Skip to main content

Searching for Susceptibility Genes in Schizophrenia

  • Conference paper
Search for the Causes of Schizophrenia

Abstract

If human molecular genetics is to have a major impact on medicine then it must allow us to identify the genetic mechanisms underlying susceptibility to common illnesses such as cardiovascular disease, cancer, diabetes, asthma, multiple sclerosis and the major forms of mental illness. However, these disorders pose challenges to the geneticist because in the majority of cases they result from the action of both genetic and environmental factors. Moreover, the genetic component probably consists of the combined action of several, and in some cases many, genes, each of which may result in only a modest increase or decrease in liability. In addition, the number of susceptibility loci, the disease risk conferred by each locus, and the degree of interaction between loci all remain unknown. Thus many of the problems faced by geneticists studying psychiatric disorders also confront those working on other common diseases (Todd and Far rail 1996). However, in psychiatry genetic complexity is compounded by phenotypic complexity. It is rarely possible to make psychiatric diagnoses on the basis of physical examination or laboratory tests or even to confirm them post mortem, and for many disorders we have little idea of pathogenic mechanisms. In spite of these difficulties, the use of structured and semi-structured interviews together with explicit operational diagnostic criteria means that it is often possible to achieve high degrees of diagnostic reliability, and in several instances including schizophrenia define syndromes with high heritabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asherson P, Walsh C, Williams J, Sargeant M, Taylor C, Clements A, Gill M, Owen M, McGuffm P (1999) Imprinting and anticipation. Are they relevant to genetic studies of schizophrenia? Br J Psychiatry 164:619–624

    Article  Google Scholar 

  • Asherson P, Mant R, Holmans P, Williams J, Cardno A, Murphy K, Jones L, Collier D, McGuffm P, Owen MJ (1996) Linkage, association and mutation analysis at the dopamine D3 receptor gene in schizophrenia. Molecular Psychiatry 1:125–132

    PubMed  CAS  Google Scholar 

  • Barcellos LF, Klitz W, Field L, Tobias R, Bowcock AM, Wilson R, Nelson MP et al (1997) Association mapping of disease loci by use of a pooled DNA genomic screen. Am J Human Gen 61:734–747

    Article  CAS  Google Scholar 

  • Bassett AS, Honer WG (1994) Evidence for anticipation in schizophrenia. Am J Human Gen 54:864–870

    CAS  Google Scholar 

  • Berrettini WH, Ferraro TN, Alexander RC, Buchberg AM, Vogel WH (1994) Quantitative trait loci mapping of three loci controlling morphine preference using inbred mouse strains. Nature Gen 7:54–58

    Article  CAS  Google Scholar 

  • Breschel TS, Mclnnis MG, Margolis RL, Sirugo G, Corneliussen B, Simpson SG, McMahon F, MacKinnon DF, Xu JF, Pleasant N, Huo Y, Ashworth RG, Grundstorm C, Grundstorm T, Kidd JJ, DePaulo JR, Ross CA (1997) A novel, heritable, expanding CTG repeat in an intron of the SEF2–1 gene on chromosome 18q21.1. Human Molecular Gen 6:1855–1863

    Article  CAS  Google Scholar 

  • Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, Hunter K, Stanton VP, Thirion JP, Hudson T, Sohn R, Zemelman B, Snell RT, Rundle SA, Crow S, Davies J, Shelbourne P, Buxton J, Jones C, Juvonen C, Johnson K, Harper PS, Shaw DJ, Housman DE (1992) Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 8:799

    Article  Google Scholar 

  • Collins FS, Guyer MS, Chakravarti A (1997) Variations on a theme. Cataloging human DNA sequence variation. Science 278:1580–1581

    Article  PubMed  CAS  Google Scholar 

  • Corder EH, Saunters AM, Strittmatter WJ, Schmechel D, Gaskell PC, Small GW, Roses AD, Haines JL, Pericakvance MA (1993) Gene dose of apolipoprotein E type-4 allele and the risk of Alzheimer’s disease in late-onset families. Science 261:921–923

    Article  PubMed  CAS  Google Scholar 

  • Crocq MA, Mant R, Asherson P, Williams J, Hode Y, Mayerova A, Collier D, Lannfelt L, Sokoloff P, Schwartz JC, Gill M, Macher JP, McGuffin P, Owen MJ (1992) Association between schizophrenia and homozygosity at the dopamine D3 receptor gene. J Med Gen 29:858–860

    Article  CAS  Google Scholar 

  • Daniels J, Holmans P, Williams N, Turic D, McGuffin P, Plomin R, Owen MJ (1998) A simple method for analysing microsatellite allele image patterns generated from DNA pools and its application to allelic association studies. Am J Human Gen 62:1189–1197

    Article  CAS  Google Scholar 

  • Egger M, Davey Smith G (1995) Misleading meta-analysis. Br Med J 310:752–754

    Article  CAS  Google Scholar 

  • Flint J (1997) Freeze. Nature Gen 17:250–251

    Article  CAS  Google Scholar 

  • Flint J, Corley R (1996) Do animal-models have a place in the genetic analysis of quantitative human behavioural traits. J Molec Med 74:515–521

    Article  PubMed  CAS  Google Scholar 

  • Flint J, Corley R, DeFries JC, Fulker DW, Gray JA, Miller S, Collins AC (1995) A simple genetic-basis for a complex psychological trait in laboratory mice. Science 269:1432–1435

    Article  PubMed  CAS  Google Scholar 

  • Goate A, Chartier-Harlin MC, Mullan ME (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349:704–706

    Article  PubMed  CAS  Google Scholar 

  • Hauser ER, Boehnke M, Guo SW, Risch N (1996) Affected-sib-pair interval mapping and exclusion for complex genetic-traits — sampling considerations. Gen Epidemiol 13:117–137

    Article  CAS  Google Scholar 

  • Henn FA, Edwards E (1994) Animal models in the study of genetic factors in human psycho-pathology. In: Paplos P, Lachmann HM (eds) Genetic Studies of Affective Disorders. John Wiley and Sons, New York, pp 177–192

    Google Scholar 

  • Holmans P (1993) Asymptomatic properties of affected sib-pair linkage analysis. Am J Human Gen 52:362–374

    CAS  Google Scholar 

  • Holmans P, Craddock N (1997) Efficient strategies for genome scanning using maximum likelihood affected sib-pair analysis. Am J Human Gen 60:657–666

    CAS  Google Scholar 

  • Ikeuchi T, Sanpei K, Takano H, Sasaki H, Tashiro K, Cancel G, Brice A, Bird TD, Schellenberg GD, Pericak Vance MA, Welsh Bohmer KA, Clark LN, Wilhelmsen K, Tsuji S (1998) A novel long and unstable CAG/CTG trinucleotide repeat on chromosome 17q. Genomics 49:321–326

    Article  PubMed  CAS  Google Scholar 

  • Julier C, Lucassen A, Villedieu P, Delepine M, Levymarchal C, Danze PM, Bianchi F, Boitard C, Froguel P, Bell J et al (1994) Multiple DNA variant association analysis — application to the insulin gene region in type-i diabetes. Am J Human Gen 55:1247–1254

    CAS  Google Scholar 

  • Karayiorgou M and Gogos JA (1997) A turning point in schizophrenia genetics. Neuron 19:967–979

    Article  PubMed  CAS  Google Scholar 

  • Kendler KS, McGuire M, Gruenberg AM, et al (1993a) The Roscommon Family Study II. The risk of nonschizophrenic nonaffective psychoses in relatives. Arch Gen Psychiatry 50:645–652

    Article  PubMed  CAS  Google Scholar 

  • Kendler KS, McGuire M, Gruenberg AM et al (1993b) The Roscommon Family Study III. Schizophrenia-related personality disorders in relatives. Arch Gen Psychiatry 50:781–788

    Article  PubMed  CAS  Google Scholar 

  • Kruglyak L (1997) What is significant in whole-genome linkage disequilibrium studies? Am J Human Gen 61:810–812

    Article  CAS  Google Scholar 

  • Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Muller CR, Hamer DH, Murphy DL (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274:1527–1531

    Article  PubMed  CAS  Google Scholar 

  • Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K et al (1995) Candidate gene for the chromosome-1 familial Alzheimers-Disease locus. Science 269:973–977

    Article  PubMed  CAS  Google Scholar 

  • Lin MW, Curtis D, Williams N, Arranz M, Nanko S, Collier D, McGuffin P, Murray R, Owen M, Gill M, Powell JF (1995) Suggestive evidence for linkage of schizophrenia to markers on chromosome 13q14.1-q22. Psychiatric Gen 5:117–126

    Article  CAS  Google Scholar 

  • Mant R, Williams J, Asherson P, W Parfitt E, McGuffm P, Owen MJ (1994) The relationship between homozygosity at the dopamine D3 receptor gene and schizophrenia. Am J Medical Gen: Neuropsychiatric Genetics 54:21–26

    Article  CAS  Google Scholar 

  • McGue M, Gottesman II (1989) Genetic linkage and schizophrenia, perspectives from genetic epidemiology. Schiz Bull 15:453–464

    CAS  Google Scholar 

  • McGuffin P, Owen MJ (1996) Molecular genetic studies of schizophrenia. Cold Spring Harbor Symposia on Quantitative Biology 61: 815–822

    Article  PubMed  CAS  Google Scholar 

  • McGuffin P, Owen MJ, Farmer AE (1995) Genetic basis of schizophrenia. Lancet 346:678

    Article  PubMed  CAS  Google Scholar 

  • McGuffin P, Owen MJ, O’Donovan MC, Thapar A, Gottesman I (1994) Seminars in Psychiatric Genetics. London, Gaskell

    Google Scholar 

  • Moisan MP, Courvoisier H, Bihoreau MT, Gauguier D, Hendley ED, Lathrop M, James MR, Mormede P (1996) A major quantitative trait locus influences hyperactivity in the wkha rat. Nature Gen 14:471–473

    Article  CAS  Google Scholar 

  • Moldin SO (1997) The maddening hunt for madness genes. Nature Gen 17:127–129

    Article  CAS  Google Scholar 

  • Moldin SO, Gottesman II (1997) At issue: Genes, experience, and chance in schizophrenia — Positioning for the 21st century. Schiz Bull 23:547–561

    CAS  Google Scholar 

  • Morris AG, Gaitonde E, McKenna PJ, Mollon JD, Hunt DM (1995) CAG repeat expansions and schizophrenia — association with disease in females and with early age at onset. Hum Mol Gen 4:1957–1961

    Article  PubMed  CAS  Google Scholar 

  • Murphy KC, Owen MJ, Murphy KC, Owen MJ (1997) The behavioural phenotype in velo-cardio-facial syndrome. Am J Human Gen 61:No. 4. SS. pi5

    Google Scholar 

  • O’Donovan MC, Owen MJ (1996) The molecular genetics of schizophrenia. Annals Med 28:541–546

    Article  Google Scholar 

  • O’Donovan M, Guy C, Craddock N, Bowen T, McKeon P, Macedo A, Maier W, Wildenauer D, Aschauer HN, Sorbi S, Feldman E, Mynett-Johnson L, Claffey E, Nacimas B, Valente J, Dourado A, Grassi E, Lenzinger E, Heiden AM, Moorhead S, O’Donovan C, Guy C, Craddock N, Murphy KC, Cardno AC, Jones LA, Owen MJ, McGuffin P (1995) Schizophrenia and bipolar disorder are associated with expanded CAG/CTG repeats. Nature Gen 10:380–381

    Article  Google Scholar 

  • O’Donovan M, Guy C, Craddock N, Bowen T, McKeon P, Macedo A, Maier W, Wildenauer D, Aschauer HN, Sorbi S, Feldman E, Mynett-Johnson L, Claffey E, Nacimas B, Valente J, Dour-ado A, Grassi E, Lenzinger E, Heiden AM, Moorhead S, Harrison D, Williams J, McGuffin P, Owen MJ (1996) Confirmation of an association between expanded CAG/CTG repeats in both schizophrenia and bipolar disorder. Psychol Med 26:1145–1153

    Article  PubMed  Google Scholar 

  • Owen MJ, Holmans P, McGuffin P (1997) Association studies in psychiatric genetics. Mol Psychiatry 2:270–273

    Article  PubMed  CAS  Google Scholar 

  • Owen MJ, McGuffin P (1993) Association and linkage — complementary strategies for complex disorders. J Med Gen 30:638–639

    Article  CAS  Google Scholar 

  • Penrose LS (1991) Survey of cases of familial mental illness. Euro Arch Psych Clin Neuro 240:315–324

    Article  CAS  Google Scholar 

  • Pericak-Vance MA, Haines JL, StGeorgeHyslop PH, Bebout J, Haynes C, Tanzi R, Yamaoka L, Gusella JF, Roses AD (1991) Joint linkage analysis of chromosome-19 and chromosome-21 loci in familial alzheimer-disease. Am J Human Gen 49:355

    Google Scholar 

  • Plomin R, Owen MJ, McGuffin P (1994) The genetic basis of complex human behaviours. Science 264:1733–1739

    Article  PubMed  CAS  Google Scholar 

  • Pulver AE, Nestadt G, Goldberg R et al (1992) Psychotic illness in patients diagnosed with velo-cardio-facial syndrome. Am J Med Gen 42:141–142

    Article  Google Scholar 

  • Risch N (1990) Linkage strategies for genetically complex traits. 1. multilocus models. Am J Hum Gen 46:222–228

    CAS  Google Scholar 

  • Risch N, Merikangas K (1996) The future of genetic-studies of complex human-diseases. Science 273:1516–1517

    Article  PubMed  CAS  Google Scholar 

  • Samani NJ, Thompson JR, O’Toole L, Channer K, Woods KL (1996) A meta-analysis of the association of the deletion allele of the angiotensin-converting enzyme gene with myocardial infarction. Circulation 94:708–712

    PubMed  CAS  Google Scholar 

  • Schizophrenia Collaborative Linkage Group (1996) A combined analysis of D22S278 marker alleles in affected sib-pairs: Support for a susceptibility locus for schizophrenia at chromosome 22q12. Am J Med Gen: Neuropsychiatric Genetics 67:40–45

    Article  Google Scholar 

  • Schizophrenia Linkage Collaborative Group for Chromosomes 3, 6, and 8 (1996) Additional support for schizophrenia linkage on chromosomes 6 and 8. A multicentre study. Am J Med Gen 67:580–694

    Article  Google Scholar 

  • Scott W, Pericak Vance M, Haines J (1997) Genetic analysis of complex diseases. Science 275:1327

    Article  PubMed  CAS  Google Scholar 

  • Sherrington R, Brynjolfsson J, Petursson et al (1989) Localization of a susceptiblity locus for schizophrenia on chromosome 5. Nature 336:164–167

    Article  Google Scholar 

  • Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, et al (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–760

    Article  PubMed  CAS  Google Scholar 

  • Schaid DJ, Sommer SS (1994) Comparison of statistics for candidate-gene association studies using cases and parents. Am J Hum Gen 55:402–409

    CAS  Google Scholar 

  • Skoultchi AI, Puech A, Saint-Jore B, Funke B, Copeland N, Jenkins N, Pandita R, Carlson C, Sirotkin H, Kucherlapati R, Morrow BE (1997) Comparative mapping of the human and mouse VCFS/DGS syntenic region discloses the presence of a large internal rearrangement. Am J Hum Gen 61:A296

    Google Scholar 

  • Spurlock G, Heils A, Holmans P, Williams J, D’Souza UM, Cardno A, Murphy KC, Jones L, Buckland PR, McGuffin P, Lesch KP, Owen MJ (1998) A family based association study of T102C polymorphism in 5HT2A and schizophrenia plus identification of new polymorphisms in the promoter. Mol Psychiatry 3:42–49

    Article  PubMed  CAS  Google Scholar 

  • Templeton AR (1995) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping of DNA sequencing. V. Analysis of case/control sampling designs. Alzheimer’s disease and the apoprotein E locus. Genetics 140:402–409

    Google Scholar 

  • Thibaut F, Martinez M, Petit M, Jay M, Campion D (1995) Further evidence for anticipation in schizophrenia. Psych Res 59:25–33

    Article  CAS  Google Scholar 

  • Todd JA, Farrall M (1996) Panning for gold — genome-wide scanning for linkage in type-1 diabetes. Human Mol Gen 5:1443–1448

    CAS  Google Scholar 

  • Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J et al (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280:1077–1082

    Article  PubMed  CAS  Google Scholar 

  • Willems PJ (1994) Dynamic mutations hit double figures. Nat Gen 8:213–215

    Article  CAS  Google Scholar 

  • Williams J, McGuffin P, Nothen M, Owen MJ and the EMASS Collaborative Group (1997) Metaanalysis of association between the 5 HT2a receptor T102C polymorphism and schizophrenia. Lancet 349:1221

    Google Scholar 

  • Williams J, Spurlock G, Holmans P, Mant R, Murphy K, Jones L, Cardno A, Asherson P, Blackwood D, Muir W, Meszaros K, Aschauer H, Mallet J, Laurent C, Pekkarinen P, Seppala J, Stefanis CN, Papadimitriou GN, Macciardi F, Verga M, Pato C, Azevedo H, Crocq M-A, Gurling H, Kalsi G, Curtis D, McGuffin P, Owen MJ (1998) A meta-analysis and transmission disequilibrium study of association between the dopamine D3 receptor gene and schizophrenia. Mol Psychiatry 3:141–149

    Article  PubMed  CAS  Google Scholar 

  • Williams J, Spurlock G, McGuffin P, Mallet J, Nothen MN, Gill M, Aschauer H, Nylander P-O, Macciardi F, Owen MJ (1996) Association between schizophrenia and the T102C polymorphism of 5-hydroxytryptamine type 2a receptor gene. Lancet 347:1294–1296

    PubMed  CAS  Google Scholar 

  • Wood GK, Tomasiewicz H, Rutishauser U, Magnuson T, Quirion R, Rochford J, Srivastava LK (1998) NCAM-180 knockout mice display increased lateral ventricle size and reduced pre-pulse inhibition of startle. Neuroreport 9:461–466

    Article  PubMed  CAS  Google Scholar 

  • Yaw J, Mylesworsley M, Hoff M, Holik J, Freedman R, Byerley W, Goon H (1996) Anticipation in multiplex schizophrenia pedigrees. Psych Gen 6:7–11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this paper

Cite this paper

Owen, M.J. (1999). Searching for Susceptibility Genes in Schizophrenia. In: Gattaz, W.F., Häfner, H. (eds) Search for the Causes of Schizophrenia. Steinkopff. https://doi.org/10.1007/978-3-642-47076-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-47076-9_11

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-47078-3

  • Online ISBN: 978-3-642-47076-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics