Skip to main content

Statische aeroelastische Probleme

  • Chapter
Grundlagen der Aeroelastik
  • 372 Accesses

Zusammenfassung

Wie bereits in Kapitel 1 anhand der Funktionsdiagramme Abb. 1. 6 und 1. 7 gezeigt wurde, besteht die Problematik der analytischen Behandlung der statischen aeroelastischen Probleme von Auftriebssystemen in der Bestimmung des Einflusses der elastischen Verformung auf die stationäre aerodynamische Auftriebsverteilung und der Untersuchung der Stabilität des daraus resultierenden statischen Deformationsverhaltens. Die detaillierte Kenntnis dieser Zusammenhänge ist insbesondere bei Flugkonstruktionen von fundamentaler Bedeutung für die festigkeitsmäßige Auslegung und Gestaltung der Auftriebs- und Steuerflächen. Außerdem können die elastischen Deformatio-nen auch recht nachteilige Auswirkungen auf die statische Flugstabilität haben. Dasselbe gilt in übertragenem Sinne auch für die statische hydroelastische Stabilität und das Steuerungsverhalten von Tragflächenbooten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. COX, H. R.; PUGSLEY, A. G.: Theory of Loss of Lateral Control Due to Wing Twisting. ARC R.& M. 1506 (1932)

    Google Scholar 

  2. PUGSLEY, A. G.; COX, H. R.: The Aileron Power of a Monoplane. ARC R. & M. 1640 (1934)

    Google Scholar 

  3. COX, H. R.; PUGSLEY, A. G.: Stability of Static Equilibrium of Elastic and Aerodynamic Actions on a Wing. ARC R. & M. 1059 (1934)

    Google Scholar 

  4. DÄTWYLER, G.: Der Einfluß der elastischen Deformation auf die Luftkräfte am Tragflügel. Schweizer Aero-Revue Bd. 6 (1931) Nr. 29 S.264

    Google Scholar 

  5. DÄTWYLER, G.: Calculations of the Effect of Wing Twist on the Air Forces Acting on a Monoplane Wing. NACA TN 520 (1935)

    Google Scholar 

  6. FLAX, A. H.: The Influence of Structural Deformation on Airplane Characteristics. J. Aeron.Sci. Bd. 12 (1945) S. 94–102

    Google Scholar 

  7. HILDEBRAND, F. B.; REISSNER, E.: The Influence of the Aerodynamic Span Effect on the Magnitude of the Torsional Divergence Velocity and on the Shape of the Corresponding Deflection Mode. NACA TN 92 6 (1949)

    Google Scholar 

  8. LAWRENCE, H. R.; SEARS, W. R.: Three-Dimensional Wing Theory for the Elastic Wing. Northrop Aircraft Inc. Rep.A-59 (1944)

    Google Scholar 

  9. PINES, S.: A Unit Solution for the Load Distribution of a Nonrigid Wing by Matrix Methods. J. Aeron.Sci. Bd. 16 (1949) S. 470–476

    Google Scholar 

  10. DIEDERICH, F. W.; BUDIANSKI, B.: Divergence of Swept Wings. NACA TN 1680 (1948)

    Google Scholar 

  11. PAI, S.I.; SEARS, W. R.: Some Aeroelastic Properties of Swept Wings. J. Aeron.Sci. Bd. 16 (1949) S.105–115

    Google Scholar 

  12. MILES, J. W.: A Formulation of the Aeroelastic Problem for Swept Wing. J. Aeron. Sci. Bd. 16 (1949) S.477–490

    Google Scholar 

  13. PIAN, T. H. H.; LIN, H.: Effect of Structural Flexibility on Aircraft Loading — Spanwise Airload Distribution. Air Force Techn. Rep. 6353 Part II (1951)

    Google Scholar 

  14. BROWN, R.B.; HOLTBY, K.F.; MARTIN, H. C.: A Superposition Method for Calculating the Aeroelastic Behavior of Swept Wings. J. Aeron. Sci. Bd. 18 (1951) S. 531–542

    Google Scholar 

  15. DIEDERICH, F. W.; FOSS, K.A.: Charts and Approximate Formulas for the Estimation of Aeroelastic Effects on the Loading of Swept and Unswept Wings. NACA Rep. 1139 (1953)

    Google Scholar 

  16. SEIFERT, G.: A Third Order Boundary Value Problem Arising in Aeroelastic Wing Theory. Quart. Appl. Math. Bd. IX (1951) S. 210–218

    Google Scholar 

  17. BUDIANSKY, B.; MAYERS, J.: Influence of Aerodynamic Heating on the Effective Torsional Stiffness of Thin Wings. J. Aeron. Sci. Bd.23 (1956) S. 1081–1093

    Google Scholar 

  18. PEARSON, H. A.; AIKEN, W. S.: Charts for the Determination of Wing Torsional Stiffness Required for Specified Rolling Characteristics of Aileron Reversal. NACA Rep.799 (1944)

    Google Scholar 

  19. DIEDERICH, F. W.; FOSS, K. A.: Static Aeroelastic Phenomena of M-, W- and A-Wings. NACA RM L52J21 (1953)

    Google Scholar 

  20. BROWN, S. C.: Predicted Static Aeroelastic Effects on Wings With Supersonic Leading Edges and Streamwise Tips. NASA MEMO 4–18–59A (1959)

    Google Scholar 

  21. BIOT, M. A.: Aeroelastic Stability of Supersonic Wings, Report 1: Chordwise Divergence — The Two-Dimensional Case. Cornell Aeron. Lab. Rep. CAL/CM-427, CAL-l-E-1 (1947)

    Google Scholar 

  22. BIOT, M. A.: Aeroelastic Stability of Supersonic Wings, Report 2: An Approximate Treatment of Some Simple Three-Dimensional Cases. Cornell Aeron. Lab. Rep. CAL/ CM-470, CAL-l-E-1 (1948)

    Google Scholar 

  23. BIOT, M. A.: Aeroelastic Stability of Supersonic Wings, Report 3: General Method for the Two-Dimensional Case and its Application to the Chordwise Divergence of a Biconvex Section. Cornell Aeron. Lab. Rep. CAL/CM-506, CAL-1 -E- 1 (1948)

    Google Scholar 

  24. BIOT, M. A.: Divergence of Supersonic Wings Including Chordwise Bending. J. Aeron. Sci. Bd.23 (1956) S. 237–251

    Google Scholar 

  25. LIN, H.; PIAN, T. H.: Effect of Structural Flexibility on Aircraft Loading. U. S. Airforce Techn. Rep. 6358 Part VIII (1953)

    Google Scholar 

  26. FRICK, C.W.; CHUBB, R. S.: The Longitudinal Stability of Elastic Swept Wings at Supersonic Speed. NACA Rep. 965 (1950)

    Google Scholar 

  27. LYON, H. M.; RIPLEY, J.: A General Survey of the Effects of Flexibility of the Fuselage, Tail Unit and Control Systems on Longitudinal Stability and Control. ARC R. & M.2415 (1945)

    Google Scholar 

  28. RODDEN, W.P.: Dihedral Effect of a Flexible Wing. J. Aeron. Sci. Bd. 2 (1965) S. 368–373

    Google Scholar 

  29. HEARMON, S. M.: Determination of the Effect of Wing Flexibility on Lateral Maneuverability and a Comparison of Calculated Rolling Effectiveness with Flight Results. NACA Rep.ARR4A28, L-525 (1944)

    Google Scholar 

  30. MAYO, A. P.; WARD, J.F.: Flight Investigation and Analysis of the Wing Deformations on a Swept-Wing Bomber during Rolling Maneuvers. NACA RM L56C23a (1956)

    Google Scholar 

  31. DUGUNDJI, J.; CRISP, J. D.: On the Aeroe.lastic Characteristics of Low-Aspect-Ratio Wings with Chordwise Deformations. USAF Office of Scientific Res. Techn. Note 59–787 (1959)

    Google Scholar 

  32. MARTIN, D. J.; WATKINS, C. E.: Transonic and Supersonic Divergence Characteristics of Low-Aspect-Ratio Wings and Controls. IAS Rep. 59–58 (1958)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Försching, H.W. (1974). Statische aeroelastische Probleme. In: Grundlagen der Aeroelastik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48285-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48285-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48286-1

  • Online ISBN: 978-3-642-48285-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics