Skip to main content

Zusammenfassung

Seit vielen Jahren gehört Theophyllin zur Basismedikation der Behandlung der obstruktiven Komponente von Atemwegserkrankungen. Die weit verbreitete Anwendung dieses Medikamentes einerseits und die enge therapeutische Breite andererseits gaben die Anregung zur Entwicklung von Methoden, um die Substanz in biologischem Material nachweisen zu können. Eine Fülle von Publikationen informiert über die Pharmakokinetik von Theophyllin unter den verschiedensten Bedingungen. Theophyllin gehört zu den Medikamenten, deren Plasmaspiegelbestimmung zur Unterstützung bei der Dosisfindung herangezogen wird. Nach einmaliger intravenöser Gabe wie auch nach oraler Applikation hatte sich die Kinetik des Theophyllin unter der Annahme von linearen Prozessen beschreiben lassen. Jedoch wurden später Befunde während der therapeutischen Einstellung von Patienten erhoben, aus welchen geschlossen wurde, daß eine nicht lineare Kinetik des Theophyllin vorliegen müsse [4–7]. Die Elimination von Theophyllin wird im wesentlichen durch die Metabolisierung des Theophyllin zu den Metaboliten 1,3-Dimethylharnsäure, 1-Methylharnsäure und 3-Methylxantin bestimmt. Quantitativ spielt dabei die 1,3-Dimethylharnsäure die größte Rolle. Es wurde deshalb die Bildung und Ausscheidung dieses Hauptmetaboliten untersucht, nachdem eine HPLC-Methode entwickelt worden war, die es ermöglichte, diesen Metaboliten quantitativ zu erfassen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Hattingberg HM von, Brockmeier D, Kreuter G (1977) Eur J Clin Pharmacol 11: 381–388

    Google Scholar 

  2. Hendeles L, Weinberger M, Johnson G (1978) Pharmacokinetics 3: 294–312

    CAS  Google Scholar 

  3. Hengen N, Hengen M (1978) Proceedings Koenigsteiner Chromatographie-Tage. 3: 92–101

    Google Scholar 

  4. Lesko LJ (1979) Clin Pharmacokinet 4: 449–459

    PubMed  CAS  Google Scholar 

  5. Sarrazin E, Hendeles L, Weinberger M, Muir K, Riegelman S (1980) J Ped 97: 825–828

    CAS  Google Scholar 

  6. Shen DD, Fixley M, Azarnoff DL (1978) J Pharm Sci 67: 916–919

    PubMed  CAS  Google Scholar 

  7. Weinberger M, Ginchansky E (1977) J Pediatr 91: 820–824

    PubMed  CAS  Google Scholar 

  8. Schultze-Werninghaus G, Meier-Sydow J (1982) In: Rietbrock N, Woodcock GB, Staib AH (Hrsg) Proc. 4. Symposium „Methoden in der Klinischen Pharmakologie — Theophyllin und andere Methylxanthine“. Vieweg, Wiesbaden, S 199

    Google Scholar 

  9. Oellerich M, Külpmann WR, Beneking M, Sybrecht GW, Staib AH, Schuster R (1982) Fresenius Z Anal Chem 311: 355

    Google Scholar 

  10. Staib AH, Klemme HH, Heinz N (1982) In: Rietbrock N, Woodcock GB, Staib AH (Hrsg) Proc. 4. Symposium „Methoden in der Klinischen Pharmakologie — Theophyllin und andere Methylxanthine“. Vieweg, Wiesbaden, S 273

    Google Scholar 

  11. Beermann B, Groschinsky-Grind M (1980) Clinical pharmacokinetics of diuretics. Clin Pharmacokinet 5: 221–245

    PubMed  CAS  Google Scholar 

  12. Brater DC, Anderson SA, Strowig S (1979) Azosemide, a “loop” diuretic, and furosemide. Clin. Pharmacol Ther 25: 435–439

    PubMed  CAS  Google Scholar 

  13. Krück F, Bablok W, Besenfelder E, Betzien G, Kaufmann B (1978) Clinical and pharmacological investigations of the new saluretic azosemide. Eur J Clin Pharmacol 14: 153–161

    PubMed  Google Scholar 

  14. Acocella G, Bonollo L, Mainardi M, Margaroli P, Teneoni LT (1977) Serum and urine concentrations of rifampicin administered by intravenous infusion in man Drug Res 27: 1221–1226

    CAS  Google Scholar 

  15. Acocella G (1978) Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet 3: 108–127

    PubMed  CAS  Google Scholar 

  16. ) A controlled trial by the British Thoracic and Tuberculosis Association: Short course chemotherapy in pulmonary tuberculosis. Lancet 1: 119–124

    Google Scholar 

  17. Conti R, Pagani V, Pallanza R, Perna GC, Mascheretti F, Acocella G (1981) Pharmacokinetic study on intravenous rifampicin in man. Abstracts 12th International Congress of Chemotherapy, Florence, Italy, 19–24 July 1981

    Google Scholar 

  18. Edwards OM, Courtenoy-Evans RJ, Galley JM, Hunter J, Tait AD (1974) Changes in cortisol metabolism following rifampicin therapy. Lancet 2: 549–551

    Google Scholar 

  19. Gelber RH, Gool HC, Rees RJW (1975) The effect of rifampicin on dapsone metabolism. Proc West Pharmacol Soc 18: 330–334

    PubMed  CAS  Google Scholar 

  20. Lecaillon JB, Febvre N, Metayer JP, Souppart C (1978) Quantitative assay of rifampicin and three of its metabolites in human plasma, urine and saliva by high-performance liquid chromatography. J Chromatogr 145: 319–324

    PubMed  CAS  Google Scholar 

  21. Nitti V, Ninni A, Meola G, Juliano A, Curci G (1973) Comparative investigations of the enzyme-inducing activity of rifampicin and barbiturates in man. Chemotherapy 19: 206–210

    PubMed  CAS  Google Scholar 

  22. Nitti V, Virgilio R, Patricolo MR, Juliano A (1977) Pharmacokinetic study of intravenous rifampicin. Chemotherapy 23: 1–6

    PubMed  CAS  Google Scholar 

  23. O’Reilly RA (1974) Interactions of sodium warfarin and rifampicin. Studies in man. Ann Intern Med 81: 337–340

    PubMed  Google Scholar 

  24. Remmer H (1972) Induction of drug metabolizing enzyme system in the liver. Eur J Clin Pharmacol 5: 116–136

    CAS  Google Scholar 

  25. Syvalahti RKG, Pihlajamaki KK, Iisalo EJ (1974) Rifampicin and drug metabolism. Lancet 2: 232–233

    PubMed  CAS  Google Scholar 

  26. Zilly W, Breimer DD, Richter E (1975) Induction of drug metabolism in man after rifampicin treatment measured by increased hexobarbital and tolbutamide clearance. Eur J Clin Pharmacol 9: 219–227

    PubMed  CAS  Google Scholar 

  27. Zilly W, Breimer DD, Richter E (1977) Pharmacokinetic interactions with rifampicin. Clin Pharmacokinet 2: 61–70

    PubMed  CAS  Google Scholar 

  28. Bertino JR (1981) Clinical use of methotrexate with emphasis on use of high doses. Cancer Treat Rep [Suppl 1] 65: 131–135

    Google Scholar 

  29. Goldman IG (1981) Membrane transport considerations in high-dose methotrexate regimens with leucovorin rescue. Cancer Treat Rep [Suppl 1] 65: 13–17

    CAS  Google Scholar 

  30. Przybylski M, Preiß J, Dennebaum R, Fischer J (1982) Identification and quantitation of methotrexate and methotrexate metabolites in clinical high-dose therapy by high-pressure liquid chromatography and field desorption mass spectrometry. Biomed Mass Spectrum 9: 22–32

    CAS  Google Scholar 

  31. Rosenblatt DS, Whitehead VM, Vera N et al. (1978) Prolonged inhibition of DNA synthesis associated with the accumulation of methotrexate polyglutamates by cultured human cells. Mol Pharmacol 14: 1143–1147

    PubMed  CAS  Google Scholar 

  32. Schalhorn A, Sauer H, Wilmanns W et al. (1981) Kinetik der Erythrozyten-MTX-Spiegel nach hochdosierter Therapie. Onkologie 4: 267

    Google Scholar 

  33. White JC (1981) Recent concepts on the mechanism of action of methotrexate. Cancer Treat Rep [Suppl 1] 65: 3–12

    CAS  Google Scholar 

  34. Cowan DH, Bergsagel DE (1971) Intermittent treatment of metastatic melanoma with high-dose 5-(3,3-dimethyl-l-triazeno) imidazole-4-carboxamide (NSC-45 388). Cancer Chemother Rep 55: 175 —181

    Google Scholar 

  35. Montgomery JA (1976) Experimental studies at southern research institute with DTIC (NSC-45 388). Cancer Treat Rep 60: 125–134

    PubMed  CAS  Google Scholar 

  36. Pritchard KJ et al. (1980) DTIC therapy in metastatic malignant melanoma: A simplified dose schedule. Cancer Treat Rep 64: 1123–1126

    PubMed  CAS  Google Scholar 

  37. Carter SK, Crooke ST (1979) Mitomycin C, current status and new developments. Academic Press, New York, p 3

    Google Scholar 

  38. Deisseroth A, Abrams RA (1979) The role of autologous stemm cell reconstitution in intensive therapy for resistant neoplasms. Cancer Treat Rep 63: 461–471

    PubMed  CAS  Google Scholar 

  39. Fuijta H (1971) Comparative studies on the blood level, tissue distribution, excretion and inactivation of anticancer drugs. Jpn J Clin Oncol 12: 151

    Google Scholar 

  40. Gale RP (1980) Autologous bone marrow transplantation in patients with cancer. JAMA 243: 540–542

    CAS  Google Scholar 

  41. den Hartigh J, van Oort WJ, Bocken MCYM, Pinedo HM (1982) High performance liquid chromatographic determination of the antitumor agent mitomycin C in human plasma. Anal Chim Acta (in press)

    Google Scholar 

  42. Kono A, Hara Y, Eguchi S, Tanaka M (1979) Determination of mitomycin C in biomedical specimens by high performance liquid chromatography. J Chromatogr 164: 404–406

    PubMed  CAS  Google Scholar 

  43. Ratanatharathorn V, Karanes Ch, Franklin R, Leichman L, Young JD, Schilcher RB, Hoschner JA, Emmer D, Baker LH (1982) High dose Mitomycin C and autologous bone marrow infusion in refractory malignances — a preliminary report. In: Pinedo HM (ed) Cancer Chemotherapy 1981. The EORTC Cancer Chemotherapy Annual 3. Excerpta Medica, Amsterdam

    Google Scholar 

  44. Schilcher B, Ratanatharathorn V, Hoschner J, Baker LH, Young J (1982) Clinical pharmacokinetics of high dose Mitomycin C — a preliminary report. 16th German Cancer Congress, held Munich, March 1982

    Google Scholar 

  45. Bell JA, Gower AJ, Martin LE, Mills ENC, Smith WP (1981) Interaction of H2-receptor antagonists with drug-metabolizing enzymes. Biochem Soc Trans 9: 113–114

    PubMed  CAS  Google Scholar 

  46. Bisswanger H (1979) Theorie and Methoden der Enzymkinetik. Verlag Chemie, Weinheim Deerfield Beach (Florida) Basel, S 96

    Google Scholar 

  47. Desmond PV, Patwardhan R, Parker R, Schenker S, Speeg KV (1980) The effect of cimetidine and other antihistamines on the elimination of aminopyrine, phenacetine and coffeine. Life Sci 26: 1261–1268

    PubMed  CAS  Google Scholar 

  48. Henry DA, McDonald IA, Kitchingman G, Bell GD, Langman MJS (1980) Cimetidine and ranitidine: comparison of effects on hepatic drug metabolism. Br Med J 281: 775–777 —

    Google Scholar 

  49. Hoensch HP, Hartmann F, Schomerus H, Bieck P, Dölle W (1979) Monooxygenase enzyme activity in alcoholics with varying degrees of liver damage Gut 20: 666–672

    CAS  Google Scholar 

  50. Knodell RG, Holtzman JL, Crankshaw DL, Steele NM, Stanley LN (1982) Drug metabolism by rat and human hepatic microsomes in response to interaction with H2-receptor antagonists. Gastroenterology 82: 84–88

    PubMed  CAS  Google Scholar 

  51. Pelkonen O, Puurunen J (1980) The effect of cimetidine on in vitro and in vivo microsomal drug metabolism in the rat. Biochem Pharmacol 29: 3075–3080

    PubMed  CAS  Google Scholar 

  52. Peterson GR, Hostetler RM, Lehman T, Covault HP (1979) Acute inhibition of oxidative drug metabolism by propoxyphene. Biochem Pharmacol 28: 1783–1789

    PubMed  CAS  Google Scholar 

  53. Puurunen J, Pelkonen 0 (1979) Cimetidine inhibits microsomal drug metabolism in the rat. Eur J Pharm 55: 335–336

    CAS  Google Scholar 

  54. Roberts RK, Grice J, Wood L, Petroff V, McGuffie C (1981) Cimetidine impairs the elimination of theophylline and antipyrine. Gastroenterology 81: 19–21

    PubMed  CAS  Google Scholar 

  55. Schenkman JB, Sligar SG, Cinti DL (1981) Substrate interaction with cytochrome P-450. Pharmacol Ther [B] 12: 43–71

    CAS  Google Scholar 

  56. Speeg KV, Patwardhan RV, Avant GR, Mitchel MC, Schenker S (1982) Inhibition of microsomal drug metabolism by histamine H2-receptor antagonists studied in vivo and in vitro in rodents. Gastroenterology 82: 89–96

    PubMed  CAS  Google Scholar 

  57. Staiger C, Simon B, Walter E, Kather E (1980) Influence of ranitidine on antipyrine pharmacokinetics in healthy volunteers. Dig Dis Sci 25: 894

    PubMed  CAS  Google Scholar 

  58. Somogyi A, Gugler R (1982) Drug interactions with cimetidine. Clin Pharmacokinet 7: 23–41

    PubMed  CAS  Google Scholar 

  59. Puurunen J, Pelkonen 0 (1979) Cimetidine inhibits microsomal drug metabolism in the rat. Eur J Pharmacol 55: 335–336

    CAS  Google Scholar 

  60. Reimann IW, Klotz U, Siems B, Frölich JC (1981) Cimetidine increases steady state plasma levels of propranolol. Br J Clin Pharmacol 12: 785–790

    PubMed  CAS  Google Scholar 

  61. Henry DA, Mac Donald JA, Kitchingman G, Bell GD, Langman MJS (1980) Cimetidine and ranitidine: comparison of effects on hepatic drug metabolism. Br Med J 281: 775–777

    PubMed  CAS  Google Scholar 

  62. Staiger C, Simon B, de Vries J, Kather H, Walter E (1980) Untersuchungen zur Wirkung von Ranitidin auf den Antipyrin-Metabolismus. Z Gastroenterol 18: 601–604

    PubMed  CAS  Google Scholar 

  63. Cleaveland CR, Rangno RE, Shand DG (1972): A standardized isoproterenol sensitivity test. The effects of sinus arrhythmia, atropine and propranolol. Arch Intern Med 130: 47–52

    Google Scholar 

  64. Feely J, Wilkinson GR, Wood AJJ (1981) Reduction of liver blood flow and propranolol metabolism by cimetidine. N Engl J Med 304: 692–695

    PubMed  CAS  Google Scholar 

  65. Feely J, Wilkinson GR, Wood AR (1980) Cimetidine administration results in increased effects of propranolol and higher propranolol levels. Circulation (Abstr) 62: 982

    Google Scholar 

  66. Donovan MA, Heagerty AM, Patel L, Castleden CM, Pohl JF (1981) Cimetidine oral and bioavailability of propranolol. Lancet 1: 164

    PubMed  CAS  Google Scholar 

  67. Regardh CG, Lundborg P, Persson BA (1981) The effect of antacid, metoclopramine, and propantheline on the bioavailability of metoprolol and atenolol. Pharmacol Drug Dispos 2: 79–87

    CAS  Google Scholar 

  68. Kirch W, Köhler H, Mutschier E, Schäfer M (1981a) Pharmacokinetics of atenolol in relation to renal function. Eur J Clin Pharmacol 19: 65–82

    PubMed  CAS  Google Scholar 

  69. Kirch W, Schäfer-Korting M, Axthelm T, Köhler H, Mutschler E (1981b) Interaction of atenolol with concurrent administration of furosemide, calcium or aluminium hydroxide. Clin Pharmacol Ther 30: 429–435

    PubMed  CAS  Google Scholar 

  70. Schäfer M, Geisler HE, Mutschler E (1977) Fluorimetric determination of propranolol and N-desisopropylpropranolol in plasma by direct evaluation of thin-layer chromatograms. J Chromatogr 143: 607–610

    PubMed  Google Scholar 

  71. Schäfer M, Mutschier E (1979a) Fluorimetric determination of oxprenolol and metoprolol in plasma by direct evaluation of thin-layer chromatograms. J Chromatogr 64: 247–252

    Google Scholar 

  72. Schäfer M, Mutschier E (1979b) Fluorimetric determination of atenolol in plasma and urine by direct evaluation of thin-layer chromatograms. J Chromatogr 169: 477–481

    PubMed  Google Scholar 

  73. Mason WD, Wener H, Kochak G, Cohen I, Vell R (1979) Kinetics and absolute bioavailability of atenolol. Clin Pharmacol Ther 25: 408–415

    PubMed  CAS  Google Scholar 

  74. Amery A, de Plaen JF, McAinsh J, Reybrouck T (1977) Relationship between the blood level of atenolol and its pharmacological effect. Clin Pharmacol Ther 21: 691–699

    PubMed  CAS  Google Scholar 

  75. Campell RWF, Talbot RG, Dolder MA (1975) Comparison of procainamid and mexiletine in prevention of ventricular arrhytmias after acute myocardial infarction. Lancet 1: 1257

    Google Scholar 

  76. Dolder M, Campbell RWF, Talbot RG (1976) Häufigkeit und Prophylaxe von ventrikulären Rhythmusstörungen nach akutem Myokardinfarkt. Schweiz Med Wochenschr 106: 1544

    PubMed  CAS  Google Scholar 

  77. Feely S, Wilkinson GR, Wood AS (1981) Reduction of liver blood flow and propranolol metabolism by cimetidine. N Engl J Med 304: 692

    Google Scholar 

  78. Follath F, Steiner A (1979) Serumkonzentrationsmessungen zur Optimierung einer Mexiletintherapie bei ventrikulärer Extrasystolie. Schweiz Med Wochenschr 109: 1689

    Google Scholar 

  79. Kelly SG, Nimmo S, Rae R (1973) Methods for the estimation of mexiletine: J Pharm Pharmacol 25: 550

    PubMed  CAS  Google Scholar 

  80. Merx M (1981) Mexiletin beim akuten Myokardinfarkt. In: Luderitz B (Hrsg) Ventrikuläre Herzrhythmusstörungen. Springer, Berlin Heidelberg New York

    Google Scholar 

  81. Nitsch J, Steinbeck G, Ludertiz B (1981) Mexiletinspiegel bei Patienten mit ventrikulären Arrhythmien und Nieren-, Leber-oder Herzinsuffizienz. Verh Dtsch Ges Inn Med 87: 429

    Google Scholar 

  82. Paumgartner G (1980) Der Einfluß von Lebererkrankungen auf Bioverfügbarkeit und Clearance von Medikamenten. Internist 23: 718

    Google Scholar 

  83. Prescott LF, Clements SA, Pottage A (1977) Absorption, distribution and elimination of mexiletine. Postgrad Med J 53: 50

    PubMed  CAS  Google Scholar 

  84. Puurunen S, Pelkonen O (1979) Cimetidine inhibits microsomal drug metabolism in the rat. Eur J Pharmacol 55: 335

    PubMed  CAS  Google Scholar 

  85. Seipel L, Breithardt G, Schoerner M (1978) Die Wirkung des neuen Antiarrhythmikums Mexiletin auf Erregungsbildung und -leitung im menschlichen Herzen. Z Kardiol 67: 766

    PubMed  CAS  Google Scholar 

  86. Kelly WN (1975) Effects of drugs on uric acid in man. Ann Rev Pharmacol 15: 327–350

    Google Scholar 

  87. Anturane Reinfarction Trial Research Group (1980) Sulfinpyrazone in the prevention of sudden death after myocardial infarction. N Engl J Med 302: 250–256

    Google Scholar 

  88. Anturan Reinfarction Italian Study Group (1982) Sulphinpyrazone in postmyocardial infarction. Lancet 2: 237–242

    Google Scholar 

  89. Margulies EH, White AM, Sherry S (1980) Sulfinpyrazone: a review of its pharmacological properties and therapeutic use. Drugs 20: 179–197

    PubMed  CAS  Google Scholar 

  90. Kirstein Pedersen A, Jakobsen P, Kampmann JP, Molholm Hansen J (1982) Clinical pharmacokinetics and potentially important drug interactions of sulphinpyrazone. Clin Pharmacokinet 7: 42–56

    Google Scholar 

  91. Jakobsen P, Kirstein Pedersen A (1981) Simultaneous determination of sulfinpyrazone and four of its metabolites by high-performance liquid chromatography. J Chromatogr 223: 460–465

    PubMed  CAS  Google Scholar 

  92. Howard T, Hoy RH, Warren S, Georgiev M, Selinger H (1981) Acute renal dysfunction due to sulfinpyrazone therapy in postmyocardial infarction cardiomegaly: Reversible hypersensitive interstitial nephritis. Am Heart J 102: 294–295

    Google Scholar 

  93. Flouvat B, Roux A, Chau NP, Viallet M, Andre-Fouet X, Woehrle R, Gregoire J (1981) Eur J Clin Pharmacol 19: 287

    PubMed  CAS  Google Scholar 

  94. Meffin PJ, Harapat SR, Harrison DC (1976) Res Commun Chem Pathol Pharmacol 15: 31

    PubMed  CAS  Google Scholar 

  95. Meffin PJ, Winkle RA, Peters FA, Harrison DC (1977) Clin Pharmacol Ther 22: 557

    PubMed  CAS  Google Scholar 

  96. Niedermayer W, Seiler KU, Wassermann 0 (1978) Dialysis, transplantation, nephrology. European Dialysis and Transplant Association Proceed, vol 15, p 607

    CAS  Google Scholar 

  97. Roux A, Flouvat B (1978) J Chromatogr 166: 327

    PubMed  CAS  Google Scholar 

  98. Roux A, Aubert P, Guedon J, Flouvat B (1980) Eur J Clin Pharmacol 17: 339

    PubMed  CAS  Google Scholar 

  99. Winkle RA, Meffin PJ, Ricks WB, Harrison DC (1977) Br J Clin Pharmacol 4: 519

    PubMed  CAS  Google Scholar 

  100. Beutler E et al. (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61: 882–888

    PubMed  CAS  Google Scholar 

  101. Bussmann WD (1980) Nitroglycerin beim Herzinfarkt. Dtsch Med Wochenschr 105: 1551–1554

    PubMed  CAS  Google Scholar 

  102. Cyran J et al. (1978) Zum Dosierungsproblem der Nitroglycerininfusion bei Patienten mit schwerer Herzinsuffizienz. Intensivmedizin 15: 156–160

    Google Scholar 

  103. Hill NS et al. (1981) Intravenous nitroglycerin. Chest 79: 69–76

    PubMed  CAS  Google Scholar 

  104. Needleman P, Johnson EM (1975) The pharmacological and biochemical interaction of organic nitrates with sulfhydryls: possible correlations with the mechanism for tolerance development, vasodilation, and mitochondrial and enzyme reactions. In: Needleman P (ed) Organic nitrates. Springer, Berlin Heidelberg New York, pp 97–105

    Google Scholar 

  105. Parratt JR (1979) Nitroglycerin — the first one hundred years: new facts about an old drug. J Pharm Pharmacol 31: 801–809

    PubMed  CAS  Google Scholar 

  106. Pasch T, Schulz V (1981) Vasodilatatoren in Anästhesie und Intensivmedizin Natriumnitroprussid oder Nitroglycerin Intensivbehandlung 6: 148–156

    Google Scholar 

  107. Schulz V, Pasch T (1981) Pharmakologische und toxikologische Gesichtspunkte zur Therapie mit Natriumnitroprussid. Intensivbehandlung 6: 157–165

    Google Scholar 

  108. Steward DD (1905) Tolerance to nitroglycerin. JAMA 44: 1678–1679

    Google Scholar 

  109. Dowell AR, Kilburn KH, Pratt PC (1971) Arch Intern Med 128: 74

    PubMed  CAS  Google Scholar 

  110. Witschi H-P, Hirai K-I, Cote MG (1977) Primary events in lung following exposure to toxic chemicals. In: Autor AP (ed) Biochemical mechanisms of paraquat toxicity. Academic Press, New York

    Google Scholar 

  111. Wolf H, Seeger W, Suttorp N, Neuhof H (1981) Experimental results in the prevention of RDS with o-tocopherol. Prog Respir Res 15: 308–316

    CAS  Google Scholar 

  112. Seeger. (Bisher unveröffentlichte Ergebnisse)

    Google Scholar 

  113. Seeger W, Wolf H, Stähler G, Neuhof H, Ròka L (1982) Increased pulmonary vascular resistance and permeability due to arachidonate metabolism in isolated rabbit lungs. Prostaglandins 23: 157–174

    PubMed  CAS  Google Scholar 

  114. Seeger W, Wolf H, Stähler G, Neuhof H, Ròka L (1982) Influence of tocopherol, its chromane compound, phytyl chain and superoxide dismutase on increased vascular resistance and permeability due to arachidonate metabolism in isolated rabbit lung. Prostaglandins 23: 175–184

    PubMed  CAS  Google Scholar 

  115. Rahimtula A, O’Brien PJ (1976) The possible involvement of singlet oxygen in prostaglandin biosynthesis. Biochem Biophys Res Commun 70: 893–899

    PubMed  CAS  Google Scholar 

  116. Loschen G (1981) o-Tocopherol traps an intermediate of the enzymatic peroxidation of arachidonic acid. Internat. Symp. on Leucotrienes and other Lipoxygenase Products. Florence, Italy (Abstract), p 67

    Google Scholar 

  117. Gwebu ET (1978) Antioxidants and the inhibition of lipoxygenase and cyclooxygenase enzyme system. Ohio State University Dissertation

    Google Scholar 

  118. Wolf H, Seeger W (1981) Experimental and clinical results in shock lung treatment with vitamin E. Internat. Conference on Vitamin E; New York Academy of Science, Nov. 11–13. Adv NY Acad Sci (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gundert-Remy, U. et al. (1982). Klinische Pharmakologie. In: Schlegel, B. (eds) Verhandlungen der Deutschen Gesellschaft für innere Medizin. Verhandlungen der Deutschen Gesellschaft für innere Medizin, vol 88. J.F. Bergmann-Verlag, Munich. https://doi.org/10.1007/978-3-642-47093-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-47093-6_14

  • Publisher Name: J.F. Bergmann-Verlag, Munich

  • Print ISBN: 978-3-8070-0332-0

  • Online ISBN: 978-3-642-47093-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics