1985) Energy transfer kinetics in phycobilisomes. In: Michel-Beyerle ME (ed) Antennas and Reaction Centers of Photosynthetic Bacteria. Springer, Berlin Heidelberg, p 45–52

    Chapter  Google Scholar 

  14. Holzwarth AR, Bittersmann E, Reuter W, Wehrmeyer W (1989) Studies on chromophore coupling in isolated phycobiliproteins III. Picosecond excited state kinetics and time-resolved spectra of different allophycocyanins from Mastigocladus laminosus. J Biophys (in press)

    Google Scholar 

  15. Klotz AV, Glazer AN (1985) Characterization of the bilin attachment sites in R-phycoerythrin. J Biol Chem 260: 4856–4863

    PubMed  CAS  Google Scholar 

  16. Koller KP, Wehrmeyer, Mörschel E (1978) Biliprotein assembly in the disc-shaped phycobilisomes of Rhodella violacea. On the molecular composition of energy-transfering complexes (tripartite units) forming the periphery of the phycobilisome. Eur J Biochem 91: 57–63

    Article  PubMed  CAS  Google Scholar 

  17. Lagarias JC, Klotz AV, Dallas JL Glazer AN, Bishop JE, O’Connel JF, Rapoport H (1988) Exclusive A-ring linkage for singly attached phycocyanobilins and phycoerythrobilins in phycobiliproteins. J Biol Chem 263: 12977–12985

    PubMed  CAS  Google Scholar 

  18. Lundell DJ, Yamanaka G, Glazer AN (1981) A terminal energy acceptor of the phycobilisome: The 70.000-dalton polypeptide of Synechococcus 63o1 phycobilisome–A new biliprotein. J Cell Biol 91: 315–319

    Article  PubMed  CAS  Google Scholar 

  19. Lundell DJ, Glazer AN (1983) Molecular architecture of a light-harvesting antenna. Structure of the 18 S core-rod subassembly of the Synechococcus 6301 phycobilisome. J Biol Chem 258: 894–901

    PubMed  CAS  Google Scholar 

  20. Mörschel E, Koller KP, Wehrmeyer W, Schneider H (1977) Biliprotein assembly in the disc-shaped phycobilisomes of Rhodella violacea. I. Electron microscopy of phycobilisomes in situ and analysis of their architecture after isolation and negative staining. Cytobiol 16: 118–129

    Google Scholar 

  21. Mörschel E, Koller KP, Wehrmeyer W (198o) Biliprotein assembly in the disc-shaped phycobilisomes of Rhodella violacea. Electron microscopical and biochemical analyses of C-phycocyanin and allophycocyanin aggregates. Arch Microbiol 125: 43–51

    Google Scholar 

  22. Mörschel E, Wehrmeyer W, Koller KP (1980) Biliprotein assembly in the disc-shaped phycobilisomes of Rhodella violacea. Electron microscopical and biochemical analysis of B-phycoerythrin and B-phycoerythrin-C-phycocyanin aggregates. Eur J Cell Biol 21: 319–327

    PubMed  Google Scholar 

  23. Nies M, Wehrmeyer W (1981) Biliprotein assembly in the hemidiscoidal phycobilisomes of the thermophilic cyanobacterium Mastigocladus laminosus Cohn. Characterization of dissociation products with special reference to the peripheral phycoerythrocyanin-phycocyanin complexes. Arch Microbiol 129: 374–379

    Article  CAS  Google Scholar 

  24. Ohki K, Gantt E, Lipschultz CA, Ernst MC (1985) Constant phycobilisome size in chromatically adapted cells of the cyanobacterium Tolypothrix tenuis and variation in Nostoc sp. Plant Physiol 79: 943–948

    Article  PubMed  CAS  Google Scholar 

  25. Ohki K, Fujita Y (1987) Non-hemidiscoidal phycobilisome in Cyanophyta. In: Biggins J (ed) Progress Photosynth Res 2: 1.157–1. 160. Nijhoff/Dr Junk, Dordrecht

    Google Scholar 

  26. Padan E (1979) Facultative anoxygenic photosynthesis in in cyanobacteria. Ann Rev Plant Physiol 30: 27–40

    Article  CAS  Google Scholar 

  27. Redlinger T, Gantt E (1981) Phycobilisome structure of Porphyridium cruentum. Polypeptide composition. Plant Physiol 68: 1375–1379

    Article  PubMed  CAS  Google Scholar 

  28. Reuter W, Wehrmeyer W (1988) Core substructure in Mastigocladus laminosus I. Microheterogeneity in two of three allophycocyanin core complexes. Arch Microbiol 150: 534–540

    Article  CAS  Google Scholar 

  29. Reuter W, Wehrmeyer W (1989) Core substructure in Mastigocladus laminosus II. The central part of the tricylindrical core - AP - contains the “anchor” polypeptide and no allophycoanin B. Arch Microbiol (in press)

    Google Scholar 

  30. Schirmer T, Bode W, Huber R, Sidler W, Zuber H (1985) X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures. J Mol Biol 184: 257–277

    Article  PubMed  CAS  Google Scholar 

  31. Schirmer T Huber R, Schneider M, Bode W, Miller M, Hackert ML (9865 Crystal structure analysis and refinement at 2.5 A of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. J Mol Biol 188: 651–676

    Google Scholar 

  32. Schirmer T, Bode W, Huber R (1987) Refined three-dimensional e structu s of two cyanobacterial C-phycocyanins at 2.1 and 2.5 A resolution. A common principle of phycobilin-protein interaction. J Mol Biol 196: 677–695

    Article  PubMed  CAS  Google Scholar 

  33. Schopf JW (1974) Palaeobiology of the Precambrium. The age of blue-green algae. In: Dobshansky T, Hecht MK, Steere WC (eds) Evolutionary Biology 7: 1–43, Plenum Press, New York London

    Chapter  Google Scholar 

  34. Sidler W, Kumpf E, Rüdiger W, Zuber H (1986) The complete amino acid sequence of C-phycoerythrin from the cyanobacterium Fremyella diplosiphon. Biol Chem Hoppe-Seyler 367: 627–642

    Article  PubMed  CAS  Google Scholar 

  35. Suter GW, Mazzola P, Wendler J, Holzwarth AR (1984) Fluorescence decay kinetics in phycobilisomes isolated from the blue-green alga Synechococcus 63o1. Biochim Biophys Acta 766: 269–276

    Article  CAS  Google Scholar 

  36. Suter GW, Holzwarth AR (1987) A kinetic model for the energy transfer in phycobilisomes. Biophys. J. 52: 673–683

    Article  PubMed  CAS  Google Scholar 

  37. Tandeau de Marsac N, Cohen-Bazire G (1977) Molecular composition of cyanobacterial phycobilisomes. Proc Natl Acad Sci USA 74: 1635–1639

    Article  Google Scholar 

  38. Tandeau de Marsac N (1983) Phycobilisomes and complementary chromatic adaptation in cyanobacteria. Bull Inst Pasteur 81: 201–254

    CAS  Google Scholar 

  39. Wehrmeyer W (1983) Organization and composition of cyanobacterial and rhodophycean phycobilisomes. In: Papageorgiou GCS Packer L (eds) Photosynthetic Prokaryotes. Cell Differentiation and Function. Elsevier/North Holland, New York, p 1–22

    Google Scholar 

  40. Wehrmeyer W (1983) Phycobiliproteins and phycobiliprotein organization in the photosynthetic apparatus of cyanobacteria, red algae and cryptophytes. In: Jensen U, Fairbrothers DE (eds) Proteins and Nucleic Acids in Plant Systematics. Springer, Berlin Heidelberg, p 143–167

    Chapter  Google Scholar 

  41. Wehrmeyer W, Wendler J, Holzwarth AR (1985) Biochemical and functional characterization of a peripheral phycobilisome unit from Porphyridium cruentum. Measurement of picosecond energy transfer kinetics. Eur J Cell Biol 36: 17–23

    CAS  Google Scholar 

  42. Wehrmeyer W, Zimmermann C, Ohki K, Fujita Y (1988) On a new type of cyanobacterial phycobilisome exemplified in Phormidium persicinum Gomont. Eur J Cell Biol 46: 539–546

    Google Scholar 

  43. Wendler J, Holzwarth AR, Wehrmeyer W (1984) Picosecond time-resolved energy transfer in phycobilisomes isolated from the red alga Porphyridium cruentum. Biochim Biophys Acta 765: 58–67

    Article  CAS  Google Scholar 

  44. Wildman RB, Bowen CC (1974) Phycobilisomes in blue-green algae. J. Bacteriol 117: 866–881

    PubMed  CAS  Google Scholar 

  45. Zuber H, Brunisholz R, Sidler W (1987) Structure and function of light-harvesting pigment-protein complexes. In: Amesz J (ed) Photosynthesis. Elsevier, Amsterdam, p 233–271

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wehrmeyer, W. (1990). Phycobilisomes: Structure and function. In: Wiessner, W., Robinson, D.G., Starr, R.C. (eds) Cell Walls and Surfaces, Reproduction, Photosynthesis. Experimental Phycology, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48652-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48652-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48654-8

  • Online ISBN: 978-3-642-48652-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics