Skip to main content

Wirkungsmechanismen klinisch gebräuchlicher Antiepileptika

  • Conference paper
Aktuelle Neuropädiatrie 1986
  • 29 Accesses

Zusammenfassung

Im Zentrum jeder epileptischen Manifestation steht die gestörte Funktion zerebraler Neuronen. Charakteristisch für das „epileptische“ Neuron ist dabei die abnorme Labilität des Membranpotentials mit einer Neigung zu Spontanentladungen. Jedes Neuron kann unter pathophysiologischen Bedingungen epileptisch werden durch

  1. 1.

    Störung spezifischer Membranfunktionen,

  2. 2.

    Störung des extra- und intrazellulären Ionenhaushalts,

  3. 3.

    Depolarisation der Zellmembran als Folge einer gesteigerten Konzentration exzitatorischer oder Mangel an inhibitorischen Transmittersubstanzen oder

  4. 4.

    Fehlen normaler inhibitorischer Einflüsse von seiten besonderer Nervenzellen mit inhibitorischer Funktion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abdul-Ghani AS, Coutinho-Netto J, Druce D, Bradford HF (1981) Effects of anticonvulsants on the in vivo and in vitro release of GABA. Biochem Pharmacol 30: 363–368

    Article  PubMed  CAS  Google Scholar 

  • Baldino F, Geller HM (1981) Sodium valproate enhancement of y-aminobutyric acid (GABA) inhibition: electrophysiological evidence for anticonvulsant activity. J Pharmacol Exp Ther 217: 445–450

    CAS  Google Scholar 

  • Barker JL, Macdonald JF, Mathers DA, McBurney RN, Study RE (1981) Convulsant and anticonvulsant pharmacology of cultured mouse spinal neurons. In: Morselli PL, Lloyd KG, Löscher W, Meldrum B, Reynolds EH (eds) Neurotransmitters, seizures and epilepsy. Raven, New York, pp 49–58

    Google Scholar 

  • Barker JL, Owen DG, Segal M (1984) Clinically important drugs have opposing actions on the excitability of cultured mammalian neurons. In: Fariello RG, Morselli PL, Lloyd KG, Quesney LF, Engel J (eds) Neurotransmitters, seizures and epilepsy, vol II. Raven, New York, pp 153–166

    Google Scholar 

  • Barnes DM, Dichter MA (1984) Effects of ethosuximide and tetramethylsuccinimide on cultured cortical neurons. Neurology 34: 620–625

    Article  PubMed  CAS  Google Scholar 

  • Battistini L, Varotto M, Berlese G, Roman G (1984) Effects of some anticonvulsant drugs on brain GABA level and GAD and GABA-T activities. Neurochem Res 9: 225–231

    Article  Google Scholar 

  • Bemasconi R, Schmutz M, Martin P, Hauser K (1984) GABA hypothesis for the mechanism of action of antiepileptic drugs: its usefulness and limitations. In: Fariello RG, Morselli PL, Lloyd KG, Quesney LF, Engel J (eds) Neurotransmitters, seizures and epilepsy, vol II. Raven, New York, pp 95–105

    Google Scholar 

  • Boer T de, Stoof JC, Duijn N van (1982) The effects of convulsant and anticonvulsant drugs on the release of radiolabeled GABA, glutamate, noradrenaline, serotonin and acetylcholine from rat cortical slices. Brain Res 253: 153–160

    Article  PubMed  Google Scholar 

  • Braestrup C, Squires RF (1977) Specific benzodiazepine receptors in rat brain characterized by high-affinity 3H-diazepam binding. Proc Natl Acad Sci USA 74: 3805–3809

    Article  PubMed  CAS  Google Scholar 

  • Buchhalter JR, Dichter MA (1986) Effects of valproic acid in cultured mammalian neurons. Neurology 36: 259–262

    Article  PubMed  CAS  Google Scholar 

  • Chapman AG, Riley K, Evans MC, Meldrum BS (1982) Acute effects of sodium valproate and -vinyl GABA on regional amino acid metabolism in the rat brain: incorporation of 2-(14C)glucose into amino acids. Neurochem Res 7: 1089–1105

    Article  PubMed  CAS  Google Scholar 

  • Costa E, Guidotti A, Toffano G (1978) Molecular mechanisms mediating the action of diazepam on GABA receptors. Br J Psychiatry 133: 239–248

    Article  PubMed  CAS  Google Scholar 

  • Deisz, RA, Lux HD (1977) Diphenylhydantoin prolongs postsynaptic inhibition and iontophoretic GABA action in the crayfish stretch receptor. Neurosci Lett 5: 199–203

    Article  PubMed  CAS  Google Scholar 

  • Dragunow M (1986) Adenosine: the brain’s natural anticonvulsant? Trends Pharmacol Sci 7: 128–130

    Article  CAS  Google Scholar 

  • Essman WB (1976) Regional differences in GABA uptake. Neurology 26: 1184–1186

    Article  PubMed  CAS  Google Scholar 

  • Ferrendelli JA, Daniels-McQueen S (1982) Comparative actions of phenytoin and other anticonvulsant drugs on potassium-and veratridine-stimulated calcium uptake in synaptosomes. J Pharmacol Exp Ther 220: 29–34

    PubMed  CAS  Google Scholar 

  • Fohlmeister JF, Adelman Jr WJ, Brennan JJ (1984) Excitable channel currents and gating times in the presence of anticonvulsant ethosuximide and valproate. J Pharmacol Exp Ther 230: 75–81

    PubMed  CAS  Google Scholar 

  • Frey HH, Löscher W (1980) Kann Primidon mehr als Phenobarbital? Versuch einer pharmakologischen Analyse. Nervenarzt 51: 359–362

    PubMed  CAS  Google Scholar 

  • Gent JP, Phillips NI (1980) Sodium di-n-propylacetate (valproate) potentiates responses to GABA and muscimol on single central neurons. Brain Res 197: 275–278

    Article  PubMed  CAS  Google Scholar 

  • Glaser GH, Penry JK, Woodbury DM (1980) Antiepileptic drugs - mechanisms of action. Raven, New York

    Google Scholar 

  • Haefely W (1983) The biological basis of benzodiazepine actions. The benzodiazepines today–two decades of research and clinical experience. J Psychoactive Drugs 15: 19–39

    Article  PubMed  CAS  Google Scholar 

  • Harris M, Hopkin JM, Neal MJ (1973) Effect of centrally acting drugs on the uptake of yaminobutyric acid ( GABA) by slices of rat cerebral cortex. Br J Pharmacol 47: 229–233

    PubMed  CAS  Google Scholar 

  • Harrison NL, Simmonds MA (1982) Sodium valproate enhances responses to GABA receptor activation only at high concentrations. Brain Res 250: 201–204

    Article  PubMed  CAS  Google Scholar 

  • Herz A (1970) Synaptische Überträgersubstanzen und Krampf. Pharmakopsychiatrie Neuro-Psychopharmakol 3: 134–150

    Google Scholar 

  • Higuchi T, Yamazaki O, Takazawa A et al. (1986) Effects of carbamazepine and valproic acid on brain immunoreactive somatostatin and y-aminobutyric acid in amygdaloid-kindled rats. Eur J Pharmacol 125: 169–175

    Article  PubMed  CAS  Google Scholar 

  • Jones GL, Woodbury DM (1985) Biochemistry. In: Frey HH, Janz J (eds) Antiepileptic drugs. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Jones GL, Woodbury DM (1985) Handbook of experimental pharmacology, vol 74, pp 245–263

    Article  CAS  Google Scholar 

  • Juma K (1985) Electrophysiological effects of antiepileptic drugs. In: Frey HH, Janz D (eds) Antiepileptic drugs. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Juma K (1985) Handbook of experimental pharmacology, vol 74, pp 611–658

    Article  Google Scholar 

  • Kerwin RW, Olpe HR, Schmutz M (1980) The effect of sodium-n-dipropyl acetate on y-aminobutyric-acid-dependent inhibition in the rat cortex and substantia nigra in relation to its anticonvulsant activity. Br J Pharmacol 71: 545–551

    PubMed  CAS  Google Scholar 

  • Krogsgaard-Larsen P (1981) y-Aminobutyric acid agonists, antagonists, and uptake inhibitors. Design and therapeutic aspects. J Med Chem 24: 1377–1383

    Article  PubMed  CAS  Google Scholar 

  • Lacolle JY, Ferrandes B, Eymard P (1978) Profile of anticonvulsant activity of sodium valproate. Role of GABA. In: Meinardi H, Rowan AJ (eds) Advances in epileptology. Psychology, Pharmacotherapy and New Diagnostic Approaches. Swets & Zeitlinger, Amsterdam, pp 162–167

    Google Scholar 

  • Löscher W (1975) Einfluß klinisch gebräuchlicher Antikonvulsiva auf das y-AminobuttersäureSystem bei der Maus. Inauguraldissertation, Fachbereich Veterinärmedizin der Freien Universität Berlin

    Google Scholar 

  • Löscher W (1980 a) Comparative study of the inhibition of GABA aminotransferase by different anticonvulsant drugs. Arch Int Pharmacodyn 243:48–55

    PubMed  Google Scholar 

  • Löscher W (1980 b) Effect of inhibitors of GABA transaminase on the synthesis, binding, uptake, and metabolism of GABA. J Neurochem 34:1603–1608

    Article  PubMed  Google Scholar 

  • Löscher W (1981 a) Zum Wirkungsmechanismus der Antiepileptika. Tierexperimentelle Befunde zur Bedeutung von Neurotransmittem. Nervenarzt 52: 61–67

    PubMed  Google Scholar 

  • Löscher W (1981b) Valproate-induced changes in GABA metabolism at the subcellular level. Biochem Pharmacol 30: 1364–1366

    Article  PubMed  Google Scholar 

  • Löscher W ( 1981 c) GABA in plasma, CSF and brain of dogs during acute and chronic treatment with y-acetylenic GABA and valproic acid In Okada Y, Roberts E (eds) Problems in GABA research. From brain to bacteria. Exerpta Medica, Amsterstam, pp 102–109

    Google Scholar 

  • Löscher W (1985) Valproic acid. In: Frey HH, Janz D (eds) Antiepileptic drugs. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Löscher W (1985) Handbook of experimental pharmacology, vol 74, pp 508–536

    Article  Google Scholar 

  • Löscher W, Frey HH (1977) Zum Wirkungsmechanismus von Valproinsäure. Arzneimittelforsch 27: 1081–1082

    PubMed  Google Scholar 

  • Löscher W, Siemes H (1985) Cerebrospinal fluid y-aminobutyric acid levels in children with different types of epilepsy: effect of anticonvulsant treatment. Epilepsia 26: 314–319

    Article  PubMed  Google Scholar 

  • Löscher W, Schwark WS (1985) Development of tolerance to the anticonvulsant effect of diazepam in amygdala-kindled rats. Exp Neurol 90: 373–384

    Article  PubMed  Google Scholar 

  • Löscher W, Vetter M (1985) In vivo effects of aminooxyacetic acid and valproic acid on nerve terminal (synaptosomal) GABA levels in discrete brain areas of the rat. Biochem Pharmacol 34:1747–1756

    Article  PubMed  Google Scholar 

  • Lust WD, Kupferberg HJ, Passonneau JV, Penry JK (1976) On the mechanism of action of sodium valproate: the relationship of GABA and cyclic GMP in anticonvulsant activity. In: Legg NJ (ed) Clinical and pharmacological aspects of sodium valproate (Epilim) in the treatment of epilepsy. MCS Consultants, Tunbridge Wells, pp 123–129

    Google Scholar 

  • Macdonald RL, Bergey GK (1979) Valproic acid augments GABA-mediated postsynaptic inhibition in cultured mammalian neurons. Brain Res 170: 558–562

    Article  PubMed  CAS  Google Scholar 

  • Macdonald RL, McLean MJ (1986) Anticonvulsant drugs: mechanism of action. Adv Neurol 44: 713–736

    PubMed  CAS  Google Scholar 

  • Martini A, Sacerdote P, Mantegazza P, Panerei AE (1984) Antiepileptic agents affect hypothalamic 13-endorphin concentrations. J Neurochem 43: 871–873

    Article  PubMed  CAS  Google Scholar 

  • McLean MJ, Macdonald RL (1986) Sodium valproate, but not ethosuximide, produces use-and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 237: 1001–1011

    PubMed  CAS  Google Scholar 

  • Meldrum B (1984) Amino acid neurotransmitters and new approaches to anticonvulsant drug action. Epilepsia 25 [Suppl 2]: 140–149

    Article  Google Scholar 

  • Meldrum BS, Anlezark GH, Ashton CG, Horton RW, Sawaya CB (1977) Neurotransmitters and anticonvulsant drug action. In: Majkowski J (ed) Post-traumatic epilepsy, pharmacological of epilepsy. Polish Chapter of ILEA, Warsaw, pp 139–153

    Google Scholar 

  • Möhler H, Okada T (1977) Benzodiazepine receptors: demonstration in the central nervous system. Science 198: 849–851

    Article  PubMed  Google Scholar 

  • Morselli PL, Baruzzi A, Gern M, Bossi L, Porta M (1977) Carbamazepine and carbamazepine-10,11epoxide concentrations in human brain. Br J Clin Pharmacol 4: 535–541

    PubMed  CAS  Google Scholar 

  • Nau H, Löscher W (1982) Valproic acid: brain and plasma levels of the drug and its metabolites, anticonvulsant effects and y-aminobutyric acid ( GABA) metabolism in the mouse. J Pharmacol Exp Ther 220: 654–659

    PubMed  CAS  Google Scholar 

  • Nosek TM (1981) How valproate and phenytoin affect the ionic conductances and active transport characteristics of the crayfish giant axon. Epilepsia 22: 651–665

    Article  PubMed  CAS  Google Scholar 

  • Olsen RW (1981) The GABA postsynaptic membrane receptor-ionophore complex. Site of action of convulsant and anticonvulsant drugs. Mol Cell Biochem 39: 261–279

    Article  PubMed  CAS  Google Scholar 

  • Olsen RW, Ticku MK, Ness PC van, Greenlee D (1978) Effects of drugs on y-aminobutyric acid receptors, uptake, release and synthesis in vitro. Brain Res 139: 277–294

    Article  PubMed  CAS  Google Scholar 

  • Olsen RW, Snowman AM, Lee R, Lomax P, Wamsley JK (1984) Role of the y-aminobutyric acid receptor-ionophore complex in seizure disorders. Ann Neurol 16 [Suppl]: 90–97

    Article  Google Scholar 

  • Patsalos PN, Lascelles PT (1981) Changes in regional brain levels of amino acid putative neurotransmitters after prolonged treatment with the anticonvulsant drugs diphenylhydantoin, phenobarbitone, sodium valproate, ethosuximide, and sulthiame in the rat. J Neurochem 36: 688–695

    Article  PubMed  CAS  Google Scholar 

  • Perlman BJ, Goldstein DB (1984) Membrane-disordering potency and anticonvulsant action of valproic acid and other short-chain fatty acids. Mol Pharmacol 26: 83–89

    PubMed  CAS  Google Scholar 

  • Phillips NI, Fowler LJ (1982) The effects of sodium valproate on y-aminobutyrate metabolism and behavior in naive and ethanolamine-O-sulphate pretreated rats and mice. Biochem Pharmacol 31: 2257–2261

    Article  PubMed  CAS  Google Scholar 

  • Pole P, Möhler H, Haefely W (1974) The effect of diazepam on spinal cord activities: possible sites and mechanism of action. Naunyn Schmiedebergs Arch Pharmacol 284: 319–337

    Article  Google Scholar 

  • Rating D, Siemes H, Löscher W (1983) Low CSF GABA concentration in children with febrile convulsions, untreated epilepsy, and meningitis. J Neurol 230: 217–225

    Article  PubMed  CAS  Google Scholar 

  • Richards JG, Mähler H (1984) Benzodiazepine receptors. Neuropharmacology 23: 233–242

    Article  PubMed  CAS  Google Scholar 

  • Saad SF (1972) Effect of diazepam on y-aminobutyric acid (GABA) content of mouse brain. J Pharm Pharmacol 24: 839–840

    Article  PubMed  CAS  Google Scholar 

  • Saad SF, Elmasry AF, Scott PM (1972) Influence of certain anticonvulsants on the concentrations of y-aminobutyric acid in the central hemispheres of mice. Eur J Pharmacol 17: 386–392

    Article  PubMed  CAS  Google Scholar 

  • Sawaya MCB, Horton RW, Meldrum BS (1975) Effects of anticonvulsant drugs on the cerebral enzymes metabolizing GABA. Epilepsia 16: 649–655

    Article  PubMed  CAS  Google Scholar 

  • Schant CL, Davis FA, Marder V (1974) Effects of carbamazepine on the ionic conductance of Myxicola giant axons. J Pharmacol Exp Ther 189: 538–543

    Google Scholar 

  • Schmutz M, Olpe HR, Koella WP (1979) Central actions of valproate sodium. J Pharm Pharmacol 31: 413–414

    Article  PubMed  CAS  Google Scholar 

  • Simler S, Ciesielski L, Maitre M, Randrianarisoa H, Mandel P (1973) Effect of sodium-ndipropylacetate on audiogenic seizures and brain y-aminobutyric acid level. Biochem Pharmacol 22: 1701–1708

    Article  PubMed  CAS  Google Scholar 

  • Simler S, Ciesielski L, Maitre M, Klein M, Gobaille S, Mandel P (1981) Sur le mécanisme d’action d’un anticonvulsivant, le dipropylacétate de sodium. C R Soc Biol (Paris) 175: 114–119

    CAS  Google Scholar 

  • Slater GE, Johnston D (1978) Sodium valproate increases potassium conductance in aplysia neurons. Epilepsia 19: 379–384

    Article  PubMed  CAS  Google Scholar 

  • Sohn RS, Ferrendelli JA (1976) Anticonvulsant drug mechanisms. Phenytoin, phenobarbital, and ethosuximide and calcium flux in isolated presynaptic endings. Arch Neurol 33: 626–629

    Article  PubMed  CAS  Google Scholar 

  • Squires RF, Casida JE, Richardson M, Saederup E (1983) [35S]t-Butylbicyclophosphorothionate binds with high affinity to brain-specific sites coupled to y-aminobutyric acid-A and ion recognition sites. Mol Pharmacol 23: 326–336

    PubMed  CAS  Google Scholar 

  • Taberner PV, Charington CB, Unwin JW (1980) Effects of GAD and GABA-T inhibitors on GABA metabolism in vivo. Brain Res Bull 5[Suppl 21: 621–625

    Article  Google Scholar 

  • Talbot PA, Alderdice MT (1984) Effects of primidone, phenobarbital and phenylethylmalonamide in the stimulated frog neuromuscular junction. J Pharmacol Exp Ther 228: 121–127

    PubMed  CAS  Google Scholar 

  • Tappaz M, Pacheco H (1973) Effects de convulsivants et d’anticonvulsivants sur la libération spontanée et provocée du GABA 14C par les coupes de cortex cérébral de rats. J Pharmacol (Paris) 4: 433–452

    CAS  Google Scholar 

  • Ticku MK, Davis WC (1981) Effect of valproic acid on (3H)diazepam and (3H)dihydropicrotoxinin binding sites at the benzodiazepine-GABA receptor-ionophore complex. Brain Res 223: 218–222

    Article  PubMed  CAS  Google Scholar 

  • Vajda F, Williams FM, Davidson S, Falconer MA, Breckenridge A (1974) Human brain, cerebrospinal fluid, and plasma concentrations of diphenylhydantoin and phenobarbital. Clin Pharmacol Ther 15: 597–603

    PubMed  CAS  Google Scholar 

  • Vajda FJE, Donnan GA, Phillips J, Bladin PF (1981) Human brain, plasma, and cerebrospinal fluid concentration of sodium valproate after 72 hours of therapy. Neurology 31: 486–487

    Article  PubMed  CAS  Google Scholar 

  • Weinberger J, Nicklas WJ, Berl S (1976) Mechanism of action of anticonvulsants. Role of the differential effects on the active uptake of putative neurotransmitters. Neurology 26: 162–166

    Article  PubMed  CAS  Google Scholar 

  • Whittle SR, Turner AJ (1981) Anti-convulsants and brain aldehyde metabolism. Inhibitory characteristics of ox brain aldehyde reductase. Biochem Pharmacol 30: 1191–1196

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Löscher, W. (1987). Wirkungsmechanismen klinisch gebräuchlicher Antiepileptika. In: Fichsel, H. (eds) Aktuelle Neuropädiatrie 1986. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-47569-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-47569-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-47571-9

  • Online ISBN: 978-3-642-47569-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics