Advertisement

Physiologische Grundlagen

  • Bernd-Ulrich Meyer

Zusammenfassung

Einzelne transkraniell applizierte elektrische oder magnetische Kortexreize rufen einfache Muskelzuckungen hervor, nie jedoch komplexere Bewegungsabläufe. Im Bereich der oberen Extremität handelt es sich hierbei vorwiegend um Beugebewegungen der kontralateralen Finger, des Handgelenkes und des Ellenbogens. Das Überwiegen von Beugebewegungen nach Kortexstimulation ist wie der Bewegungseffekt nach Reizung des Plexus brachialis auf die stärkere Kraftentwicklung der Flexoren aufgrund günstigerer Hebelarme zurückzuführen, da elektromyographische Ableitungen der kortikal ausgelösten Muskelantworten eine simultane Aktivierung sowohl der Beuge-als auch der Streckmuskeln zeigen. Bei Vorkontraktion der Streckmuskeln können mit der transkraniellen Stimulation jedoch auch Extensionsbewegungen ausgelöst werden, die besonders im Bereich der Finger und des Handgelenks auftreten.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ammon K, Gandevia SC (1990) Transcranial magnetic stimulation can influence the selection of motor programmes. J Neurol Neurosurg Psychiat 53: 705 - 707PubMedGoogle Scholar
  2. Amassian VE, Cracco RQ, Maccabee PJ (1988) Focal magnetic coil activation of human motor cortex elicits a sense of movement in ischemically paralyzed, distal arm. J Physiol 403: 75 PGoogle Scholar
  3. Amassian VE, Maccabee PJ, Cracco RQ, Cracco JB (1990) Basic mechanisms of magnetic coil excitation of nervous system in humans and monkeys: application in focal stimulation of different cortical areas in humans. In: Chokroverty S (ed) Magnetic stimulation in clinical neurophysiology. Butterworth, Boston, pp 73 - 111Google Scholar
  4. Amassian VE, Cracco RQ, Maccabee PJ (1991) Does magnetic stimulation of human cerebellum elicit cerebral cortical responses? J Physiol 435: 54 PGoogle Scholar
  5. Amassian VE, Eberle L, Maccabee PJ, Cracco RQ (1992) Factors influencing magnetic coil excitation of isolated amphibian, cat, and primate nerves immersed in a human brain-shaped volume conductor. J Physiol 446: 23 PGoogle Scholar
  6. Barrett G, Shibasaki H, Neshige R (1985) A computer-assisted method for averaging movement related cortical potentials with respect to EMG-onset. Electroencephalogr Clin Neurophysiol 60: 276 - 281PubMedGoogle Scholar
  7. Berardelli A, Inghilleri M (1991) Inhibitory effects produced by transcranial stimulation in man. International symposium on magnetic brain stimulation, Aachen Dezember 1991, AbstractGoogle Scholar
  8. Berardelli A, Inghilleri M, Cruccu G, Manfredi M (1990) Descending volley after electrical and magnetic transcranial stimulation in man. Neurosc Lett 112: 54 - 58Google Scholar
  9. Berardelli A, Inghilleri M, Rothwell JC, Cruccu G, Manfredi M (1991) Multiple firing of motoneurones is produced by cortical stimulation but not by direct activation of descending motor tracts. Electroencephalogr Clin Neurophysiol 81: 240 - 242PubMedGoogle Scholar
  10. Benecke R, Meyer B-U, Schonle P, Conrad B (1988) Transcranial magnetic stimulation of the human brain: responses in muscles supplied by cranial nerves. Exp Brain Res 71: 623 - 632PubMedGoogle Scholar
  11. Benecke R, Meyer B-U, Freund H-J (1991) Reorganisation of descending motor pathways in patients after hemispherectomy and severe hemispheric lesions demonstrated by magnetic brain stimulation. Exp Brain Res 83: 419 - 426PubMedGoogle Scholar
  12. Bernard CG, Bohm E (1954) Cortical representation and functional significance of the cortico-motoneuronal system. Arch Neurol Psychiat 72: 473 - 502Google Scholar
  13. Boyd SG, Rothwell JC, Cowan JMA, Webb TJ, Morley T, Asselman P, Marsden CD (1986) A method of monitoring function in cortical pathways during scoliosis surgery with a note on motor conduction velocities. J Neurol Neurosurg Psychiat 49: 251 - 257PubMedGoogle Scholar
  14. Britton TC, Brown P, Day BL et al (1990) Can the cerebellum be stimulated through the intact scalp in man? J Physiol 420: 19 PGoogle Scholar
  15. Brower B, Asby P, Midroni G (1989) Excitability of corticospinal neurons during tonic muscle contraction in man. Exp Brain Res 74: 649 - 652Google Scholar
  16. Burke D, Adams RW, Skuse N (1989) The effects of voluntary contraction on the Hreflex of human limb muscles. Brain 112: 417 - 433PubMedGoogle Scholar
  17. Burke D, Hicks RG, Stephen PH (1990) Corticospinal volleys evoked by anodal and cathodal stimulation to the human motor cortex. J Physiol 425: 283 - 299PubMedGoogle Scholar
  18. Chiappa KH, Cros D, Day B, Fang J, Macdonell R, Mavroudakis N (1991) Magnetic stimulation of the human motor cortex: ipsilateral and contralateral facilitation effects. In: Levy WJ, Cracco RQ, Barker AT, Rothwell JC (eds) Magnetic motor stimulation: basic principles and clinical experience. Electroencephalogr Clin Neurophysiol [Suppl 43]: 186 - 201Google Scholar
  19. Claus D, Mills KR, Murray NMF (1988) The influence of vibration on the excitability of alpha motoneurons. Electroencephalogr Clin Neurophysiol 69: 431 - 436PubMedGoogle Scholar
  20. Clough JFM, Kernell D, Phillips CG (1968) The distribution of monosynaptic excitation from the pyramidal tract and from primary spindle afferents to motoneurones of the baboon's hand and forearm. J Physiol 198: 145 - 166PubMedGoogle Scholar
  21. Cohen LG, Hallett M (1988) Non-invasive mapping of human motor cortex. In: Rossini PM, Marsden CD (eds) Non-invasive stimulation of brain and spinal cord: fundamentals and clinical applications. Liss, New York, pp 67 - 71Google Scholar
  22. Cohen LG, Bandinelli S, Topka H, Fuhr P, Roth BJ, Hallett M (1991) Topographic maps of human motor cortex in normal and pathological conditions: mirror movements, amputations and spinal cord injuries. In: Levy WJ, Cracco RQ, Barker AT, Rothwell JC (eds) Magnetic motor stimulation: basic principles and clinical experience. Electroencephalogr Clin Neurophysiol [Suppl 43]: 36 - 50Google Scholar
  23. Cole JD, Philip HI, Sedgwick EM (1991) Magnetic brain stimulation produces a normal silent period in the EMG but does not lead to perception of an induced finger movement in a chronically deafferented man. J Physiol 435: 114 PGoogle Scholar
  24. Cowan JMA, Day BL, Marsden CD, Rothwell JC (1986) The effect of percutaneous motor stimulation on H-reflexes in the muscles of the arm and leg in man. J Physiol 377: 333 - 347PubMedGoogle Scholar
  25. Cracco RQ, Amassian VE, Maccabee PJ, Cracco JB (1989) Comparison of human transcallosal responses evoked by magnetic coil and electrical stimulation. Electroencephalogr Clin Neurophysiol 74: 417 - 427PubMedGoogle Scholar
  26. Datta AK, Harrison LM, Stephens JA (1989) Task-dependent changes in the size of response to magnetic brain stimulation in human first dorsal interosseus muscle. J Physiol 418: 13 - 23PubMedGoogle Scholar
  27. Davey NJ, Ellaway PH, Maskill DW (1991) Facilitation by mechanical cutaneous stimulation of muscle responses to transcranial magnetic stimulation in man. J Physiol 438: 7 PGoogle Scholar
  28. Davey NJ, Romaignere P, Maskill DW, Ellaway PH (1992) Inhibition of voluntary contraction by transcranial magnetic stimulation of the brain subthreshold for excitation in man. J Physiol 446: 447 PGoogle Scholar
  29. Day BL, Rothwell JC, Thompson PD, Dick JPR, Cowan JMA, Berardelli A, Marsden CD (1987) Motor cortex stimulation in intact man: 2. Multiple descending volleys. Brain 110: 1191-1209Google Scholar
  30. Day BL, Dressier D, Maertens de Noordhout A, Marsden CD, Nakashima K, Rothwell JC, Thompson PD (1989a) Electric and magnetic stimulation of the human motor cortex: surface EMG and single motor unit responses. J Physiol 412: 449 - 473PubMedGoogle Scholar
  31. Day BL, Rothwell JC, Thompson PD, Maertens de Noordhout A, Nakashima K, Shannon K, Marsden CD (1989b) Delay in the execution of voluntary movement by electrical or magnetic brain stimulation in intact man. Evidence for the storage of motor programs in the brain. Brain 112: 649-663Google Scholar
  32. Day BL, Riescher H, Struppler A, Rothwell JC, Marsden CD (1991) Changes in the response to magnetic and electrical stimulation of the motor cortex following muscle stretch in man. J Physiol 433: 41 - 57PubMedGoogle Scholar
  33. Deuschl G, Michels R, Berardelli A, Schenk E, Inghilleri M, Lucking CH (1991) Effects of electric and magnetic transcranial stimulation on long latency reflexes. Exp Brain Res 83: 403 - 410PubMedGoogle Scholar
  34. Edgley SA, Eyre JA, Lemon RN, Miller S (1992) Direct and indirect activation of corticospinal neurones by electrical and magnetic stimulation in the anaesthetized macaque monkey. J Physiol 446: 224 PGoogle Scholar
  35. Ferbert A, Priori A, Rothwell JC, Colebatch J, Day BL, Marsden CD (1990) Transcallosal effects on motor cortical excitability in man. J Physiol 429: 38 PGoogle Scholar
  36. Fuhr P, Agostino R, Hallett M (1991) Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr Clin Neurophysiol 81: 257 - 262PubMedGoogle Scholar
  37. Lassek AM (1942) The human pyramidal tract. IV. A study of the mature, myelinated fibres of the pyramid. J Comp Neurol 76: 217 - 225Google Scholar
  38. Hennemann (1957) Relation between size of neurons and their susceptibility to discharge. Science 126: 1345 - 1347Google Scholar
  39. Hess CW, Mills KR (1986) Low-threshold motor units in human hand muscles can be selectively activated by magnetic brain stimulation. J Physiol 380: 62 PGoogle Scholar
  40. Hess CW, Mills KR, Murray NMF (1986) Magnetic stimulation of the human brain: facilitation of motor responses by voluntary contraction of ipsilateral and contralateral muscles with additional observations on an amputee. Neurosci Lett 71: 235 - 240PubMedGoogle Scholar
  41. Hess CW, Ludin HP (1988) Die transkranielle Kortexstimulation mit Magnetfeldpulsen: Methodische und physiologische Grundlagen. Z EEG EMG 19: 209-215Google Scholar
  42. Hess CW, Mills KR, Murray NMF (1987a) Responses in small hand muscles from magnetic stimulation of the human brain. J Physiol 388: 397 - 419PubMedGoogle Scholar
  43. Hess CW, Mills KR, Murray NMF, Schriefer TN (1987b) Excitability of the human motor cortex is enhanced during REM sleep. Neurosci Lett 82: 47 - 52PubMedGoogle Scholar
  44. Hess CW, Mills KR, Murray NMF, Schriefer TN (1987c) Magnetic stimulation of the human brain during natural sleep. J Physiol 388: 48 PGoogle Scholar
  45. Hess CW, Mills KR, Murray NMF, Schriefer TN (1988) Motor evoked potentials during slow wave sleep and REM sleep. In: Rossini PM, Marsden CD (eds) Non-invasive stimulation of brain and spinal cord: fundamentals and clinical applications. Liss, New York, pp 85 - 92Google Scholar
  46. lies JF, Cummings R (1992) Electrical and magnetic stimulation of motor cortex in man. J Physiol 446: 223 PGoogle Scholar
  47. Inghilleri M, Berardelli A, Cruccu G, Priori A, Manfredi M (1989) Corticospinal potentials after transcranial stimulation in humans. J Neurol Neurosurg Psychiat 52: 970 - 974PubMedGoogle Scholar
  48. Inghilleri M, Cruccu G, Berardelli A, Innocenti M, Manfredi M, Rothwell JC (1990) Inhibition of motor responses evoked by transcranial magnetic stimulation by peripheral nerve stimulation in man. J Physiol 426: 102 PGoogle Scholar
  49. Katayama Y, Tsubokawa T, Maejina S, Mirayama T, Yamamoto T (1988a) Corticospinal direct response in humans: identification of the motor cortex during intracranial surgery under general anaesthesia. J Neurol Neurosurg Psychiat 51: 50 - 59PubMedGoogle Scholar
  50. Katayama Y, Tsubokawa T, Yamamoto T, Maejina S (1988b) Spinal cord potentials to direct stimulation of the exposed motor cortex in humans: comparison with data from transcranial motor cortex stimulation. In: Rossini PM, Marsden CD (eds) Non-invasive stimulation of brain and spinal cord: fundamentals and clinical applications. Liss, New York, pp 305 - 311Google Scholar
  51. Kurjirai T, Rothwell JC, Day BL, Thompson PD, Marsden CD (1992) An investigation of cortical excitability during silent period induced by magnetic brain stimulation in man. Mov Dis 7 (Suppl 1): 153Google Scholar
  52. Maccabee PJ, Amassion VE, Eberle LP, Cracco RQ, Rudell AP (1992) The magnetic coil activates amphibian and primate nerve in vitro at two sites and selectively at a bend. J Physiol 446: 228 PGoogle Scholar
  53. Maertens de Noordhout A, Rothwell JC, Day BL, Dressler D, Nakashima K, Thompson PD, Marsden CD (1992) Effect of digital nerve stimuli on responses to electrical or magnetic stimulation of the human brain. J Physiol 447: 535 - 548Google Scholar
  54. Marsden CD, Merton PA, Morton HB (1981) Maximal twitches from stimulation of the motor cortex in man. J Physiol 312: 5 PGoogle Scholar
  55. Meyer B-U, Britton TC, Kloten H, Steinmetz H, Benecke R (1991) Coil placement in magnetic brain stimulation related to skull and brain anatomy. Electroencephalogr Clin Neurophysiol 81: 38 - 46PubMedGoogle Scholar
  56. Meyer B-U, Röricht S, Benecke R (1992a) Differences of single motor unit (SMU) responses in hand and leg muscles following transcranial magnetic brain stimulation (TMS). IX International congress of electromyography and clinical neurophysiology, Jerusalem, Israel, Juni 1992Google Scholar
  57. Meyer B-U, Bischoff C, Meister H, Conrad B (1992b) Towards a standardized use of transcranial magnetic brain stimulation: effects of tonic muscle contraction and stimulation strength. IX International congress of electromyography and clinical neurophysiology, Jerusalem, Israel, Juni 1992Google Scholar
  58. Patton HD, Amassian VE (1954) Single- and multiple-unit analysis of cortical stage of pyramidal tract activation. J Neurophysiol 17: 345 - 363PubMedGoogle Scholar
  59. Penfield W (1967) The excitable cortex in conscious man. Liverpool University Press, LiverpoolGoogle Scholar
  60. Peterson BW, Pitts NG, Fukushima K (1979) Reticulospinal connexions with limb and axial motoneurones. Exp Brain Res 36: 1 - 20PubMedGoogle Scholar
  61. Phillips CG, Porter RR (1977) Corticospinal neurones. Academic Press, London Rossini PM, Stalberg E, Winkler T, Zarola F (1988) Motor responses to transcranial brain stimulation: evaluation of premovement facilitation by surface, coaxial needle, and single fibre recordings. In: Rossini PM, Marsden CD (eds) Non-invasive stimulation of brain and spinal cord: fundamentals and clinical applications. Liss, New York, pp 105 - 122Google Scholar
  62. Rothwell JC, Day BL, Berardelli A, Marsden CD (1984) Effects of motor cortex stimulation on spinal interneurones in intact man. Exp Brain Res 54: 382 - 384PubMedGoogle Scholar
  63. Rothwell JC, Thompson PD, Day BL, Dick JPR, Kachi T, Cowan JMA, Marsden CD (1987) Motor cortex stimulation in intact man: 1. general characteristics of EMG responses in different muscles. Brain 110: 1173 - 1190PubMedGoogle Scholar
  64. Rothwell JC, Day BL, Thompson PD, Marsden CD (1989) Interruption of motor programmes by electrical or magnetic brain stimulation in man. In: Allum JHJ, Hulliger M (eds) Progress in brain research, vol 80. Elsevier, Amsterdam, pp 467 - 472Google Scholar
  65. Rothwell JC, Day BL, Amassian VE (1992) Near threshold electrical and magnetic transcranial stimuli activate overlapping sets of cortical neurones in humans. J Physiol 446: 61 PGoogle Scholar
  66. Rushton DN, Ridding MC (1992) Lower limb responses to magnetic stimulation over the cervical cord. J Physiol 446: 227 PGoogle Scholar
  67. Starr A, Caramia M, Zarola F, Rossini PM (1988) Enhancement of motor cortical excitability in humans by non-invasive electrical stimulation appears prior to voluntary movement. Electroencephalogr Clin Neurophysiol 70: 26 - 32PubMedGoogle Scholar
  68. Thompson PD, Day BL, Rothwell JC, Dressler D, Maertens de Noordhout A, Marsden CD (1991) Further observations on the facilitation of muscle responses to cortical stimulation by voluntary contraction. Electroencephalogr Clin Neurophysiol 81: 397 - 102PubMedGoogle Scholar
  69. Tomberg C, Caramia MD (1991) Prime mover muscle in finger lift or finger flexion reaction times: identification with transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 81: 319 - 322PubMedGoogle Scholar
  70. Ugawa Y, Day BL, Rothwell JC, Thompson PD, Merton PA, Marsden CD (1991) Modulation of motor cortical excitability by electrical stimulation over the cerebellum in man. J Physiol 441: 57 - 72PubMedGoogle Scholar
  71. Wassermann EM, Fuhr P, Cohen LG, Hallett M (1991) Effects of transcranial magnetic stimulation on ipsilateral muscles. Neurology 41: 1795 - 1799PubMedGoogle Scholar
  72. Werhahn KJ, Meyer B-U, Rothwell JC, Thompson PD, Day BL, Marsden CD (1992) Reduction of motor cortex excitability by transcranial magnetic stimulation over the human cerebellum. J Physiol (in press)Google Scholar
  73. Agnew WF, McCreery DB (1987) Considerations for safety in the use of extracranial stimulation for motor evoked potentials. Neurosurgery 20: 143 - 147PubMedGoogle Scholar
  74. Barker AT, Freeston IL, Jalinous R (1985) Magnetic stimulation of the human brain. J Physiol 369: 3 PGoogle Scholar
  75. Brody BA, Kinney HC, Kloman AS, Gilles FH (1987) Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropath Exp Neurol 46: 283-301PubMedGoogle Scholar
  76. Conel JL (1967) The postnatal development of the human cerebral cortex. Harvard University Press, Cambridge/MAGoogle Scholar
  77. Cracco JB, Cracco RQ, Stolove R (1979) Spinal evoked potential in man: A maturational study. Electroencephalogr Clin Neurophysiol 46: 58-64PubMedGoogle Scholar
  78. Day BL, Dick JPR, Marsden CD, Thompson PD (1986) Differences between electrical and magnetic stimulation of the human brain. J Physiol 378: 36 PGoogle Scholar
  79. Eyre JA, Flecknell PA, Kenyon BR, Koh THHG, Miller S (1990a) Acute effects of electromagnetic stimulation of the brain on cortical activity, cortical blood flow, blood pressure and heart rate in the cat: an evaluation of safety. J Neurol Neurosurg Psychiat 53: 507 - 513PubMedGoogle Scholar
  80. Eyre JA, Miller S, O'Sullivan MC, Ramesh V, Watts C (1990b) Constancy of conduction delays in central nervous somatosensory and motor pathways during growth and development in man. European J Neuroscience [Suppl 3]65: 1285Google Scholar
  81. P Eyre JA, Miller S, Ramesh V (1991) Constancy of central conduction delays during development in man: investigation of motor and somatosensory pathways. J Physiol 434: 441 - 452Google Scholar
  82. Gamstorp I (1963) Normal conduction velocity of ulnar, median and peroneal nerves in infancy, childhood and adolescence. Acta Paediatr Scand 146: 68 - 76Google Scholar
  83. Hess CW, Mills KR, Murray NMF (1986) Magnetic stimulation of the human brain: the effects of voluntary muscle activity. J Physiol 378: 37 PGoogle Scholar
  84. Homberg V, Müller K, Lenard HG (1989) Maturation of central conduction time in corticospinal tracts predicts development of fastest voluntary movements in children. Soc Neurosci Abstr 15: 69Google Scholar
  85. Koh THHG, Eyre JA (1988) Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex. Arch Dis Child 63: 1347 - 1352PubMedGoogle Scholar
  86. Lemire RJ, Loeser JD, Leech RW (1975) Cellular kinetics, myelination and patterns of growth of the nervous system. In: Lemire RJ, Loeser JD, Leech RW (eds) Normal and abnormal development of the human nervous system. Harper & Row, Hagerstown, pp 40 - 52Google Scholar
  87. Müller K, Homberg V, Lenard HG (1991a) Magnetoelectric Stimulation of motor cortex and nerve roots in children. Maturation of cortico-motoneural projections. Electro- encephalogr Clin Neurophysiol 81: 63-70Google Scholar
  88. Müller K, Homberg V, Lenard HG (1991b) Maturation of lower extremity EMG responses to postural perturbations. Relationship of response latencies to development of fastest central and peripheral efferents. Exp Brain Res 84: 444-452PubMedGoogle Scholar
  89. Müller K, Homberg V, Coppenrath P, Lenard HG (1990) Maturation of set-modulation of lower extremity EMG responses to postural perturbations. Neuropediatrics 23: 82 - 91Google Scholar
  90. Radtke HW (1969) Motorische Nervenleitgeschwindigkeit bei normalen Säuglingen und Kindern. Helv Paediat Acta 4: 390 - 398Google Scholar
  91. Rothwell JC, Thompson PD, Day BL, Dick JPR, Kachi T, Cowan JMA, Marsden CD (1987) Motor cortex stimulation in intact man. I. General characteristics of EMG responses in different muscles. Brain 110: 1173-1190PubMedGoogle Scholar
  92. Scammon Re (1933) Growth and development of the child. Part II, Anatomy and physiology. The central nervous system. In: White House Conference on Child Health and Protection, The Century, New York London, pp 176 - 190Google Scholar
  93. Thomas JE, Lambert EH (1960) Ulnar nerve conduction velocity and H-reflex in infants and children. J Appl Physiol 15: 1 - 9PubMedGoogle Scholar
  94. Yakovlev PI, Roche Lecours A (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, Oxford Edinburgh, pp 3 - 70Google Scholar
  95. Zhu Y, Georgesco M, Cadilhac J (1987) Normal latency values of early cortical somatosensory evoked potentials in children. Electroencephalogr Clin Neurophysiol 68: 471 - 474PubMedGoogle Scholar
  96. Amassian V E, Cracco J B, Cracco R Q, Eberle L, Maccabee PJ, Rudell A (1987) Suppression of human visual perception with the magnetic coil over occipital cortex. J Physiol 390: 24 PGoogle Scholar
  97. Amassian V E, Cracco J B, Cracco R Q, Eberle L, Maccabee P J, Rudell A (1988) Suppression of human visual perception with the magnetic coil over occipital cortex. J Physiol 398: 408 PGoogle Scholar
  98. Amassian V E, Cracco R Q, Maccabee P J, Cracco J B, Rudell A, Eberle L (1989) Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr Clin Neurophysiol 74: 458–462PubMedGoogle Scholar
  99. Amassian V E, Maccabee P J, Cracco R Q, Cracco J B (1990) Basic mechanisms of magnetic coil excitation of nervous system in humans and monkeys: application in focal stimulation of different cortical areas in humans. In: Chokroverty S (ed) Magnetic stimulation in clinical neurophysiology. Butterworth, Boston, pp 99–101Google Scholar
  100. Aschoff J C (1974) Reconsideration of the oculomotor pathway. In: Schmitt W O, Worden F G (eds) Neurosciences. Third study program. MIT Press, Cambridge, pp 305–310Google Scholar
  101. Baker C L, Hess R F, Zihl J J (1991). Residual motion perception in a “motion-blind” patient, assessed with limited-lifetime random dot stimuli. J Neurosci 11:454–461 Barlow HB, Kohn HL, Walsh EG (1947) Visual sensations aroused by magnetic fields. Am J Physiol 148: 372–375Google Scholar
  102. Beckers G (1990) Selektive Wirkung der transkraniellen Magnet-Stimulation auf die visuelle Wahrnehmung. Psychol. Diplomarbeit, Universität DüsseldorfGoogle Scholar
  103. Beckers G, Hömberg V (1990a) Motion blurring induced by transcranial magnetic stimulation to occipital cortex in man. Perception 19: 371 PGoogle Scholar
  104. Beckers G, Hömberg V (1990b) Transcranial magnetic brain stimulation of human occipital cortex. Eur J Neurosci [Suppl 4]: 308 PGoogle Scholar
  105. Beckers G, Hömberg V (1991a) Impairment of visual perception and visual short term memory scanning by transcranial magnetic stimulation of occipital cortex. Exp Brain Res 87: 421–432PubMedGoogle Scholar
  106. Beckers G, Hömberg V (1991b) The influence of transcranial magnetic brain stimulation over human peristriate cortex on visual motion perception. Eur J Neurosci [Suppl 4]: 84 PGoogle Scholar
  107. Beer B (1902) Ueber das Auftreten einer objectiven Lichtempfindung im magnetischen Felde. Klin Wochenschr 15: 108–109Google Scholar
  108. Benecke R, Meyer B-U, Schönle P W, Conrad B (1988) Transcranial magnetic stimulation of the human brain: responses in muscles supplied by cranial nerves. Exp Brain Res 71: 623–632PubMedGoogle Scholar
  109. Breitmeyer B G (1984) Visual masking. Oxford University Press, New YorkGoogle Scholar
  110. Brindley G S (1982) Effects of electrical stimulation of the visual cortex. Human Neurobiol 1: 281–283Google Scholar
  111. Brindley G S, Lewin W S (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol 196: 479–493PubMedGoogle Scholar
  112. Cowey A, Rolls E T (1974) Human cortical magnification factor and its relation to visual acuity. Exp Brain Res 21: 447–454PubMedGoogle Scholar
  113. Cunningham V J, Deiber M-P, Frackowiak R S J et al. (1990) The motion area (area V5) of human visual cortex. J Physiol 423: 101 PGoogle Scholar
  114. d’Arsonval A (1896) Dispositifs pour la mesure des courants alternatifs de toutes frequences. Compt Rend Soc Biol 2: 450–451Google Scholar
  115. Day B L, Rothwell J C, Thompson P D, Maertens de Nordhout A, Nakashima K, Shannon K, Marsden C D (1989) Delay in the execution of voluntary movement by electrical or magnetic brain stimulation in the intact man. Evidence for the storage of motor programmes in the brain. Brain 112: 649–663Google Scholar
  116. Day B L, Dressler D, Hess C W et al. (1990) Erratum: Direction of current in magnetic stimulating coils used for percutaneous activation of brain, spinal cord and peripheral nerve. J Physiol 430: 617Google Scholar
  117. Dobelle W H, Mladejovsky M G, Evans I R, Roberts T S, Girvin I T (1976) Braille reading by a blind volunteer by visual cortex stimulation. Nature 259: 111–112PubMedGoogle Scholar
  118. Dunlap R (1911) Visual sensations from the alternating magnetic field. Science 33: 68–71PubMedGoogle Scholar
  119. Foerster O (1929) Beiträge zu Pathophysiologie der Sehbahn und der Sehsphäre. J Psychol Neurol (Leipzig) 39: 463–485Google Scholar
  120. Holmes G (1945) Ferrier Lecture: The organization of the visual cortex in man. Proc R Soc 132: 318–361Google Scholar
  121. Hurlbert A, Poggio T (1985) Spotlight on attention. TINS 7: 309–311Google Scholar
  122. Kölmel H W (1988) Die homonymen Hemianopsien. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  123. Loeb G E (1991) Visual prostheses. Third IBRO World Congress of Neuroscience, Montreal (Canada) W2: 7 PGoogle Scholar
  124. Lueck C J, Zeki S, Friston K J et al. (1990) The colour centre in the cerebral cortex of man. Nature 340: 386–389Google Scholar
  125. Magnussen S, Mathiesen R (1989) Detection of moving and stationary gratings in the absence of striate cortex. Neuropsychologia 27: 725–728PubMedGoogle Scholar
  126. Magnusson C E, Stevens H C (1911) Visual sensations caused by the changes in the strenght of a magnetic field. Am J Physiol 29: 124–136Google Scholar
  127. Magnusson C E, Stevens H C (1914) Visual sensations created by a magnetic field. Phil Mag 28: 188–207Google Scholar
  128. Merton P A, Morton H B (1980) Electrical stimulation of human motor and visual cortex through the scalp. J Physiol 305: 9–10 PGoogle Scholar
  129. Meyer B-U, Kloten H, Britton TC, Benecke R (1990a) Technical approaches to hemisphere-selective transcranial magnetic brain stimulation. Electromyogr Clin Neurophysiol 30: 311–318PubMedGoogle Scholar
  130. Meyer B-U, Britton T C, Benecke R (1990b) Magnetic stimulation of the corticonuclear system and of proximal cranial nerves in humans. In: Berardelli A, Benecke R, Manfredi M, Marsden CD (eds) Motor disturbances II. Academic Press, London, pp 235–248Google Scholar
  131. Meyer B-U, Britton T C, Kloten H, Steinmetz H, Benecke R (1991a) Coil placement in magnetic brain stimulation related to skull and brain anatomy. Electroencephalogr Clin Neurophysiol 81: 38–46PubMedGoogle Scholar
  132. Meyer B-U, Diehl R R, Steinmetz H, Britton T C, Benecke R (1991b) Magnetic stimuli applied over motor cortex and visual cortex: influence of coil position and field polarity on motor responses, phosphenes, and eye movements. In: Levy W J, Cracco R Q, Barker A T, Rothwell J C (eds) Magnetic motor stimulation: basic principles and clinical experience. Electroencephalogr Clin Neurophysiol [Suppl 43]:121–134Google Scholar
  133. Meyer B-U, Diehl R R (1992) Untersuchung des visuellen Systems mit der transkraniellen Magnetstimulation. Nervenarzt 63: 328–334PubMedGoogle Scholar
  134. Müri R M, Hess C W, Meienberg 0 (1991) Transcranial stimulation of the human frontal eye field by magnetic pulses. Exp Brain Res 86: 219–223Google Scholar
  135. Penfield W, Boldrey E (1937) Somatic motor sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60: 389–443Google Scholar
  136. Penfield W, Perot P (1963) The brain’s record of auditory and visual experience. Brain 86: 596–696Google Scholar
  137. Penfield W, Rasmussen T (1950) The cerebral cortex of man. A clinical study of localization of function. Macmillan, New YorkGoogle Scholar
  138. Priori A, Bertolasi L, Rothwell J C, Day B L, Marsden C D (1991a) Human saccadic reaction time is delayed by transcranial magnetic stimulation. J Physiol 435: 52 PGoogle Scholar
  139. Priori A, Bertolasi L, Rothwell J C, Day B L, Marsden C D (1991b) Evidence that trans-cranial magnetic stimulation delays saccadic eye movements by interfering with activity in occulomotor areas of cortex. J Physiol 438: 302 PGoogle Scholar
  140. Riddoch G (1917) Dissociation of visual perceptions due to occipital injuries, with especial reference to appreciation of movement. Brain 40: 17–57Google Scholar
  141. Robinson D A, Fuchs A F (1967) Frontal lobe stimulation and saccadic eye movements. Proc Ann Eng Med Biol 9: 6 PGoogle Scholar
  142. Stensaas S S, Eddington D A, Dobelle W H (1974) The topography and variability of the primary visual cortex in man. Neurosurg 40: 747–755Google Scholar
  143. Sternberg S (1966) High speed scanning in human memory. Science 153: 652–654PubMedGoogle Scholar
  144. Thompson S P (1910) A physical effect of an alternating magnetic field. Proc R Soc Lond (Biol) 82: 396–399Google Scholar
  145. Volkmann F C (1986) Human visual suppression. Vision Res 26: 1401–1416PubMedGoogle Scholar
  146. Walsh P (1946) Magnetic stimulation of the human retina. Fed Proc 5: 109–110Google Scholar
  147. Wessel K, Kömpf D, Klostermann W, Moser A (1991) Lack of oculomotor response after transcranial magnetic stimulation. Neuroophthalmology 11: 199–208Google Scholar
  148. Zeki S (1990a) A century of achromatopsia. Brain 113: 1721–1777PubMedGoogle Scholar
  149. Zeki S (1990b) The motion pathways of the visual cortex. In: Blakemore C (ed) Vision coding and efficency, Cambridge University Press, Cambridge, pp 321–345Google Scholar
  150. Zeki S (1991) Cerebral akinetopsia. Brain 114: 811–824PubMedGoogle Scholar
  151. Zeki S, Watson J D G, Lueck C J, Friston K J, Kennard C, Frackowiak R S J (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11: 641–649PubMedGoogle Scholar
  152. Zeki S M (1971) Cortical projections from two peristriate areas in the monkey. Brain Res 34: 19–35PubMedGoogle Scholar
  153. Zeki S M (1974) Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J Physiol 236: 549–573PubMedGoogle Scholar
  154. Zihl J, von Cramon D J, Mai N (1983) Selective disturbance of movement vision after bilateral brain damage. Brain 106: 313–340PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Bernd-Ulrich Meyer
    • 1
  1. 1.Neurologische KlinikTU MünchenMünchen 80Deutschland

Personalised recommendations