Skip to main content

The evolution of algal chloroplasts

  • Chapter

Part of the book series: Experimental Phycology ((PHYCOLOGY,volume 1))

Abstract

The algae are not a natural assemblage of organisms. Rather they are a diverse group of protists and fungi which have acquired chloroplasts in various ways, in some groups directly from symbiotic photosynthetic prokaryotes and in others from symbiotic eukaryotic algae. The new techniques for rapidly sequencing ribosomal RNA, discussed by Adoutte in this volume, are producing evolutionary trees which are giving us a clearer understanding of the true relationships between different eukaryotes. In Fig. 1, I have drawn an evolutionary tree based on the sequences of the small subunit ribosomal RNA of a number of eukaryotes. The most ancient eukaryotes whose ribosomal RNA has been sequenced to date are Giardia lamblia, a parasitic diplomonad, and Vairimorpha necatrix, a microsporidian. Neither of these protists has mitochondria, and it is possible that these ancient eukaryotes evolved prior to the acquisition of mitochondria. Also ancient are the trypanosomes and Euglena. Somewhat later Dictyostelium evolved, but then came an explosive radiation of many protist groups, fungi, plants and animals. In this tree, I have put in boldface lettering those groups which contain species with chloroplasts. A glance at the tree shows that the algae are polyphyletic. Euglenoids evolved very early and are related to trypanosomes. The dinoflagellates, which many have assumed to be an ancient group because of the presence of a mesokaryotic nucleus (Loeblich, 1976), in fact evolved late and are related to ciliates. The brown algae and Chrysophytes are related to each other and to the Oomycetes, a relationship long suspected due to the presence of heterokont flagella in each group. Higher plants and green algae form a natural assemblage. The fact that organisms with chloroplasts appear on different branches of the tree indicates that different groups have acquired chloroplasts independently of each other. In this symposium presentation, I will summarize our present understanding of how chloroplasts evolved in the different groups of algae.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bhattacharya D, Druehl LD (1988) Phylogenetic comparison of the small-subunit ribosomal DNA sequence of Costaria costata ( Phaeophyta) with those of other algae, vascular plants and oomycetes. J Phycol 24: 539–543

    Article  Google Scholar 

  • Bonen L, Doolittle WF (1975) Proc Natl Acad Sci USA 72: 2310–2314

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1982) The origin of plastids. Biol J Linn Soc 17: 289–306

    Article  Google Scholar 

  • Cavalier-Smith T (1986) The Kingdom Chromista: Origin and Systematics. In: Round FE, Chapman DJ Ceds) Progress in Phycological Research 4, Biopress, Bristol, pp 309–347

    Google Scholar 

  • Douglas SE, Durnford DG (1989) The small subunit of ribulose-1,5-bisphosphate carboxylase is plastid-encoded in the chlorophyll c-containing Cryptomonas sp. Plant Mol Biol 13: 13–20

    Article  PubMed  CAS  Google Scholar 

  • Egelhoff T, Grossman A (1983) Cytoplasmic and chloroplast synthesis of phycobilisome polypeptides. Proc Natl Acad Sci USA 80: 3339–3343

    Article  PubMed  CAS  Google Scholar 

  • Geitler L (1930) Ein grünes Filarplasmodium and andere neue Protisten. Arch Protistenk 69: 615–636

    Google Scholar 

  • Gibbs SP (1970) The comparative ultrastructure of the algal chloroplast. Ann NY Acad Sci 175: 454–473

    Article  Google Scholar 

  • Gibbs SP (1978) The chloroplast of Euglena may have evolved from symbiotic green alga. Can J Bot 56: 2883–2889

    Article  Google Scholar 

  • Gibbs SP (1981) The chloroplast endoplasmic reticulum, structure, function, and evolutionary significance. Int Rev Cytol 72: 49–99

    Article  Google Scholar 

  • Gillott MA, Gibbs SP (1980): The cryptomonad nucleomorph: its ultrastructure and evolutionary significance. J Phycol 16: 558–568

    Article  Google Scholar 

  • Gray MW, Doolittle WF (1982) Has the endosymbiont hypothesis been proven? Microbiol Rev 46: 1–42

    PubMed  CAS  Google Scholar 

  • Greenwood AD, Griffiths HB, Santore UJ (1977): Chloroplasts and cell compartments in Cryptophycae. Brit Phycol J 12: 119

    Google Scholar 

  • Grossman AR, Lemaux PG, Conley PB (1986): Regulated synthesis of phycobilisome components. Photochem Photobiol 44: 827–837

    Article  PubMed  CAS  Google Scholar 

  • Gunderson JH, Elwood H, Ingold A, Kindle K, Sogin ML (1987) Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc Natl Acad Sci USA 84: 5823–5827

    Article  PubMed  CAS  Google Scholar 

  • Hansmann P (1986) Ultrastructural Localization of RNA in Cryptomonads. Protoplasma 146: 81–88

    Article  Google Scholar 

  • Hansmann P, Falk H. Scheer U, Sitte P (1986) Ultrastructural localization of DNA in two Cryptomonas species by use of monoclonal antibodies. Eur J Cell Biol 42: 152–160

    CAS  Google Scholar 

  • Hansmann P, Falk H, Sitte P (1985) DNA in the nucleomorph of Cryptomonas demonstrated by DAPI fluorescence. Z Naturforsch 40c: 933–935

    Google Scholar 

  • Hansmann P, Maerz M, Sitte P (1987) Investigations on genomes and nucleic acids in cryptomonads. Endocyt Cell Res 4: 289–295

    Google Scholar 

  • Hibberd DJ, Norris RE (1984) Cytology and ultrastructure of Chlorarachnion reptans ( Chlorarachniophyta divisio nova, Chlorarachniophyceae classis nova). J Phycol 20: 310–330

    Article  Google Scholar 

  • Jeffrey SW, Vesk M (1976) Further evidence for a membrane-bound endosymbiont within the dinoflagellate Peridinium foliaceum. J Phycol 12: 450–455

    Google Scholar 

  • Larsen J (1988) An ultrastructural study of Amphidinium poecilochroum (Dinophyceae) a phagotrophic dinoflagellate feeding on small species of cryptophytes. Phycologia 27: 366–377

    Article  Google Scholar 

  • Loeblich AR III (1976) Dinoflagellate Evolution: Speculation and Evidence. j Protozool 23: 13–28

    PubMed  Google Scholar 

  • Ludwig M, Gibbs SP (1985) DNA is present in the Nucleomorph of Cryptomonads: Further Evidence that the Chloroplast Evolved from a Eukaryotic Endosymbiont. Protoplasma 127: 9–20

    Article  Google Scholar 

  • Ludwig M, Gibbs SP (1987): Are the nucleomorphs of cryptomonads and Chlorarachnion the vestigial nuclei of eukaryotik endosymbionts. Ann NY Acad Sci 503: 198–211

    Article  Google Scholar 

  • Ludwig M, Gibbs SP (1989a) Localization of Phycoerythrin at the Lumenal Surface of the Thylakoid Membrane in Rhodomonas lens. J Cell Biol 108: 875–884

    Article  PubMed  CAS  Google Scholar 

  • Ludwig M, Gibbs SP (1989b) Evidence that the nucleomorphs of Chlorarachnion reptans (Chlorarachniophyceae) are vestigial nuclei: Morphology, division and DNA-DAPI fluorescence. J Phycol 25: 385–394

    Article  Google Scholar 

  • McKerracher L, Gibbs SP (1982) Cell and nucleomorph division in the alga Cryptomonas. Can J Bot 60: 2440–2452

    Article  Google Scholar 

  • Morden CW, Golden SS (1989) PsbA genes indicate common ancestry of the prochlorophytes and chloroplasts. Nature (Lond) 337: 382–384

    Article  CAS  Google Scholar 

  • Morrall S, Greenwood AD (1982) Ultrastructure of nucleomorph division in species of Cryptophyceae and its evolutionary implications. J Cell Sci 54: 311–328

    Google Scholar 

  • Perasso R, Baroin A, Qu LH, Bachellerie JP, Adoutte A (1989) Origin of the algae. Nature (Land) 339: 142–144

    Article  CAS  Google Scholar 

  • Raven P (1970) A Multiple Origin of Plastids and Mitochondria. Science 169: 641–646

    Article  PubMed  CAS  Google Scholar 

  • Rhiel E, Kunz J, Wehrmeyer W (1989) Immunocytochemical Localization of Phycoerythrin-545 and of a Chlorophyll a/c Light Harvesting Complex in Cryptomonas maculate ( Cryptophyceae ). Botanica Acta 102: 46–53

    CAS  Google Scholar 

  • Schnepf E, Deichgräber G (1984) “Myzocytosis”, a Kind of Endocytosis with Implications to compartmentation in Endosymbiosis. Observations in Paulsenella ( Dinophyta ). Naturwiss 71: 218–219

    Article  Google Scholar 

  • Schnepf E, Elbrächter M (1988) Cryptophycean-Like Double Membrane-Bound Chloroplast in the Dinoflagellate, Dinophysis Ehrenb.: Evolutionary, Phylogenetic and Toxicological Implications. Botanica Acta 101: 196–203

    Google Scholar 

  • Sogin ML, Elwood HJ, Gunderson JH (1986) Evolutionary diversity of eukaryotic small-subunit rRNA genes. Proc Natl Acad Sci USA 83: 1383–1387

    Article  PubMed  CAS  Google Scholar 

  • Sogin ML, Gunderson JH, Elwood HJ, Alonso RA, Peattie DA (1989) Phylogenetic Meaning of the Kingdom Concept: An Unusual Ribosomal RNA from Giardia lamblia Science 243: 75–77

    Article  PubMed  CAS  Google Scholar 

  • Tippit DH, Pickett-Heaps JD (1976) Apparent amitosis in the binucleate dinoflagellate Peridinium balticum. J Cell Sci 21: 273–389

    PubMed  CAS  Google Scholar 

  • Thomas RN, Cox ER (1973) Observations on the symbiosis of Peridinium balticum and its intracellular alga. I. Ultrastructure. J Phycol 9: 304–323

    Google Scholar 

  • Turner S, Burger-Wiersma T, Giovannoni SJ, Mur LR, Pace NR (1989) The relationship of the prochlorophyte Prochlorothrix hollandica to green chloro-plasts. Nature (Land) 337: 380–382

    Article  CAS  Google Scholar 

  • Van den Eynde H, De Baere R, De Wachter R (1988) Sequence and secondary structure of Porphyra umbilicaiis 5S rRNA. Relevance for the evolutionary origin of red algae. Nucleic Acids Res 16: 10919

    Article  PubMed  Google Scholar 

  • Watanabe MM, Takeda Y, Sasa T, Inouye I, Suda S, Sawaguchi T, Chihara M (1987) A green dinoflagellate with chlorophylls a and b: Morphology, fine structure of the chloroplast and chlorophyll composition. J Phycol 23: 382–389

    Article  CAS  Google Scholar 

  • Wilcox LW, Wedemayer GJ (1984) Gymnodinium acidotum Nygaard ( Pyrrophyta), a dinoflagellate with an endosymbiotic cryptomonad. J Phycol 20: 236–242

    Article  Google Scholar 

  • Wilcox LW, Wedemayer GJ (1985) Dinoflagellate with Blue-Green Chloroplasts Derived from an Endosymbiotic Eukaryote. Science 227: 192–194

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbial Rev 51: 221–271

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gibbs, S.P. (1990). The evolution of algal chloroplasts. In: Wiessner, W., Robinson, D.G., Starr, R.C. (eds) Cell Walls and Surfaces, Reproduction, Photosynthesis. Experimental Phycology, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48652-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48652-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48654-8

  • Online ISBN: 978-3-642-48652-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics