Skip to main content

On Connectivity of Efficient Matroid Bases

  • Conference paper
  • 123 Accesses

Abstract

Let M = (N,I) be a matroid. With each element jN we associate a weight-vector ω(j) ∈ IR Q+ , Q ≥ 2. If SN, the weight of S is defined as the vector with components ∑ j S ω q (j). A basis B of M is called efficient basis if there is no basis B′ such that ω(B′) < ω(B), i.e. if its corresponding weight-vector is vectorminimal. The multicriteria matroid optimization problem is the following:

(MCMOP) Find all efficient bases of M.

Partially supported by the Deutsche Forschungsgemeinschaft

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Welsh, D.J.: Matroid Theory, London, 1976

    Google Scholar 

  2. Lovasz, L.; Plummer, M.D.: Matching Theory, Amsterdam, New York, Oxford, Tokio 1986

    Google Scholar 

  3. Serafini, P.: Some Considerations about Computational Complexity for Multiple Objective Combinatorial Problems, Lecture Notes in Economics and Mathematical Systems 294 (1986), 222–32

    Article  Google Scholar 

  4. Zimmermann, U.: Matroid intersection problems with generalized objectives, Proc. Int. Symp. Budapest (1976), Vol. 2 383–92

    Google Scholar 

  5. Granot, D.: A New Exchange Property for Matroids and Its Application to Max-Min-Problems, Zeitschrift für Operations Research 28 (1984), 41–45

    Google Scholar 

  6. Minoux, M.: Solving Combinatorial Problems with Combined Min-Max Min-Sum Objectives and Applications, Mathematical Progarmming 45 (1989), 36172

    Google Scholar 

  7. Camerini, M; Mafioli, F; Martello, S; Toth, P.: Most and Least Uniform Spanning Trees, Discrete Applied Mathematics 15 (1986), 181–97

    Article  Google Scholar 

  8. Schweigert, D.: Linear Extensions and Vector Valued Spanning Trees, Methods of Operations Research 60 (1990), 219–29

    Google Scholar 

  9. Schweigert, D.: Linear Extensions and Efficient Trees, Technical Report No. 172, University of Kaiserslautern, 1990

    Google Scholar 

  10. Hamacher, H.W.; Ruhe, G.: On Spanning Tree Problems with Multiple Objectives, Technical Report No. 233, University of Kaiserslautern, 1993

    Google Scholar 

  11. Corley, H.W.: Efficient Spanning Trees, Journal of Optimization Theory and Applications 45 (1985), 481–85

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Physica-Verlag Heidelberg

About this paper

Cite this paper

Ehrgott, M. (1994). On Connectivity of Efficient Matroid Bases. In: Bachem, A., Derigs, U., Jünger, M., Schrader, R. (eds) Operations Research ’93. Physica, Heidelberg. https://doi.org/10.1007/978-3-642-46955-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46955-8_37

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-0794-3

  • Online ISBN: 978-3-642-46955-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics