Skip to main content

Optical Fibres with Organic Crystalline Cores

  • Conference paper
Book cover Nonlinear Optics: Materials and Devices

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 7))

Abstract

Research on monomode fibre systems has resulted in the development of fibres with very large bandwidths and transmission losses close to the limit set by Rayleigh scatter and IR absorption, as well as semiconductor lasers emitting high powers (> 10 mW). Work on coherent transmission systems has shown that, using lasers with extremely narrow linewidths (< 1 MHz), near quantum noise limited detection is possible. These advantages can only be fully exploited by using all optical systems which do not have the speed and bandwidth limitations of electronic components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Singh in Handbook of Lasers with Selected Data on Optical Technology Ed. R.J. Pressely ( The Chemical Rubber Co., Cleaveland, 1971 ).

    Google Scholar 

  2. D.J. Williams: Optical Properties of Organic and Polymeric Materials ( American Chemical Society, Washington DC, 1983 ).

    Book  Google Scholar 

  3. A. Carenco, J. Jerphagnon and A. Perigaud: J. Chem. Phys., 66, 3806 (1977).

    Article  ADS  Google Scholar 

  4. K. Jain, J.I. Crowley, G.H. Hewig, Y.Y. Cheng and R.J. Twieg, Optics and Laser Tech., 297 (1981).

    Google Scholar 

  5. B.F. Levine, C.G. Bethea, C.D. Thurmond, R.T. Lynch and J.L. Bernstein: J. Appl. Phys., 50, 2523 (1979).

    Article  ADS  Google Scholar 

  6. J.L. Oudar and R-Hierle: J. Appl. Phys., 48, 2699 (1977).

    Article  ADS  Google Scholar 

  7. G.R. Meredith: "Design and characterization of molecular and polymeric non-linear materials: success and pitfalls", in ref 2, p32.

    Google Scholar 

  8. G.H. Hewig and K. Jain: Optics Comnn., 47, 347 (1983).

    Google Scholar 

  9. S. Tomaru, M. Kawachi and M. Kobyashi: lSptics Cum., 50, 154 (1984).

    Google Scholar 

  10. P. Vidakovic, J. Badan, R. Hierle and J. Zyss: "Highly efficient organic structures for wave-guided nonlinear optics", PD-05, OSA 1984 Proc. XIII Quant. Electron. Conf. (post deadline papers).

    Google Scholar 

  11. J.L. Stevenson and R.B. Dyott: Electron. Letts., 10, 449 (1974).

    Article  ADS  Google Scholar 

  12. J.L. Stevenson: J. Crystal Growth, 37, 116 (1977)7

    Google Scholar 

  13. F.H. Babai, R.B. Dyott and E.A.D. Wh-fte: J. Mats Sci., 12, 869 (1977).

    Google Scholar 

  14. F.H. Babai and E.A.D. White: J. Crystal Growth, 49, 2457 1980 ).

    Google Scholar 

  15. D.W.C. Ballentyne and S.M. Al-Shukri: J. Crystal Growth, 48, 491 (1980).

    Article  ADS  Google Scholar 

  16. Catalogue of Optical Glasses, Jenaer Glaswerk, Schott and Gen., Mainz, W. Germany.

    Google Scholar 

  17. Hoya Optical Glass Catalogue, Hoya Corporation, Akishima-shi, Tokyo, Japan.

    Google Scholar 

  18. D.W.C. Ballentyne and S.M. Al-Shukri: J. Crystal Growth, 68, 651 (1984).

    Article  ADS  Google Scholar 

  19. B.K. Nayar: "Optical second harmonic generation in crystal=cored fibers", in OSA Digest 6th Topical Mtn. on Integrated and Guided Wave Optics, ThA2, 1982.

    Google Scholar 

  20. B.K. Nayar: "Nonlinear optical interactions in organic crystal cored fibres", in ref 2.

    Google Scholar 

  21. D. Marcuse: Theory of Dielectric Optical Waveguides ( Academic, New York 1974 ).

    Google Scholar 

  22. J.E. Midwinter: Optical Fibers for Transmission (Wiley, New York).

    Google Scholar 

  23. J.R. Cozens: Electronics Letts., 12, 413 (1976).

    Google Scholar 

  24. D. Gloge: Appl. Optics, 10, 2252 -(T971).

    Google Scholar 

  25. A.W. Snyder: IEEE Trans.l4icrowave Theory and Tech., MTT-17 1310 (1969).

    Google Scholar 

  26. A. Yariv: Quantum Electronics (Wiley, New York 1975), chap. 19.

    Google Scholar 

  27. P.D. Maker, R.W. Terhune, M. Nisenoff and C.M. Savage: Phys. Rev. Letts., 18, 21 (1962).

    Article  ADS  Google Scholar 

  28. N. Uesugi and T. Kimura: Appl. Phys. Letts., 29, 572 (1976).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nayar, B.K. (1986). Optical Fibres with Organic Crystalline Cores. In: Flytzanis, C., Oudar, J.L. (eds) Nonlinear Optics: Materials and Devices. Springer Proceedings in Physics, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-47547-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-47547-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-47551-1

  • Online ISBN: 978-3-642-47547-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics