Skip to main content

Dynamische aeroelastische Stabilitätsprobleme

  • Chapter
Grundlagen der Aeroelastik
  • 383 Accesses

Zusammenfassung

Von allen aeroelastischen Aufgaben hat zweifellos das Flatterproblem das meiste wissenschaftlich-technische Interesse erlangt. Dies ist nicht nur allein der großen praktischen Bedeutung dieses dynamischen aeroe lastischen Stabilitätsproblems (vor allem im Flugzeugbau) zuzuschreiben, sondern auch dem mathematisch-physikalischen Anreiz, den der Problemkreis “Flattern” ausstrahlt. So hat die Theorie komplexer nicht-hermitischer Eigenwertprobleme entscheidende Impulse aus der Flatterstabilitätstheorie erhalten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. GREIDANUS, J. H.: Low Speed Flutter. J. Aeron. Sci. Bd. 16 (1949) S. 127–128

    Google Scholar 

  2. DUNCAN, W.J.: Flutter of Systems of Many Degrees of Freedom. Aeron. Quart. Bd. 1 (1949) S.59–76

    Google Scholar 

  3. GARRICK, I. E.: Propulsion of a Flapping and Oscillating Airfoil. NACA Rep. 567 (1936)

    Google Scholar 

  4. CRISP, J. D. C.: The Equation of Energy Balances for Fluttering Systems with Some Applications in the Supersonic Regime. J. Aerospace Sci. Bd. 26 (1959) S. 703–716

    Article  Google Scholar 

  5. DUNCAN, W. J.: Flutter of Systems With Many Freedoms. Cranfield College Aeron. Rep. 19 (1948)

    Google Scholar 

  6. MYKLESTAD, N. O.: Vibration Analysis. Mc Graw-Hill Book Comp., New York, 1944

    Google Scholar 

  7. GOLAND, M.; LUKE, Y. L.: A Study of the Bending-Tors ion Aeroelastic Modes for Aircraft Wings. J. Aeron. Sci. Bd. 16 (1949) S. 389–396

    Google Scholar 

  8. SHERMAN, S. D.; DIPAOLA, J.; FRISSELL, H. F.: The Simplification of Flutter Calculations by Use of an Extended Form of the Routh-Hurwitz Discriminant. J. Aeron. Sci. Bd. 12 (1945) S.385–392

    Google Scholar 

  9. DUGUNDJI, J.: A Nyquist Approach to Flutter. J. Aeron. Sci. Bd. 19 (1952) S. 422–423

    Google Scholar 

  10. LANDAHL, M. T.: Graphical Technique for Analyzing Marginally Stable Dynamic Systems J. Aircraft Bd. 1 (1964) S. 293–299

    Article  Google Scholar 

  11. KASSNER, R.; FINGADO, H.: Das ebene Problem der Flügelschwingung. Luftfahrtforsch. Bd. 13 (1936) S. 374–387

    Google Scholar 

  12. WILLIAMS, J.: Methods of Predicting Flexure-Torsion Flutter of Cantilever Wings. ARC R.& M. 1990 (1943)

    Google Scholar 

  13. ARNOLD, L.: A Vector Solution of the Three-Degree Case of Wing Bending, Wing Torsion, Aileron Flutter. J. Aeron. Sci. Bd. 9 (1942) S. 497–500

    Google Scholar 

  14. THEODORSEN, T.; GARRICK, I. E.: Mechanisms of Flutter, a Theoretical and Experimental Investigation of the Flutter Problem. NACA Rep. 685 (1940)

    Google Scholar 

  15. THEODORSEN, T.; GARRICK, I. E.: Flutter Calculations in Three Degrees of Freedom. NACA Rep. 741 (1942)

    Google Scholar 

  16. DUNCAN, W. J.; LYON, H. M.: Calculated Flexural-Torsional Flutter Characteristics of Some Typical Cantilever Wings. ARC R. & M. 1782 (1937)

    Google Scholar 

  17. VAN DE VOOREN, A. I.; GREIDANUS, J. H.: Diagrams of Critical Flutter Speed for Wings of a Certain Standard Type. NLR Rep. V. 1297 (1946)

    Google Scholar 

  18. WOOLSTON, D. S.; HUCKEL, V.: A Calculation Study of Wing-Aileron Flutter in Two Degrees of Freedom for Two-Dimensional Supersonic Flow. NACA Rep. 846 (1946)

    Google Scholar 

  19. MORGAN, H. G.; RUNYAN, H. L.; HUCKEL, V.: Theoretical Considerations of Flutter at High Mach Numbers. J. Aeron. Sci. Bd. 25 (1958) S. 371–381

    Article  Google Scholar 

  20. WEATHERHILL, W.H.; ZARTARIAN, G.: Tabular Presentation of Supersonic Flutter Trends from Piston Theory Calculations. USAF Wright Air Development Center Techn. Note 57–310 (1957)

    Google Scholar 

  21. GOLAND, M.: The Flutter of a Uniform Cantilever Wing. J. Appl. Mech. Bd. 12 (1945) S. 197–208

    Google Scholar 

  22. RUNYAN, H. L.; WATKINS, C. E.: Flutter of a Uniform Wing with an Arbitrarily Placed Mass According to a Differential-Equation Analysis and a Comparison with Experiment. NACA Rep. 966 (1950)

    Google Scholar 

  23. WOOLSTON, D. S.; RUNYAN, H.L.: On the Use of Coupled Modal Functions in Flutter Analysis. NACA TN 2375 (1951)

    Google Scholar 

  24. AGARD Flight Test Manual, Bd. 2 (1963)

    Google Scholar 

  25. FRAZER, R. A.; JONES, W. P.: Spring Tab Flutter. Part I: A Theoretical Investigation on Wing-Aileron-Tab Flutter. ARC R.& M.2952 (1955)

    Google Scholar 

  26. WASSERMAN, L.S.: Tab Flutter Theory and Applications. USAF Techn. Rep. 5153 (1944)

    Google Scholar 

  27. ANDREOPOULOS, T. C.; et al.: Measurements of the Aerodynamic Hinge Moments of an Oscillating Flap and Tab. USAF Techn. Rep. 5784 (1949)

    Google Scholar 

  28. GOLAND, M.; DENGLER, M. A.: Comparison Between Calculated and Observed Flutter Speeds for Various Configurations of a Two-Dimensional Flutter Model, Incorporating Wing, Control Surface and Tab. USAF Techn. Rep. 6184 (1950)

    Google Scholar 

  29. VOIGT, H.; WALTER, F.: Flutter Characteristics of a Wing Equipped with a Flettner Servo-Tab. USAF Techn. Rep. 6182 (1950)

    Google Scholar 

  30. BOSSCHAART, A. C.: The Influence of the Chord-, Span- and Gear Ratios on Binary Aileron-Springtab Flutter. NLR Rep.F. 166 (1955)

    Google Scholar 

  31. SMITH, N.H.; et al.: Experimental Investigation of a Preloaded Spring-Tab Flutter Model. NACA RM L7G18 (1947)

    Google Scholar 

  32. WITTMEYER, H.; TEMPLETON, H.: Criteria for the Prevention of Flutter of Tab Systems. ARC R.&M.2825 (1956)

    Google Scholar 

  33. COLLAR, A. R.; SHARPE, G. D.: The Effect of Tab Mass-Balance on Flutter. ARC R.& M.2418 (1951)

    Google Scholar 

  34. MOLYNEUX, W. G.: The Flutter of Swept and Unswept Wings with Fixed-Root Conditions. ARC R.& M. 2796 (1950)

    Google Scholar 

  35. CUNNINGHAM, H. J.: Analysis of Pure-Bending Flutter of a Cantilever Swept Wing and Its Relation to Bending-Torsion Flutter. NACA TN 2461 (1951)

    Google Scholar 

  36. FUNG, Y. C.; JOHNS, D. J.: A Summary on the Theories and Experiments on Panel Flutter and A Survey on Panel Flutter. AGARD Manual on Aeroelasticity Bd. 3, Kap. 7 (1969)

    Google Scholar 

  37. HEDGEPETH, J. M.: Flutter of Rectangular Simply Supported Panels at High Supersonic Speeds. J. Aeron. Sci. Bd. 24 (1957) S. 563–573

    Google Scholar 

  38. HOUBOLT, J. C.: A Study of Several Aerothermoelastic Problems of Aircraft Structures in High-Speed Flight. Mitt. Inst. f. Flugzeugstatik u. Leichtbau, ETH Zürich, Nr. 5(1958)

    Google Scholar 

  39. ZEIJDEL, E. F. E.: Large Deflection Panel Flutter. Dissertation T. H. Delft, 1962. Auch: IAS-Paper 62–91, Los Angeles, 1962

    Google Scholar 

  40. SHULMAN, Y.: Some Dynamic and Aeroelastic Problems of Plate and Shell Structures. Dissertation MIT, Boston, 1959

    Google Scholar 

  41. VOSS, H. M.: The Effect of an External Supersonic Flow on the Vibration Characteristics of Thin Cylindrical Shells. IAS-Paper 60–45; 28. IAS-Meet., New York, 27.1.1960

    Google Scholar 

  42. SHULMAN, Y.: Vibration and Flutter of Cylindrical and Conical Shells. Air Force Office of Scientific Res. Techn. Rep. 59–776 (1959)

    Google Scholar 

  43. BARON, M.L.; BLEICH, H.H.: Tables for Frequencies and Modes of Free Vibration of Infinitely Long Cylindrical Shells. Transactions ASME, Ser.E, J.Appl. Mech. Bd. 21 (1954) S. 178–184

    Google Scholar 

  44. FORSBERG, K.: Influence of Boundary Conditions on the Modal Characteristics of Thin Cylindrical Shells. AIAA-Journal Bd. 2 (1964) S. 2150–2157

    Article  Google Scholar 

  45. OLSON, D.; FUNG, Y. C.: Comparing Theory and Experiment for the Supersonic Flutter of Circular Cylindrical Shells. AIAA-Journal Bd. 5 (1967) S. 1849–1855

    Article  Google Scholar 

  46. LEONARD, R. W.; HEDGEPETH, J. M.: On Panel Flutter and Divergence of Infinitely Long Unstiffened and Ring-stiffened Thin-walled Circular Cylinders. NACA Rep. 1302 (1957)

    Google Scholar 

  47. FÖRSCHING, H.; CHAO, K. -L.: Berechnung der instationären Luftkräfte an harmonisch schwingenden spitzen Kreiskegelschalen mit kleinem Öffnungswinkel. DLR-FB 73–20 (1973)

    Google Scholar 

  48. STRACK, S. L.; HOLT, M.: Supersonic Panel Flutter of a Cylindrical Shell of Finite Length. Air Force Office of Scientific Res. Techn. Note 59–547 (1959)

    Google Scholar 

  49. STEPANOW, R. D.: On the Flutter of Cylindrical Shells and Panels Moving in a Flow of Gas (aus dem Russischen übersetzt). NACA TM 1438 (1958)

    Google Scholar 

  50. FÖRSCHING, H.: Dynamic Aeroelastic Calculations of Aircraft Based on Ground Vibration Test Data. Progress in Aerospace Science, Bd. 11 (1970) S. 1–66, Pergamon Press, Oxford/New York

    Article  Google Scholar 

  51. MCRUER, D. T.; BENUN, D.; CLICK, G. E.: The Influence of Servomechanisms on the Flutter of Servo Controlled Aircraft. USAF Techn. Rep. 6287 (1954)

    Google Scholar 

  52. BENUN, D.: The Influence of Powered Controls. AGARD Manual on Aeroelasticity Bd. 1, Kap.5 (1959)

    Google Scholar 

  53. BEATRIX, C.; LAMBOURDETTE, R.: L’étude d’une servo-commande par le schéma modal. La Rech. Aérospatiale, Nr. 127 (1968) S. 51–54

    Google Scholar 

  54. FÖRSCHING, H.: Flatteranalysis von Flugzeugen unter Berücksichtigung servomechanischer Steuerungs- und Stabilitätssysteme. DLR-FB 71–37 (1971)

    Google Scholar 

  55. FÖRSCHING, H.: Einfluß servomechanischer Steuerungs- und Stabilitätssysteme auf das Flatterverhalten von Flugzeugen. Z.Flugwiss. Bd. 21 (1973) S. 22–31

    Google Scholar 

  56. STUDER, H. L.: Experimentelle Untersuchungen über Flügelschwingungen. Mitt. Inst. Aerodynamik, ETH Zürich, Nr. 4/5(1936)

    Google Scholar 

  57. VICTORY, M.: Flutter at High Incidence. ARC R.& M. 2048 (1943)

    Google Scholar 

  58. BAKER, J. E.: The Effects of Various Parameters Including Mach Number on Propeller-Blade Flutter, with Emphasis on Stall Flutter. NACA TN 3357 (1955)

    Google Scholar 

  59. RAINEY, A. G.: Preliminary Study of Some Factors which Effect the Stall Flutter Characteristics of Thin Wings. NACA TN 3622 (1956)

    Google Scholar 

  60. HALFMAN, R.L.; JOHNSON, H. C.; HALEY, S. M.: Evaluation of High-Angle-of-Attack Aerodynamic Derivative Data and Stall-Flutter Prediction Techniques. NACA TN 2533 (1951)

    Google Scholar 

  61. BRATT, J.B.; WIGHT, K.C.: The Effect of Mean Incidence, Amplitude of Oscillation, Profile and Aspect Ratio on Pitching Moment Derivatives. ARC R.& M. 2064 (1945)

    Google Scholar 

  62. BRATT, J. B.: Free Oscillation of an Aerofoil about the Half Chord Axis at High Incidences, and Pitching Moment Derivatives for Decaying Oscillations. ARC R. & M.2214 (1940)

    Google Scholar 

  63. MCCROSKEY, W. J.: Recent Developments in Rotor Blade Stall. AGARD CP-111 (1972)

    Google Scholar 

  64. GRAY, L.; LIIVA, J.; DAVENPORT, F. J.: Windtunnel Tests of Thin Airfoils Oscillating Near Stall. Vol.1: Summary and Evaluation of Results. Vol. II: Data Report. USAAVLABS Techn. Rep. 68–89A und 68–89B (1969)

    Google Scholar 

  65. SISTO, F.: Stall Flutter in Cascade. J.Aeron.Sci. Bd. 20 (1953) S. 598–604

    Google Scholar 

  66. PEARSON, H.; PARRY, I. F.: Cascade Blade Flutter and Wake Excitation. J.Roy.Aeron. Soc. Bd. 58 (1954) S. 505–509

    Google Scholar 

  67. MENDELSON, A.: Experimental Investigation of Blade Flutter in an Annular Cascade. NACA TN 3581 (1955)

    Google Scholar 

  68. SCHNITTGER, J. R.: Blade Flutter in Axial Flow Turbomachines. Appl. Mech. Review Bd. 11 (1958) S. 151–155

    Google Scholar 

  69. TANIDA, Y.; OKAZAKI, T.: Stall Flutter in Cascade. Bulletin of ISME Bd.6 Nr.24 (1963) S. 744–757

    Article  Google Scholar 

  70. PEARCY, H. H.: Some Effects of Shock-Induced Separation of Turbulent Boundary Layers in Transonic Flow Past Aerofoils. ARC R.& M. 3108 (1955)

    Google Scholar 

  71. LAMBOURNE, N.C.: Control Surface Buzz. ARC R. & Sc M. 3364 (1962)

    Google Scholar 

  72. LAMBOURNE, N. C.: Flutter in One Degree of Freedom. AGARD Manual on Aeroelasticity Bd.5, Kap. 5 (1968)

    Google Scholar 

  73. SCHMIDT, E.: Literaturbericht über Ruder-Buzz (Ruderflattern in transsonischer Strömung). Aerodyn.Versuchsanst. (AVA) Göttingen Ber.70 J 08 (1970)

    Google Scholar 

  74. LOEWY, R. G.: Review of Rotary-Wing V/STOL Dynamic and Aeroelastic Problems. J. Amer. Helicopter Soc. Bd. 14 Nr. 3 (1969) S. 3–23

    Article  Google Scholar 

  75. LOEWY, R. G.: A Two-Dimensional Approximation to the Unsteady Aerodynamics of Rotary Wings. J.Aeron. Sci. Bd. 24 (1957) S. 81–92

    Google Scholar 

  76. TIMMAN, R.; VAN DEN VOOREN, A. I.: Flutter of a Helicopter Rotor Rotating in Its Own Wake. J.Aeron. Sci. Bd. 24 (1907) S. 694–702

    Google Scholar 

  77. HOHENEMSER, K. H.; PETERS, D. A.: Application of the Floquet Transition Matrix to Problems of Lifting Rotor Stability. J. Amer. Helicopter Soc. Bd. 16 Nr. 2 (1971) S. 25–33

    Article  Google Scholar 

  78. TAYLOR, E. S.; BROWNE, K. A.: Vibration Isolation of Aircraft Power Plants. J. Aeron. Sci. Bd. 6 (1938) S. 43–49

    Google Scholar 

  79. ZWAAN, R. J.; BERGH, H.: Propeller-Nacelle Flutter of the Lockheed “Electra” Aircraft. NLR Rep. F. 228 (1962)

    Google Scholar 

  80. MAGNUS, K.: Kreisel. Springer-Verlag, Berlin/Heidelberg/New York, 1971

    Book  Google Scholar 

  81. RIBNER, H. S.: Propellers in Yaw. NACA Rep. 820 (1945)

    Google Scholar 

  82. RIBNER, H. S.: Formulas for Propellers in Yaw an Charts of the Side-Force Derivatives. NACA Rep. 819 (1945)

    Google Scholar 

  83. HOUBOLT, J.C.; REED, W.H.: Propeller-Nacelle Whirl Flutter. J. Aerospace Sci. Bd. 29 (1962) S.333–346

    Article  Google Scholar 

  84. REED, W. H.: Review of Propeller-Rotor Whirl Flutter. NASA TR R-264 (1967)

    Google Scholar 

  85. REED, W. H.: Propeller-Rotor Whirl Flutter. AGARD Manual on Aeroelasticity Bd. 3, Kap. 9 (1967)

    Google Scholar 

  86. KIESSLING, F.: Übersicht zum Stand der Technik von Whirl-Flatteruntersuchungen. DLR-FB 74–11 (1974)

    Google Scholar 

  87. HAM, N. D.: Helicopter Blade Flutter. AGARD Manual on Aeroelasticity Bd. 3, Kap. 10 (1967)

    Google Scholar 

  88. STAMMERS, C. W.: The Flutter of a Helicopter Rotor Blade in Forward Flight. Aeron. Quart. Bd.21 (1970) S. 18–48

    Google Scholar 

  89. SABZEVARI, A.; SCANLAN, R. H.: Aerodynamic Instability of Suspension Bridges. Proc. Amer. Soc. Civil Engrs., Eng. Mech. Div. Bd. 94 (1968) S. 489–519

    Google Scholar 

  90. GLAUERT, H.: The Elements of Airfoil and Aircrew Theory. Cambridge University Press, Cambridge, 1948

    Google Scholar 

  91. BLEICH, F.: Dynamic Instability of Truss-Stiffened Suspension Bridges Under Wind Action. Proc. Amer. Soc. Civil Engrs. Bd. 74 (1948) S. 1269–1314

    Google Scholar 

  92. SELBERG, A.; HJORTH-HANSEN, E.: Aerodynamic Stability and Related Aspects of Suspension Bridges. Proc. Symp. of Suspension Bridges, Lissabon, 1966

    Google Scholar 

  93. ROCARD, Y.: Dynamic Instability. Crosby Lockwood & Son, London, 1957

    Google Scholar 

  94. SCANLAN, R. H.; SABZEVARI, A.: Experimental Aerodynamic Coefficients in the Analytical Study of Suspension Bridge Flutter. J. Mech. Engng. Sci. Bd. 11 (1969) S. 234–242

    Article  Google Scholar 

  95. FÖRSCHING, H.: Aeroelastisch instabile Widerstandsprofile. Ing. Archiv Bd. 40 (1971) S. 68–80

    Article  Google Scholar 

  96. PARKINSON, G. V.; Brooks, N. P.: On the Aeroelastic Instability of Bluff Cylinders. J. Appl. Mech. Bd. 83 (1961) S. 252–258

    Article  Google Scholar 

  97. PARKINSON, G. V.; SMITH, J. D.: The Square Prism as an Aeroelastic Nonlinear Oscillator. Quart. J. Mech. Appl. Math. Bd. 17 (1964) S. 225–239

    Article  Google Scholar 

  98. KRYLOW, N.; BOGOLIUBOW, N.: Introduction to Non-Linear Mechanics. Princeton University Press. Princeton, 1943

    Google Scholar 

  99. NOVAK, M.: Aeroelastic Galloping of Rigid and Elastic Bodies. Univ. Western Ontario, London/Canada, Res. Rep. BLWT-3–68 (1968)

    Google Scholar 

  100. FÖRSCHING, H.; MANEA, V.: Zur analytischen Behandlung des nichtlinearen aeroelasti-schen Galloping-Problems. Ing. Archiv Bd. 42 (1973) S. 178–193

    Article  Google Scholar 

  101. FÖRSCHING, H.; Manea, V.: Ein Verfahren zur analytischen Lösung des nichtlinearen aeroelastischen Galloping-Stabilitätsproblems. DLR-FB 73–18 (1973)

    Google Scholar 

  102. BOGOLIUBOW, N.; MITROPOLSKI, J. A.: Asymptotische Methoden in der Theorie der nichtlinearen Schwingungen. Akademie-Verlag, Berlin, 1965, S. 119 ff.

    Google Scholar 

  103. DESMARAIS, R. N.; BENNETT, R. M.: An Automated Procedure for Computing Flutter Eigenvalues. J. Aircraft Bd. 11 (1974) S. 75–80

    Article  Google Scholar 

  104. BHATIA, K. G.: An Automated Method for Determining the Flutter Velocity and the Matched Point. J. Aircraft Bd. 11 (1974) S. 21–27

    Article  Google Scholar 

  105. HASSIG, H. J.: An Approximate True Damping Solution of the Flutter Equation by Determinant Iteration. J. Aircraft Bd. 8 (1971) S. 885–889

    Article  Google Scholar 

  106. MEIROVITCH, L.: Methods of Analytical Dynamics. McGraw-Hill Book Comp., New York, 1970

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Försching, H.W. (1974). Dynamische aeroelastische Stabilitätsprobleme. In: Grundlagen der Aeroelastik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48285-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48285-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48286-1

  • Online ISBN: 978-3-642-48285-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics