Skip to main content

Symposium: Substratumsatz menschlicher Gewebe bei normalem und gestörtem Stoffwechsel

  • Conference paper
Verhandlungen der Deutschen Gesellschaft für innere Medizin

Zusammenfassung

Der Substratstoffwechsel von Organen kann grundsätzlich auf zweierlei Weise studiert werden: Einmal mit Hilfe der Kathetertechnik und andererseits mit Hilfe der Isotopentechnik. Bei der Kathetertechnik wird die Konzentration des jeweiligen Substrates vor und hinter dem Organ simultan gemessen. Gleichzeitig wird der Durchfluß des Organs pro Zeiteinheit bestimmt. Werden diese Messungen unter konstanten Bedingungen durchgeführt, kann man nach dem Fickschen Prinzip aus der Konzentrationsdifferenz der Substrate × der Durchblutung die Aufnahme oder Abgabe eines Substrats kalkulieren [1]. Während es nicht schwierig ist, den Substratfluß in ein Organ durch Messung der Konzentration der Substrate in einer zugänglichen Arterie zu bestimmen, wird es schwieriger im lebenden Organismus, das aus inneren Organen austretende Blut zu gewinnen. Dies ist praktisch nur möglich mit Hilfe eines Katheters, der im venösen Gefäßsystem hinter das Organ vorgeschoben wird. Trotzdem fanden bereits am Ende des letzten Jahrhunderts Messungen des Substratumsatzes von Geweben am lebenden Tier statt. Ein gutes Beispiel sind die Studien von Chaveau und Kaufmann aus dem Jahre 1887 [2], die an einem leicht zugänglichen Muskel, dem Lippenmuskel am Pferd, den Einfluß der Muskelaktivität auf den Substratumsatz beobachteten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Fick A (1970) Über die Messung des Blutquantums in den Herzventrikeln. Sitzungsber. d. Physiol.-Med. Ges. zu Würzburg, S 36

    Google Scholar 

  2. Chaveau MA, Kaufman M (1887) Experiences pour la détermination du coefficient de l’activité nutritive et respiratoire des muscles en repos et en travail. C R Acad Sci [D] (Paris) 104: 1126–1132

    Google Scholar 

  3. Cournand A, Ranges HS (1941) Catheterization of the right auricle in man. Proc Soc Exp Biol Med 46: 462

    Article  Google Scholar 

  4. Zimmermann HA (1966) Intravascular catheterization. C.C. Thomas, Springfield, I II.

    Google Scholar 

  5. Braunwald E, Gorlin R (1968) Report of comittee on cardiac catheterization and angiography of the American Heart Association. Circulation (Suppl 3 ) 27 /28

    Google Scholar 

  6. Steele R (1959) Use of 14C-Glucose to measure hepatic glucose production following an intravenous glucose load or after injection of insulin. Metabolism 8: 512

    PubMed  CAS  Google Scholar 

  7. Holt C von, Schmidt H, Feldmann H, Hallmann I (1961) Der Umsatz der Blutglukose. Biochem Z 334: 524

    CAS  Google Scholar 

  8. Segal S, Bergman M, Blair A (1961) The metabolism of variously 14C-labeled glucose in man and an estimation of the extent of glucose metabolism by the hexose monophosphate pathway. J Clin Invest 40: 1263

    Article  PubMed  CAS  Google Scholar 

  9. Shoemaker WC, Mahler R, Ashmore J (1959) The effect of insulin on hepatic glucose metabolism in the unanesthetized dog. Metabolism 8: 494

    PubMed  CAS  Google Scholar 

  10. Cherrington AD (1981) Gluconeogenesis: its regulation by insulin and glucagon. In: Brownlee M (ed) Diabetes mellitus. Garland STPM Press, New York, pp 49–117

    Google Scholar 

  11. Steiner DF, Williams RH (1958) Respiratory inhibition and hypoglycemia by biguanides and decamethylendiguanide. Biochim Biophys Acta 30: 325

    Article  Google Scholar 

  12. Bertram F, Michael G (1960) Internationales Biguanid-Symposium. Thieme, Stuttgart

    Google Scholar 

  13. Wicklmayr M, Dietze G, Mehnert H (1978) Effect of phenformin on substrate metabolism of working muscle in maturity onset diabetics. Diabetologia 15: 1103–1105

    Article  Google Scholar 

  14. Dietze G, Wicklmayr M, Mehnert H, Czempiel H, Henftling HG (1978) Effect of phenformin on hepatic balances of gluconeogenic substrates in man. Diabetologia 14: 243–248

    Article  PubMed  CAS  Google Scholar 

  15. Tranquada RE, Bernstein S, Martin HE (1963) Irreversible lactic acidosis associated with phenformin therapy. JAMA 184: 43–47

    Article  Google Scholar 

  16. Grunst J, Dietze G, Wicklmayr M (1976) Effect of metabolic changes on uric acid production of human liver. In: Fleisch, H, Robertson WG, Smith LH, Vahlensieck W (eds) Urolithiasis research. Plenum Press, New York, pp 455–457

    Chapter  Google Scholar 

  17. Wahren J, Felig P, Cerasi E, Luft R (1972) Splanchnic and peripheral glucose and amino acid metabolism in diabetes mellitus. J Clin Invest 51: 1870–1878

    Article  PubMed  CAS  Google Scholar 

  18. Adam PAJ, Räihä N, Rahiala EL, Kekomaki M (1975) Oxidation of glucose and D-ß-OH-butyrate by the early human fetal brain. Acta Paediatr Scand 64: 17

    Article  PubMed  CAS  Google Scholar 

  19. Benavides J, Gimenez C, Valdivieso F, Mayor F (1976) Effect of phenylalanine metabolites on the activities of enzymes of ketone-body utilization in brain of suckling rats. Biochem J 160: 217

    PubMed  CAS  Google Scholar 

  20. Buckley BM, Williamson DH (1973) Acetoacetate and brain lipogenesis: developmental pattern of acetoacetyl-coenzyme A synthetase in the soluble fraction of rat brain. Biochem J 132: 653

    PubMed  CAS  Google Scholar 

  21. Clark JB, Land JM (1974) Differential effects of 2-oxo acids on pyruvate utilization and fatty acid synthesis in rat brain. Biochem J 140: 25

    PubMed  CAS  Google Scholar 

  22. Cremer JE, Braum LD, Oldendorf WH (1976) Changes during development in transport processes of the blood-brain barrier. Biochim Biophys Acta 448: 633

    Article  PubMed  CAS  Google Scholar 

  23. Cremer JE, Heath DF (1974) The estimation of rates of utilization of glucose and ketone bodies in the brain of the suckling rat using compartmental analysis of isotopic data. Biochem J 142: 527

    PubMed  CAS  Google Scholar 

  24. Diez-Guerra J, Aragon MC, Gimenez C, Valdivieso F (1980) Effect of thyroid hormones on the 3-oxo acid CoA-transferase activity in rat brain during development. Enzyme 25: 106

    PubMed  CAS  Google Scholar 

  25. Edmond J (1974) Ketone bodies as precursors of sterols and fatty acids in the developing rat. J Biol Chem 249: 72

    PubMed  CAS  Google Scholar 

  26. Fitzgerald GG, Kaufman EE, Sokoloff L, Stein HM (1974) D(—)-ß-hydroxybutyrate dehydrogenase activity in cloned cell lines of glial and neuronal origin. J Neurochem 22: 1163

    Article  PubMed  CAS  Google Scholar 

  27. Fredericks M, Ramsey RB (1978) 3-Oxo acid coenzyme A transferase activity in brain and tumors of the nervous system. J Neurochem 31: 1529

    Article  PubMed  CAS  Google Scholar 

  28. Garber AJ, Menzel PH, Boden G, Owen OE (1974) Hepatic ketogenesis and gluconeogenesis in humans. J Clin Invest 54: 981

    Article  PubMed  CAS  Google Scholar 

  29. Gottstein UU, Held K, Müller W, Berghoff W (1972) Utilization of ketone bodies by the human brain. In: Research on the cerebral circulation. C. C. Thomas, Springfield, p 137

    Google Scholar 

  30. Gottstein U, Müller W, Berghoff W, Gärtner H, Held K (1971) Zur Utilisation von nicht-veresterten Fettsäuren and Ketonkörpern im Gehirn des Menschen. Klin Wochenschr 49: 406

    Article  PubMed  CAS  Google Scholar 

  31. Grave GD, Satterthwaite S, Kennedy C, Sokoloff L (1973) Accelerated postnatal development of D(—)-ß-hydroxybutyrate dehydrogenase (EC 1.1.1.30) activity in the brain in hyperthyroidism. J Neurochem. 20: 495

    Article  PubMed  CAS  Google Scholar 

  32. Halestrap AP, Brand MD, Denton RM (1974) Inhibition of mitochondrial pyruvate transport by phenylpyruvate and a-ketoisocaproate. Biochim Biophys Acta 367: 102

    Article  PubMed  CAS  Google Scholar 

  33. Hawkins RA, Williamson DH, Krebs HA (1971) Ketone-body utilization by adult and suckling rat brain in vivo. Biochem J 122: 13

    PubMed  CAS  Google Scholar 

  34. Huang S-C, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE (1980) Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238: E69

    PubMed  CAS  Google Scholar 

  35. Kety SS (1957) The general metabolism of the brain in vivo. In: Richter D (ed) Metabolism of the nervous system. Pergamon Press, London, p 221

    Google Scholar 

  36. Land JM, Clark JB (1974) Inhibition of pyruvate and ß-hydroxybutyrate oxidation in rat brain mitochondria by phenylpyruvate and ß-ketoisocaproate. FEBS Lett 44: 348

    Article  PubMed  CAS  Google Scholar 

  37. McGarry JD (1979) New perspectives in the regulation of ketogenesis. Diabetes 28: 517

    PubMed  CAS  Google Scholar 

  38. Moore TJ, Lione AP, Sugden MC, Regen DM (1976) ß-hydroxybutyrate transport in rat brain: developmental and dietary modulations. Am J Physiol 230: 619

    PubMed  CAS  Google Scholar 

  39. Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF Jr (1967) Brain metabolism during fasting. J Clin Invest 46: 1589

    Article  PubMed  CAS  Google Scholar 

  40. Owen OE, Reichle FA, Mozzoli MA, Kreulen T, Patel MS, Elfenbein IB, Golsorkhi M, Chang KHY, Rao NS, Sue HS, Boden G (1981) Hepatic, gut and renal substrate flux rates in patients with hepatic cirrhosis. J Clin Invest (in press)

    Google Scholar 

  41. Owen OE, Schramm VL (1981) Lipid metabolism during starvation. Biochem Soc Trans (in press)

    Google Scholar 

  42. Page MA, Krebs HA, Williamson DH (1971) Activities of enzymes of ketone-body utilization in brain and other tissues of suckling rats. Biochem J 121: 49

    PubMed  CAS  Google Scholar 

  43. Page MA, Williamson DH (1971) Enzymes of ketone-body utilization in human brain. Lancet 1: 66

    Article  Google Scholar 

  44. Patel MS (1974) Inhibition by the branched-chain-2-oxo acids of the 2-oxoglutarate dehydrogenase complex in developing rat and human brain. Biochem J 144: 91

    PubMed  CAS  Google Scholar 

  45. Patel MS (1979) Influence of neonatal hypothyroidism on the development of ketone-body-metabolizing enzymes in rat brain. Biochem J 184: 169

    PubMed  CAS  Google Scholar 

  46. Patel MS, Arinze IJ (1975) Phenylketonuria: metabolic alterations induced by phenylalanine and phenylpyruvate. Am J Clin Nutr 28: 183

    PubMed  CAS  Google Scholar 

  47. Patel MS, Johnson CA, Rajan R, Owen OE (1975) The metabolism of ketone bodies in developing human brain: development of ketone body metabolizing enzymes and ketone bodies as precursors for lipid synthesis. J Neurochem 25: 905

    Article  PubMed  CAS  Google Scholar 

  48. Patel MS, Owen OE (1976a) Effect of hyperphenylalanaemia on lipid synthesis from ketone bodies by rat brain. Biochem J 154: 319

    PubMed  CAS  Google Scholar 

  49. Patel MS, Owen OE (1976b) Lipogenesis from ketone bodies in rat brain. Evidence for conversion of acetoacetate into acetyl-Coenzyme A in the cytosol. Biochem J 156: 603

    PubMed  CAS  Google Scholar 

  50. Patel MS, Owen OE (1977) Development and regulation of lipid synthesis from ketone bodies by rat brain. J Neurochem 28: 109

    Article  PubMed  CAS  Google Scholar 

  51. Patel MS, Owen OE (1978) The metabolism of leucine in developing rat brain: Effect of leucine and 2-oxo-4-methylvalerate on lipid synthesis from glucose and ketone bodies. J Neurochem 30: 775

    Article  PubMed  CAS  Google Scholar 

  52. Patel MS, Owen OE, Raefsky C (1976) Effect of methylmalonate on ketone body metabolism in developing rat brain. Life Sci 19: 41

    Article  PubMed  CAS  Google Scholar 

  53. Persson B, Settergren G, Dahlquist G (1972) Cerebral arterio-venous difference of acetoacetate and D-ß-hydroxybutyrate in children. Acta Paediatr Scand 61: 273

    Article  PubMed  CAS  Google Scholar 

  54. Phelps ME, Kuhl DE, Mazziotta JC (1981) Metabolic mapping of the brain’s response to visual stimulation: studies in humans. Science 211: 1445

    Article  PubMed  CAS  Google Scholar 

  55. Reed D, Ozand PT (1980) Enzymes of L-(+)-3-hydroxybutyrate metabolism in the rat. Arch Biochem Biophys 205: 94

    Article  PubMed  CAS  Google Scholar 

  56. Robinson AM, Williamson DH (1980) Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev 60: 143

    PubMed  CAS  Google Scholar 

  57. Ruderman NB, Ross PS, Berger M, Goodman MN (1974) Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats. Biochem J 138: 1

    PubMed  CAS  Google Scholar 

  58. Settergren G, Lindblad BS, Persson B (1976) Cerebral blood flow and exchange of oxygen, glucose, ketone bodies, lactate, pyruvate and amino acids in infants. Acta Paediatr Scand 65: 343

    Article  PubMed  CAS  Google Scholar 

  59. Siesjö BK (1978) Brain energy metabolism. John Wiley und Sons, New York

    Google Scholar 

  60. Sokoloff L (1960) Metabolism of the central nervous system in vivo. In: Field J, Magoun HW, Hall VE (eds) Handbook of physiology: Neurophysiology, vol. 3. Am Physiol. Soc., Washington, DC, p 1843

    Google Scholar 

  61. Sokoloff L (1973) Metabolism of ketone bodies by the brain. Annu Rev Med 24: 271

    Article  PubMed  CAS  Google Scholar 

  62. Sokoloff L (1980) Mapping cerebral activity with deoxyglucose. JAMA 244: 1612

    Article  PubMed  CAS  Google Scholar 

  63. Sokoloff L, Fitzgerald GG, Kaufman EE (1977a) Cerebral nutrition and energy metabolism. In: Wurtman RJ, Wurtman JJ (eds) Nutrition and the brain, vol 1. Raven Press, New York, p 87

    Google Scholar 

  64. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977b) The (C-14) deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897

    Article  PubMed  CAS  Google Scholar 

  65. Spence MW, Murphy MG, Cook HW, Ripley BA, Embil JA (1973) Succinyl-CoA: 3-ketoiacid CoA-transferase deficiency: A new phenotype? Pediatr Res 7: 394 (Abstract)

    Google Scholar 

  66. Stanbury JB, Wyngaarden JB, Frederickson DS (1978) The metabolic basis of inherited disease. McGraw-Hill Book Company, New York

    Google Scholar 

  67. Tan AWH, Smith CM, Aogaichi T, Plaut GWE (1975) Inhibition of D(—)-3-hydroxybutyrate dehydrogenase by malonate analogs. Arch Biochem Biophys 166: 164

    Article  PubMed  CAS  Google Scholar 

  68. Tildon JT, Cone AL, Cornblath M (1971) Coenzyme A transferase activity in rat brain. Biochem Biophys Res Commun 43: 225

    Article  PubMed  CAS  Google Scholar 

  69. Tildon JT, Cornblath M (1972) Succinyl-CoA: 3-ketoacid CoA-transferase deficiency. A cause for ketoacidosis in infancy. J Clin Invest 51: 493

    Google Scholar 

  70. Wahren J, Felig P, Cerasi E, Luft R (1972) Splanchnic and peripheral glucose and amino acid metabolism in diabetes mellitus. J Clin Invest 51: 1870

    Article  PubMed  CAS  Google Scholar 

  71. Walravens P, Chase HP (1969) Influence of thyroid on formation of myelin lipids. J Neurochem 16: 1477

    Article  PubMed  CAS  Google Scholar 

  72. Webber RJ, Edmond J (1977) Utilization of L(+)-3-hydroxybutyrate, D(—)-3-hydroxybutyrate, acetoacetate, and glucose for respiration and lipid synthesis in the 18 day-old rat. J Biol Chem 252: 5222

    PubMed  CAS  Google Scholar 

  73. Bernsmeier A, Rudolph W (1962) Koronardurchblutung, Sauerstoffverbrauch und Substratversorgung des menschlichen Herzens. Forum Cardiologicum 5: 2–31

    Google Scholar 

  74. Carlson LA, Kaijser L, Lassers BW (1970) Myocardial metabolism of plasma triglycerides in man. J Mol Cell Cardiol 1: 467–475

    Article  PubMed  CAS  Google Scholar 

  75. Carlson LA, Kaijser L, Rössner S, Wahlqvist ML (1973) Myocardial metabolism of exogenous plasma triglycerides in resting man. Acta Med Scand 193: 233–245

    Article  PubMed  CAS  Google Scholar 

  76. Carlsten A, Hallgren B, Jagenburg R, Svanborg A, Werkö L (1966) Amino acids and free fatty acids in plasma in diabetes. Acta Med Scand 179: 631–639

    Article  PubMed  CAS  Google Scholar 

  77. Katz A, Messineo FC (1981) Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res 48: 1–16

    Article  PubMed  CAS  Google Scholar 

  78. Keul J, Doll E, Steim H, Fleer U, Reindell H (1965) Über den Stoffwechsel des menschlichen Herzens. Teil III. Pfluegers Arch 282: 43–53

    Article  CAS  Google Scholar 

  79. Kübler W, Spieckermann PG (1970) Regulation of glycolysis in the ischemic and the anoxic myocardium. J Mol Cell Cardiol 1: 351–377

    Article  PubMed  Google Scholar 

  80. Kühler W, Zebe H (1975) Die diabetische Kardiomyopathie. Internist 16: 520–523

    Google Scholar 

  81. Kobayashi K, Neely JR (1979) Control of maximum rates of glycolysis in rat cardiac muscle. Circ Res 44: 166–175

    Article  PubMed  CAS  Google Scholar 

  82. Liu MS, Spitzer JJ (1978) Fatty acid and lactate metabolism by heart homogenates from alloxan-diabetic dogs. Horm Metab Res 10: 114–117

    Article  PubMed  CAS  Google Scholar 

  83. Morgan HE, Neely JR, Lalloue KG (1978) Biochemical events in ischemic heart. In: Hjalmarson A, Wilhelmsen L (eds) Acute and long-term medical management of myocardial ischaemia. Lindgren und Söner, Mölndal, p 10

    Google Scholar 

  84. Mueller HS, Ayres SM (1978) Metabolic responses of the heart in acute myocardial infarction in man. Am J Cardiol 42: 363–371

    Article  PubMed  CAS  Google Scholar 

  85. Müller-Seydlitz PM, Hauer G, Dietze G, Baubkus H, Zeitlmann F, Gadomski M, Rudolph W (1969) Untersuchungen über die Substratversorgung des menschlichen Herzens in Abhängigkeit von der Nahrungsmittelaufnahme. Verh Dtsch Ges Inn Med 75: 376–380

    PubMed  Google Scholar 

  86. Neely JR, Rovetto MJ, Oram JF (1972) Myocardial utilization of carbohydrate and lipids. Prog Cardiovasc Dis 15: 289–329

    Article  PubMed  CAS  Google Scholar 

  87. Opie LH (1977) Metabolic heart disease with special reference to carbohydrate metabolism in health and disease. In: Riecker G et al. (eds) Myocardial failure. Springer, Berlin Heidelberg New York, p 370

    Google Scholar 

  88. Opie LH (1976) Effects of regional ischemia on metabolism of glucose and fatty acids. Circ Res (Suppl) 138: 52–74

    Google Scholar 

  89. Opie LH (1968) Metabolism of the heart in health and disease. Part I. Am Heart J 76: 685–698

    Article  PubMed  CAS  Google Scholar 

  90. Opie LH (1969) Metabolism of the heart in health and disease. Part II. Am Heart J 77: 100–122

    Article  PubMed  CAS  Google Scholar 

  91. Opie LH (1969) Metabolism of the heart in health and disease. Part III. Am Heart J 77: 383–410

    Article  PubMed  CAS  Google Scholar 

  92. Pearce FJ, Walajtys-Rode E, Williamson JR (1980) Effects of work acidosis on pyruvate dehydrogenase activity in perfused rat hearts. J Mol Cell Cardiol 12: 499–510

    Article  PubMed  CAS  Google Scholar 

  93. Randle PJ (1976) Regulation of glycolysis and pyruvate oxidation in cardiac muscle. Circ Res (Suppl 1 ) 38: 8–15

    Google Scholar 

  94. Randle PJ, Tubbs PK (1979) Carbohydrate and fatty acid metabolism. In: Am Physiol Society (ed) Handbook of physiology. Bethesda, Maryland, p 805

    Google Scholar 

  95. Regan TJ, Lyons MM, Ahmed SS, Levinson GE, Oldewurtel HA, Ahmad MR, Haider B (1977) Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest 60: 885–899

    Article  Google Scholar 

  96. Rose CP, Goresky CA (1977) Constraints on the uptake of labeled palmitate by control of intracellular sequestration. Circ Res 41: 534–545

    Article  PubMed  CAS  Google Scholar 

  97. Rovetto MJ, Lamberton WF, Neely JR (1975) Mechanisms of glycolytic inhibition in ischemic rat hearts. Circ Res 37: 742–751

    Article  PubMed  CAS  Google Scholar 

  98. Rudolph W, Dietze G, Baubkus H, Müller-Seydlitz P, Zeitlmann F (1969) Myokardstoffwechsel und linksventrikulärer Druck bei Angina pectoris. Verh Dtsch Ges Inn Med 75: 406–409

    Google Scholar 

  99. Rudolph W, Maas D, Richter J, Hasinger F, Hofmann H, Dohrn P (1965) Über die Bedeutung von Acetacetat und ß-Hydroxybutyrat im Stoffwechsel des menschlichen Herzens. Klirr Wochenschr 43: 445–451

    Article  CAS  Google Scholar 

  100. Rudolph W, Jehle J (1973) Der Einfluß von Glucagon auf Coronardurchblutung, myokardiale Sauerstoffutilisation und Kohlendioxydproduktion beim Menschen. Klirr Wochenschr 51: 108–115

    Article  CAS  Google Scholar 

  101. Rudolph W, Diezel R, Sebening F, Dietze G (1968) Der Einfluß von Adrenalin auf den Stoffwechsel des menschlichen Herzens. Ärztl Forsch 22: 90–104

    CAS  Google Scholar 

  102. Rudolph W, Hauer G, Dietze G (1969) Der Stoffwechsel des menschlichen Herzens unter dem Einfluß von Insulin. Teil II. Klirr Wochenschr 47: 814–824

    Article  CAS  Google Scholar 

  103. Rudolph W, Hauer G (1970) Der Stoffwechsel des menschlichen Herzens unter dem Einfluß von Insulin. Teil III. Klirr Wochenschr 48: 154–161

    Article  CAS  Google Scholar 

  104. Rudolph W (1962) Untersuchungen über die Substratversorgung des menschlichen Herzens unter besonderer Berücksichtigung hormoneller Einflüsse. Habil-Schrift

    Google Scholar 

  105. Shipp JC, Menahan LA, Crass MF, Chaudhuri SN (1973) Heart triglycerides in health and disease. Recent Adv Stud Cardiac Struct Metab 3: 179–204

    PubMed  CAS  Google Scholar 

  106. Williamson JR, Ford CH, Illingworth J, Safer B (1976) Coordination of citric acid cycle activity with electron transport flux. Circ Res (Suppl 1 ) 38: 39–51

    Google Scholar 

  107. Whitmer JT, Idell-Wenger JA, Rovetto MJ, Neely JR (1978) Control of fatty acid metabolism in ischemic and hypoxic hearts. J Biol Chem 253: 4305–4309

    PubMed  CAS  Google Scholar 

  108. Galton DJ (1971) The human adipose cell: a model for errors in metabolic regulation. Butterworths, London

    Google Scholar 

  109. Taylor KG, Holdsworth G, Galton DJ (1979) Insulin independent diabetes: a defect in the activity of lipoprotein lipase in adipose tissue. Diabetologia 16: 313–317

    Article  PubMed  CAS  Google Scholar 

  110. Harlan WR, Winesett PS, Wasserman AJ (1967) Tissue lipoprotein lipase in normal individuals and in individuals with exogenous hypertriglyceridaemia and the relationship of this enzyme to assimilation of fat. J Clin Invest 46: 239–243

    Article  PubMed  CAS  Google Scholar 

  111. Galton DJ, Betteridge DJ (1977) Defects in enzyme regulation. Mol Asp Med 1: 367–402

    Article  CAS  Google Scholar 

  112. Galton DJ, Reckless JPD, Taitz L (1976) Triglyceride storage disease: a report of two affected children associated with neurological abnormalities. Acta Paediatr Scand 65: 761–768

    Article  PubMed  CAS  Google Scholar 

  113. Galton DJ, Gilbert C, Lucey JJ, Walker-Smith JA (1977) Triglyceride storage disease: a defect in activation of lipolysis. Paediatrics 59: 442–447

    CAS  Google Scholar 

  114. Enzi G, Inelin EM, Baritussio A, Dorigo P, Prosdocimi M, Mazzoleni F (1977) Multiple symmetric lipomatosis: lack of catecholamine-stimulated lipolysis. J Clin Invest 60: 1221–1229

    Article  PubMed  CAS  Google Scholar 

  115. Stansbie D, Dawson A, Denton RM, Galton DJ, Simian MR (1980) The regulation of pyruvate kinase in human adipose tissue of insulin independent diabetics (submitted for publication )

    Google Scholar 

  116. Breckenridge WC, Little A, Steiner G, Chow A, Poapst M (1978) Hypertriglyceridaemia associated with deficiency of apolipoprotein C-II. N Engl J Med 298: 1265–1272

    Article  PubMed  CAS  Google Scholar 

  117. Reckless JPD, Stocks J, Holdsworth G, Galton DJ, Suggett AJ, Walton KW (1979) Hypertriglyceridaemia and acquired deficiency of apolipoprotein C-II. Clin Sci 57: 13 P

    Google Scholar 

  118. Stocks J, Holdsworth G, Galton DJ (1979) Hypertriglyceridaemia associated with an abnormal triglyceride-rich lipoprotein carrying excess apolipoprotein C-III-2. Lancet 2: 667–671

    Article  PubMed  CAS  Google Scholar 

  119. Spooner PM, Chernick SS, Garrison MM, Scow RO (1979) Insulin regulation of lipoprotein lipase activity and release in 3T3-LI Adipocytes. J Biol Chem 254: 10021–10029

    PubMed  CAS  Google Scholar 

  120. Deetjen P, Kramer K (1961) Die Abhängigkeit des O2-Verbrauches der Niere von der Na-Rückresorption. Pfluegers Arch 273: 636–650

    Article  CAS  Google Scholar 

  121. Schollmeyer P (1966) Untersuchungen über den Sauerstoffverbrauch und die Substratversorgung der gesunden und kranken Niere des Menschen. Habilitationsschrift, Tübingen

    Google Scholar 

  122. Owen OE, Felig P, Morgan AP, Wahren J, Cahill GF Jr (1969) Liver and kidney metabolism during prolonged starvation. J Clin Invest 48: 574–583

    Article  PubMed  CAS  Google Scholar 

  123. Wahren J., Felig P (1975) Renal substrate exchange in human diabetes mellitus. Diabetes 24: 730–734

    Article  PubMed  CAS  Google Scholar 

  124. Owen OE, Robinson RR (1963) Amino acid extraction and ammonia metabolism by the human kidney during prolonged administration of ammonium chloride. J Clin Invest 42: 263–276

    Article  PubMed  CAS  Google Scholar 

  125. Tizianello A, DeFerrari G, Garibotto G, Gurreri G, Robando C (1980) Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest 65: 1162–1173

    Article  PubMed  CAS  Google Scholar 

  126. Schärer K (1969) Klinische and experimentelle Untersuchungen über den Nierenstoffwechsel. Habilitationsschrift, Heidelberg

    Google Scholar 

  127. Nieth H, Schollmeyer P (1966) Substrate utilization of the human kidney. Nature 209: 1244–1245

    Article  PubMed  CAS  Google Scholar 

  128. Cohen JJ, Barac-Nieto M (1973) Renal metabolism of substrates in relation to renal function. In: Orloff J, Berliner RW (eds) Handbook of physiology, section 8. Renal physiology. Am. Physiol. Society, Washington, DC, pp 909–1002

    Google Scholar 

  129. Burch HB, Narins RG, Chu C, Fagioli S, Choi S, McCarthy W, Lowry OH (1978) The distribution along the rat nephron of the enzymes of gluconeogenesis in acidosis and starvation. Am J Physiol 235: F246 — F253

    PubMed  CAS  Google Scholar 

  130. Guder WG, Ross BD (1981) Enzyme distribution along the nephron. Kidney Int (in press)

    Google Scholar 

  131. Höhmann B, Scharer K (1975) Gluconeogenesis in isolated nephron segments of the rabbit. In: Angielski S, Dubach UC (eds) Biochemical aspects of renal function. H. Huber, Bern Stuttgart Vienna, pp 47–50

    Google Scholar 

  132. Klein KL, Wang MS, Torika S, Davidson W, Kurowaka K (1981) Substrate oxidation by isolated single nephron segments of the rat. Kidney Int (in press)

    Google Scholar 

  133. Vandewalle A, Wirthensohn G, Guder WG (1981) Distribution of hexokinase and phosphoenolpyruvate carboxykinase along the rabbit nephron. Am J Physiol 240

    Google Scholar 

  134. Pfaller W, Rittinger M (1980) Quantitative morphology of the rat kidney. In: Ross BD, Guder WG (eds) Biochemical aspects of renal function. Pergamon Press, Oxford, pp 17–22

    Google Scholar 

  135. Burch HB, Choi S, Dence CN, Alvey TR, Cole BR, Lowry OH (1980) Metabolic effects of large fructose loads in different parts of the nephron. J Biol Chem 255: 8239–8244

    PubMed  CAS  Google Scholar 

  136. Wirthensohn G, Vandewalle A, Guder WG (1981) Renal glycerol metabolism and the distribution of glycerol kinasein rabbit nephron. BiochemJ (in press)

    Google Scholar 

  137. Ross BD, Hems R, Krebs HA (1967) The rates of gluconeogenesis from various precursors in the perfused rat liver. Biochem J 102: 942–951

    PubMed  CAS  Google Scholar 

  138. Guder WG, Wiesner W, Stukowski B, Wieland OH (1971) Metabolism of isolated kidney tubules. Oxygen consumption, gluconeogenesis and the effect of cyclic nucleotides in tubules from starved rats. Hoppe Seylers Z Physiol Chem 352: 1319–1328

    Article  PubMed  CAS  Google Scholar 

  139. Fukuda S, Kopple JD (1979) Evidence that the dog kidney is an endogenous source of histidine. Am J Physiol 237: El—E5

    Google Scholar 

  140. Curthoys MP, Lowry OH (1973) The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic and alkalotic rat kidney. J Biol Chem 248: 162–168

    PubMed  CAS  Google Scholar 

  141. Vinay P, Mapes JP, Krebs HA (1978) Fate of glutamine carbon in renal metabolism. Am J Physiol 234: F123 — F129

    PubMed  CAS  Google Scholar 

  142. Burch HB, Choi S, McCarthy WZ, Wong PY, Lowry OH (1978) The location of glutamine synthetase within the rat and rabbit nephron. Biochem Biophys Res Comm 82: 498–505

    Article  PubMed  CAS  Google Scholar 

  143. Silbernagl S (1979) Renal transport of amino acids. Klin Wochenschr 57: 1009–1019

    Article  PubMed  CAS  Google Scholar 

  144. Lemieux G, Vinay P, Cartier P (1974) Renal hemodynamics and ammoniagenesis. Characteristics of the antiluminal site for glutamine extraction. J Clin Invest 53: 885–889

    Article  Google Scholar 

  145. Wirthensohn G, Gerl M, Guder WG (1980) Triacylglycerol metabolism in kidney cortex and outer medulla. In: Ross BD, Guder WG (eds) Biochemical aspects of renal function. Pergamon Press, Oxford, pp 157–162

    Google Scholar 

  146. Mclllwain H, Bachelard HS (1971) Biochemistry and the central nervous system. Churchill Livingstone, Edinburgh

    Google Scholar 

  147. Natelson S, Natelson EA (1978) Principles of applied clinical chemistry, vol 2. The erythrocyte: chemical composition and metabolism. Plenum Press, New York

    Google Scholar 

  148. Bernard C (1849) De l’origine du sucre dans l’économie animale. Mém Soc Biol 1: 121

    Google Scholar 

  149. Minkowski O (1886) Über den Einfluß der Leberexstirpation auf den Stoffwechsel. Arch Exp Pathol Pharmakol 21: 41

    Article  Google Scholar 

  150. Hultman E, Nilsson LH (1971) Liver glycogen in man. Effect of different diets and muscular exercise. In: Pernow B, Saltin B (eds) Muscle metabolism during exercise. Plenum Press, New York, pp 143–151

    Chapter  Google Scholar 

  151. Minkowski O (1893) Untersuchungen über Diabetes mellitus nach Exstirpation des Pankreas. Arch Exp Pathol Pharmakol 31: 85

    Article  Google Scholar 

  152. Embden G, Schmitz E (1912) Über synthetische Bildung von Glukose aus Aminosäuren in der Leber. Biochem Z 38: 393

    Google Scholar 

  153. Söling H-D (1969) Wirkungsmechanismus des Insulins: Die Insulinwirkung auf das Lebergewebe. In: Pfeiffer EF (Hrsg) Handbuch des Diabetes mellitus I. Lehmann, München, S 511–537

    Google Scholar 

  154. Zimmermann HA (1966) Intravascular catheterization. C. C. Thomas, Springfield

    Google Scholar 

  155. Künzli HF, Friedrich R (1972) Zur Bestimmung der relativen portalen Leberdurchblutung mit 133Xenon nach Kanülierung der Umbilikalvene. Dtsch Med Wochenschr 97: 1159

    Article  PubMed  Google Scholar 

  156. Dietze G, Wicklmayr M, Hepp KD, Bogner W, Mehnert H, Czempiel H, Henftling HG (1976) On gluconeogenesis of human liver: accelerated hepatic glucose formation induced by increased precursor supply. Diabetologia 12: 555–560

    Article  PubMed  CAS  Google Scholar 

  157. Owen OE, Patel MS, Boden G (1978) Ketone body metabolism in human during health and disease. In: Söling H-D, Seufert C-D (eds) Biochemical and clinical aspects of ketone body metabolism. Thieme, Stuttgart, pp 155–165

    Google Scholar 

  158. Felig P, Owen OE, Wahren J, Cahill GF Jr (1969) Amino acid metabolism during prolonged starvation. J Clin Invest 48: 584–588

    Article  PubMed  CAS  Google Scholar 

  159. Löffler G, Matschinsky F, Wieland O (1965) Gluconeogenesis in the isolated perfused rat liver. Biochem Z 342: 76–81

    PubMed  Google Scholar 

  160. Scholz R, Zehner I, Bücher T (1966) Gluconeogenese in der hämoglobinfrei perfundierten Rattenleber. Acta Hepatogastroenterol (Stuttg) 13: 376–381

    Google Scholar 

  161. Felig P, Wahren J (1971) Influence of endogenous insulin secretion on splanchnic glucose and amino acid metabolism in man. J Clin Invest 50: 1702–1711

    Article  PubMed  CAS  Google Scholar 

  162. Felig P, Wahren J, Hendler R (1976) Influence of physiologic hyperglucagonemia on basal and insulin-inhibited splanchnic glucose output in normal man. J Clin Invest 58: 761–765

    Article  PubMed  CAS  Google Scholar 

  163. Exton JH, Cherrington AD, Hutson NI, Assimacopoulos-Jeannet FD (1977) Reexamination of the second messenger hypothesis of glucagon and catecholamine action in liver. In: Foà PP, Bajaj IS, Foà NL (eds) Glucagon: Its role in physiology and clinical medicine. Springer, New York, pp 321–347

    Chapter  Google Scholar 

  164. Lamer J, Galaski G, Cheng K (1979) Generation by insulin of a chemical mediator that controls protein phosphorylation and dephosphorylation. Science 206: 1408–1412

    Article  Google Scholar 

  165. Cherrington AD (1981) Gluconeogenesis: its regulation by insulin and glucagon. In: Brownlee M (ed) Diabetes mellitus. Garland STPM Press, New York, pp 49–117

    Google Scholar 

  166. Pozefsky T, Tancredi RG, Moxley RT (1976) Metabolism of forearm tissue in man: studies with glucagon. Diabetes 25: 128–135

    Article  PubMed  CAS  Google Scholar 

  167. Sestoft L, Trap-Jensen J, Lyngsoe J (1977) Regulation of gluconeogenesis and ketogenesis during rest and exercise in diabetic subjects and normal man. Clin Sci Mol Med 53: 411–418

    PubMed  CAS  Google Scholar 

  168. Pilkis SJ, Park CR, Claus TH (1978) Hormonal control of hepatic gluconeogenesis. Vitam Horm 36: 383–460

    Article  PubMed  CAS  Google Scholar 

  169. Wahren J, Efendic S, Luft R, Hagenfeldt L, Björkmann O, Fehlig P (1977) Influence of somatostatin on splanchnic glucose metabolism in postabsorptive and 60 hour fasted humans. J Clin Invest 59: 299–307

    Article  PubMed  CAS  Google Scholar 

  170. Pozefski T, Felig P, Tobin J, Soeldner JS, Cahill GF Jr (1969) Amino acid balance across the tissue of the forearm in postoperative man: Effects of insulin at two dose levels. J Clin Invest 48: 2270–2280

    Google Scholar 

  171. De Meutter RC, Shreeve WW (1963) Conversion of DL-lactate-2–14C or 3–14C or pyruvate -2–14C to blood glucose in humans. Effects of diabetes, insulin, tolbutamide and glucose load. J Clin Invest 42: 525–533

    Article  Google Scholar 

  172. Chiasson JL, Atkinson RL, Cherrington AD (1979) Insulin regulation of gluconeogenesis from alanine in man. Diabetes 28: 380–384

    Google Scholar 

  173. Cherrington AD, Lacy WW, Chiasson JL (1978) Effect of glucagon on glucose production during insulin deficiency in the dog. J Clin Invest 62: 664–677

    Article  PubMed  CAS  Google Scholar 

  174. Parilla R, Jimenez I, Ayuso-Parilla MS (1975) Glucagon and insulin control of gluconeogenesis in the perfused isolated rat liver. Effects on cellular metabolite distribution. Eur J Biochem 56: 375–383

    Google Scholar 

  175. Marliss EB, Aoki TT, Unger RH, Soeldner JS, Cahill GF Jr (1970) Glucagon levels and metabolic effects in fasting man. J Clin Invest 49: 2256–2270

    Article  PubMed  CAS  Google Scholar 

  176. Shrago E, Lardy HA, Nordle RC (1963) Metabolic and hormonal control of phosphoenol pyruvate carboxykinase and malic enzyme in rat liver. J Biol Chem 238: 3188–3193

    PubMed  CAS  Google Scholar 

  177. Dietze G, Wicklmayr M, Schifman R, Mehnert H (1980) Metabolic fuels in fasting. In: Waldhäusl WK (ed) Diabetes 1979. Intern. Congr. Ser. 500. Excerpta Medica, Amsterdam, pp 314–320

    Google Scholar 

  178. Owen OE, Felig P, Morgan AD, Wahren J, Cahill GF Jr (1969) Liver and kidney metabolism during prolonged starvation. J Clin Invest 48: 574–581

    Article  PubMed  CAS  Google Scholar 

  179. Aoki TT, Finley RJ, Cahill GF Jr (1978) The redox state and regulation of amino acid metabolism in man. In: Garland PB, Hales CN (eds) Substrate mobilization and energy provision in man. Biochem Soc Trans 43: 17–29

    Google Scholar 

  180. Barnes AJ, Bloom SR (1976) Pancreatectomized man: A model for diabetes without glucagon. Lancet 1: 219–221

    Article  PubMed  CAS  Google Scholar 

  181. Sherwin RS, Fisher M, Hendler R, Felig P (1976) Hyperglucagonemia and blood glucose regulation in normal, obese and diabetic subjects. N Engl J Med 294: 455–461

    Article  PubMed  CAS  Google Scholar 

  182. Holst JJ, Guldberg Madsen 0, Knop J, Schmidt A (1977) The effect of intraportal and peripheral infusions of glucagon on insulin and glucose concentrations and glucose tolerance in normal man. Diabetologia 13: 487–490

    Article  PubMed  CAS  Google Scholar 

  183. Clarke WL, Santiago JV, Thomas L, Kipnis DM (1978) The effect of hyperglucagonemia on blood glucose concentrations and insulin requirements in insulin-requiring diabetes mellitus. Diabetes 27: 649–652

    Article  PubMed  CAS  Google Scholar 

  184. Raskin P, Unger RH (1977) Effects of exogenous hyperglucagonemia in insulin-treated diabetes. Diabetes 26: 1034–1039

    PubMed  CAS  Google Scholar 

  185. Exton JH, Harper SC, Tucker AL (1973) Effects of insulin on gluconeogenesis and cyclic AMP levels in perfused livers from diabetic rats. Biochim Biophys Acta 329: 23–70

    Article  PubMed  CAS  Google Scholar 

  186. Wahren J, Felig P, Cerasi E, Luft R (1972) Splanchnic and peripheral glucose and amino acid metabolism in diabetes mellitus. J Clin Invest 51: 1870–1878

    Article  PubMed  CAS  Google Scholar 

  187. Reichard GA, Jacobs AG, Kimbel P (1961) Blood glucose replacement rates in normal and diabetic humans. J Appl Physiol 16: 784–796

    Google Scholar 

  188. McManus IR, Sweeney P, Olson RE (1961) Metabolism of pyruvate-2–14C in normal and diabetic humans. Fed Proc 20: 191

    Google Scholar 

  189. Chochinov RH, Bowen HF, Moorhouse JA (1978) Circulating alanine disposal in diabetes mellitus. Diabetes 27: 420–426

    Article  PubMed  CAS  Google Scholar 

  190. Hall SEH, Foster DM, Berman M (1978) Normal glucose: alanine relationships and their changes in untreated and treated diabetic patients. Diabetes 27: 461

    Google Scholar 

  191. Dietze G, Wicklmayr M, Hepp KD, Dames H, Mehnert H (1973) Die Glykogenolyse and Glukoneogenese der menschlichen Leber beim juvenilen Diabetes mellitus. In: Beringer A (Hrsg) Diabetes mellitus. Maudrich, Wien, S 619–624

    Google Scholar 

  192. Dietze G (1980) Die Bedeutung der Leber beim Diabetes mellitus. Med Klinik 75: 844–847

    CAS  Google Scholar 

  193. Hagenfeldt L (1968) The concentrations of individual free fatty acids in human plasma and their interrelationships. Ark Kemi 29: 57

    CAS  Google Scholar 

  194. Hagenfeldt L, Wahren J, Pernow B, Räf L (1972) Uptake of individual free fatty acids by skeletal muscle and liver in man. J Clin Invest 51: 2324

    Article  PubMed  CAS  Google Scholar 

  195. Hagenfeldt L, Wahren J (1975) Turnover of plasma free arachidonic and oleic acids in resting and exercising human subjects. Metabolism 24: 799

    Article  PubMed  CAS  Google Scholar 

  196. Christensen EH, Hansen O (1939) Untersuchungen über die Verbrennungsvorgänge bei langdauernder, schwerer Muskelarbeit. Scand Arch Physiol 81: 152

    Article  Google Scholar 

  197. Dole VP (1956) A relation between non-esterfied fatty acids in plasma and the metabolism of glucose. J Clin Invest 35: 150

    Article  PubMed  CAS  Google Scholar 

  198. Gordon RS Jr, Cherkes A (1956) Unesterified fatty acids in human blood plasma. J Clin Invest 35: 206

    Article  PubMed  CAS  Google Scholar 

  199. Laurell S (1956) Plasma free fatty acids in diabetic acidosis and starvation. Scand J Clin Lab Invest 8: 81

    Article  PubMed  CAS  Google Scholar 

  200. Hagenfeldt L, Wennlund A, Felig P, Wahren J (1981) Turnover and splanchnic metabolism of free fatty acids in hyperthyroid patients. J Clin Invest 67 (in press)

    Google Scholar 

  201. Hagenfeldt L (1975) Turnover of individual free fatty acids. Fed Proc 34: 2246

    PubMed  CAS  Google Scholar 

  202. Wahren J, Hagenfeldt L, Felig P (1975) Splanchnic and leg exchange of glucose amino acids, and free fatty acids during exercise in diabetes mellitus. J Clin Invest 55: 1303

    Article  PubMed  CAS  Google Scholar 

  203. Hagenfeldt L, Wahren J (1975) Turnover of plasma free stearic and oleic acids in resting and exercising human subjects. Metabolism 24: 1299

    Article  PubMed  CAS  Google Scholar 

  204. Randle P, Newsholme E, Garland PB (1964) Regulation of glucose uptake by muscle. 8. Effects of fatty acids, ketone bodies, and pyruvate, and of alloxan-diabetes and starvation, on the uptake and metabolic fate of glucose in rat heart and diaphragm muscles. Biochem J 93: 652

    PubMed  CAS  Google Scholar 

  205. Garland PB, Newsholme EA, Randle PJ (1964) Regulation of glucose uptake by muscle. 9. Effects of fatty acids and ketone bodies, and of alloxan-diabetes and starvation, on pyruvate metabolism and on lactate/pyruvate and L-glycerol 3-phosphate/dihydroxyacetone phosphate concentration ratios in rat heart and rat diaphragm muscles. Biochem J 93: 665

    PubMed  CAS  Google Scholar 

  206. Schalch DS, Kipnis DM (1964) The impairment of carbohydrate tolerance by elevated plasma free fatty acids. J Clin Invest 43: 1283

    Google Scholar 

  207. Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1: 758

    Google Scholar 

  208. Hagenfeldt L, Wahren J, Pernow B, Cronestrand R, Ekeström S (1972) Free fatty acid metabolism of leg muscles during exercise in patients with obliterative iliac and femoral artery disease before and after reconstructive surgery. J Clin Invest 51: 3061

    Article  PubMed  CAS  Google Scholar 

  209. Hagenfeldt L, Wahren J (1968) Human forearm muscle metabolism during exercise. II. Uptake, release, and oxidation of individual FFA and glycerol. Scand J Clin Lab Invest 21: 263

    Article  PubMed  CAS  Google Scholar 

  210. Young DR. Pelligra R, Adachi R (1966) Serum glucose and free fatty acids in man during prolonged exercise. J Appl Physiol 21: 1047

    PubMed  CAS  Google Scholar 

  211. Ahlborg G, Felig P, Hagenfeldt L, Hendler R, Wahren J (1974) Substrate turnover during prolonged exercise in man: splanchnic and leg metabolism of glucose, free fatty acids and amino acids. J Clin Invest 53: 1080

    Article  PubMed  CAS  Google Scholar 

  212. Carlson LA, Pernow B (1961) Studies on blood lipids during exercise. II. The arterial plasma-free fatty acids concentration during and after exercise and its regulation. J Lab Clin Med 58: 673

    PubMed  CAS  Google Scholar 

  213. Hagenfeldt L, Wahren J (1975) Turnover of free fatty acids during recovery from exercise. J Appl Physiol 39: 247

    PubMed  CAS  Google Scholar 

  214. Saltin B, Karlsson J (1971) Muscle glycogen utilization during work of different intensities. In: Pernow B, Saltin B (eds) Muscle metabolism during exercise. Plenum Press, New York, pp 289–299

    Chapter  Google Scholar 

  215. Ford CR, Stevens R, Bolinger RE, Morris JH (1963) Turnover of palmitate C-14 in diabetics and normals. Proc Soc Exp Biol Med 113: 177

    Article  PubMed  CAS  Google Scholar 

  216. Berger M, Berchtold P, Clippers HJ, Dorst H, Kley HK, Müller WA, Wiegelmann W, Zimmermann-Telschow H, Gries FA, Krüskemper HL, Zimmermann H (1977) Metabolic and hormonal effects of muscular exercise in juvenile type diabetics. Diabetologia 13: 355

    Article  PubMed  CAS  Google Scholar 

  217. Hagenfeldt L, Wahren J (1968) Human forearm muscle metabolism during exercise. III. Uptake, release, and oxidation of -hydroxybutyrate and observations on the -hydroxybytyrate/acetoacetate ratio. Scand J Clin Lab Invest 21: 314

    Article  PubMed  CAS  Google Scholar 

  218. Sestoft L, Trap-Jensen J, Lyngsoe J, Clausen JP, Holst JJ, Nielsen SL, Rehfeld JF, Schaffalitzky de Muckadell O (1977) Regulation of gluconeogenesis and ketogenesis during rest and exercise in diabetic subjects and normal man. Clin Sci Mol Med 53: 411

    PubMed  CAS  Google Scholar 

  219. Lyngsoe J, Clausen JP, Trap-Jensen J, Sestoft L, Schaffalitzky de Muckadell O, Holst JJ, Nielsen SL, Rehfeld JF (1978) Exchange of metabolites in the leg of exercising juvenile diabetic subjects. Clin Sci Mol Med 55: 73

    PubMed  CAS  Google Scholar 

  220. Hetzel KL, Long CNH (1926) The metabolism of the diabetic individual during and after muscular exercise. Proc R Soc Lond [Biol] 99: 279

    Article  CAS  Google Scholar 

  221. Wahren J, Hagenfeldt L, Felig P (1978) Physical exercise and fuel homeostasis in diabetes mellitus. Diabetologia 14: 213

    Article  PubMed  CAS  Google Scholar 

  222. Brownlee M, Cahill GF (1979) Atherosclerosis Rev 4: 29

    CAS  Google Scholar 

  223. Unger RH (1981) Diabetologia 20: 1

    Article  PubMed  CAS  Google Scholar 

  224. Soskin S, Levine R (1937) Am J Physiol 120: 761

    CAS  Google Scholar 

  225. Levine R (1981) Diabetes Care 4: 28

    Article  Google Scholar 

  226. Levine R, Goldstein M, Klein S et al. (1949) J Biol Chem 179: 985

    PubMed  CAS  Google Scholar 

  227. Levine R, Goldstein M, Huddleston B et al. (1950) Am J Physiol 163: 70

    PubMed  CAS  Google Scholar 

  228. Park CR, Bornstein J, Post RL (1955) Am J Physiol 182: 12

    PubMed  CAS  Google Scholar 

  229. Park CR, Reinwein D, Henderson MJ et al. (1959) Am J Med 26: 674

    Article  PubMed  CAS  Google Scholar 

  230. Park CR, Post RL, Kalman CF et al. (1956) Ciba Found Coll Endocrinol 9: 240

    Google Scholar 

  231. Berger M, Berchtold P (1981) Insulin action. In: Marble A (ed) Joslin’s diabetes mellitus, 12th edn. Lea und Febiger, USA (in press)

    Google Scholar 

  232. Kin Tak Yu, Gould MK (1978) Am J Physiol 234: E407

    Google Scholar 

  233. Suzuki K, Kono T (1980) Proc Natl Acad Sci USA 77: 2542

    Article  PubMed  CAS  Google Scholar 

  234. Cushman SW, Wardzala LJ (1980) J Biol Chem 255: 4758

    PubMed  CAS  Google Scholar 

  235. Gorden P, Carpentier J-L, Freychet P et al. (1980) Diabetologia 18: 263

    Article  PubMed  CAS  Google Scholar 

  236. Lamer J, Galasko G, Cheng K et al. (1979) Science 206: 1408

    Article  Google Scholar 

  237. Seals JR, Czech M (1980) J Biol Chem 255: 6529

    PubMed  CAS  Google Scholar 

  238. Chauveau MA, Kaufman M (1887) C R Acad Sci [D] (Paris) 104: 1126

    Google Scholar 

  239. Berger M, Hagg SA, Ruderman NB (1975) Biochem J 146: 231

    PubMed  CAS  Google Scholar 

  240. Vranic M, Berger M (1979) Diabetes 28: 147

    PubMed  CAS  Google Scholar 

  241. Berger M, Berchtold P, Kemmer FW (1980) Metabolic and hormonal effects of exercise in diabetic patients. In: Brownlee M (ed) Handbook of diabetes mellitus, vol III. Garland STPM Press, New York, pp 273

    Google Scholar 

  242. Richter EA, Ruderman NB, Schneider SH (1981) Am J Med 70: 201

    Article  PubMed  CAS  Google Scholar 

  243. Vranic M, Kemmer FW, Berchtold P et al. (1981) Hormonal interaction in control of metabolism during exercise in physiology and diabetes. In: Ellenberg M, Rifkin H (eds) Diabetes mellitus, 3rd edn. McGraw-Hill, New York, USA (in press)

    Google Scholar 

  244. Berger M, Assal JP, Jörgens V (1980) Diabéte Metab 6: 59

    PubMed  CAS  Google Scholar 

  245. Dietze G, Wicklmayr M (1977) FEBS Lett 74: 205

    Article  PubMed  CAS  Google Scholar 

  246. Dietze G, Wicklmayr M, Günther B et al. (1979) Verh Dtsch Ges Inn Med 85: 1512

    CAS  Google Scholar 

  247. Felig P, Sherwin RS, Soman V et al. (1979) Recent Prog Horm Res 35: 501

    PubMed  CAS  Google Scholar 

  248. Ahlborg G, Felig P, Hagenfeldt L et al. (1974) J Clin Invest 53: 1080

    Article  PubMed  CAS  Google Scholar 

  249. Christensen EH, Hansen 0 (1939) Scand Arch Physiol 81: 160

    Article  Google Scholar 

  250. Christensen EH, Hansen O (1939) Scand Arch Physiol 81: 180

    Article  Google Scholar 

  251. Andres R, Cader G, Zierler KL (1956) J Clin Invest 35: 671

    Article  PubMed  CAS  Google Scholar 

  252. Zampa GA, Altilia F, Bracchetti G et al. (1967) Diabetologia 3: 35

    Article  PubMed  CAS  Google Scholar 

  253. Baltzan MA, Andres R, Cader G et al. (1962) J Clin Invest 41: 116

    Article  PubMed  CAS  Google Scholar 

  254. Felig P, Wahren J, Hendler R (1975) Diabetes 24: 468

    Article  PubMed  CAS  Google Scholar 

  255. Maehlum S, Felig P, Wahren J (1978) Am J Physiol 235: E255

    PubMed  CAS  Google Scholar 

  256. Goodman MN, Ruderman NB (1979) Am J Physiol 236: E519

    PubMed  CAS  Google Scholar 

  257. Owen 0E, Reichard A Jr (1971) J Clin Invest 50: 1536

    Article  PubMed  CAS  Google Scholar 

  258. Pozefsky T, Tancredi RG, Moxley RT et al. (1976) Diabetes 25: 128

    Article  PubMed  CAS  Google Scholar 

  259. Dietze G, Wicklmayr M, Schiman R et al. (1980) Metabolic fuels in fasting. In: Waldhäusl W (ed) Diabetes 1979. International Congress Series No. 500. Excerpta Medica, Amsterdam, pp 314

    Google Scholar 

  260. Butterfield WJH, Holling HE (1959) Clin Sci 18: 147

    PubMed  CAS  Google Scholar 

  261. Wahren J, Hagenfeldt L, Felig P (1975) J Clin Invest 55: 1303

    Article  PubMed  CAS  Google Scholar 

  262. Wicklmayr M, Dietze G (1978) Eur J Clin Invest 8: 81

    Article  PubMed  CAS  Google Scholar 

  263. Felig P, Wahren J (1975) N Engl J Med 293: 1078

    Article  PubMed  CAS  Google Scholar 

  264. Vranic M, Kawamori S, Pek S et al. (1976) J Clin Invest 57: 245

    Article  PubMed  CAS  Google Scholar 

  265. Wahren J (1979) Diabetes (Suppl 1 ) 28: 82

    Google Scholar 

  266. Gollnick PD, Pernow B, Essen B et al. (1981) Clin Physiol 1: 27–42

    Article  CAS  Google Scholar 

  267. Sanders CA, Levinson GE, Abelmann WA et al. (1964) N Engl J Med 271: 220

    Article  PubMed  CAS  Google Scholar 

  268. Lyngsde J, Clausen JP, Trap-Jensen J et al. (1978) Clin Sci Mol Med 55: 73

    Google Scholar 

  269. Standl E, Janka HU, Dexel T et al. (1976) Diabetes (Suppl 2 ) 25: 914

    Google Scholar 

  270. Kawamori R, Vranic M (1977) J Clin Invest 59: 331

    Article  PubMed  CAS  Google Scholar 

  271. Berger M, Berchtold P, Clippers HJ et al. (1977) Diabetologia 13: 355

    Article  PubMed  CAS  Google Scholar 

  272. Deutsch E (1979) Das Recht der klinischen Forschung am Menschen. In: Recht und Medizin Peter Lang-GmbH, Frankfurt am Main

    Google Scholar 

  273. Deklaration von Helsinki“, 18. Vollversammlung des Weltärztebundes, 1964

    Google Scholar 

  274. Deklaration von Tokyo“, 29. Vollversammlung des Weltärztebundes, 1975

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Miehlke

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dietze, G.J. et al. (1981). Symposium: Substratumsatz menschlicher Gewebe bei normalem und gestörtem Stoffwechsel. In: Miehlke, K. (eds) Verhandlungen der Deutschen Gesellschaft für innere Medizin. Verhandlungen der Deutschen Gesellschaft für innere Medizin, vol 87. J.F. Bergmann-Verlag, Munich. https://doi.org/10.1007/978-3-642-47092-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-47092-9_30

  • Publisher Name: J.F. Bergmann-Verlag, Munich

  • Print ISBN: 978-3-8070-0327-6

  • Online ISBN: 978-3-642-47092-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics