Skip to main content

The Idea of a Potential Energy Surface

  • Conference paper
Potential Energy Surfaces

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 71))

Abstract

The idea that the proper way to treat molecules in quantum mechanics is to try to separate the electronic and nuclear motions as far as possible, dates from the very earliest days of the subject. The genesis of the idea is usually attributed to Born and Oppenheimer [1], but it is an idea that was in the air at the time, for the earliest papers in which the idea is used, predate the publication of their paper. The physical picture that informs the attempted separation is one well known and widely used even in classical mechanics, namely division of the problem into a set of rapidly moving particles, here electrons and a much more slowly moving set, here the nuclei. Experience is that it is wise to try and separate such incommensurate motions both to calculate efficiently and to get a useful physical picture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Born and J. R. Oppenheimer, Ann. der Phys., 1927 84, 457.

    Article  CAS  Google Scholar 

  2. C. Eckart, Phys. Rev., 1935, 47, 552.

    Article  CAS  Google Scholar 

  3. G. Hunter, Int. J. Quant. Chem., 1975, 9, 237.

    Article  CAS  Google Scholar 

  4. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford U. P., 1955, Appendix 8.

    Google Scholar 

  5. M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV, Analysis of Operators, Academic Press, New York, 1978.

    Google Scholar 

  6. W. Thirring, A Course in Mathematical Physics, 3, Quantum Mechanics of Atoms and Molecules, tr. E. M. Harrell, Springer-Ver lag, New York, 1981.

    Google Scholar 

  7. G. M. Zhislin, Trudy. Most Mat Obsc., 1960, 9, 82.

    Google Scholar 

  8. J. Uchiyama, Pub. Res. Inst. Math. Sci. Kyoto., 1966, A 2, 117.

    Google Scholar 

  9. B. Simon, Quantum Mechanics for Hamiltonians defined as quadratic forms, Princeton U. P., 1971.

    Google Scholar 

  10. G. M. Zhislin, Theor. Math. Phys., 1971, 7, 571.

    Article  Google Scholar 

  11. M. B. Ruskai and J. P. Solovej in Schrödinger Operators, Lecture Notes in Physics 403, ed E. Balslev Springer-Verlag, Berlin, 1992, 153.

    Google Scholar 

  12. M. B. Ruskai, Ann. Inst. Henri Poincaré, 1990, 52, 397.

    Google Scholar 

  13. M. B. Ruskai, Commun. Math. Phys., 1991, 137, 553.

    Article  Google Scholar 

  14. B. Simon, Helv. Phys. Acta., 1970, 43, 607.

    CAS  Google Scholar 

  15. S. A. Vugal’ter and G. M. Zhislin, Theor. Math. Phys., 1977, 32, 602.

    Article  Google Scholar 

  16. W. D. Evans, R. T Lewis and Y. Saito, Phil. Trans. Roy. Soc. Lond. A, 1992, 338, 113.

    Article  Google Scholar 

  17. J.-M. Richard, J. Fröhlich, G-M. Graf and M. Seifert, Phys. Rev. Letts., 71, 1993, 1332.

    Article  CAS  Google Scholar 

  18. B. T. Sutcliffe, J. Chem. Soc., Faraday Transactions, 89, 1993, 2321.

    Google Scholar 

  19. B. T. Sutcliffe in Conceptual Trends in Quantum Chemistry, Eds E. S. Kryachko and J. L. Calais, Kluwer Academic, Dordrecht, 1994, p 53.

    Google Scholar 

  20. B. T. Sutcliffe in Methods of Computational Chemistry Vol. 4, ed. S. Wilson, Plenum Press, New York and London 1991, p. 33.

    Google Scholar 

  21. J. K. G. Watson, Mol. Phys., 1968, 15, 479.

    Article  CAS  Google Scholar 

  22. D. M. Brink and G. R. Satchler, Angular Momentum, 2nd ed. Clarendon Press, Oxford 1968.

    Google Scholar 

  23. L. C. Biedenharn and J. C. Louek, Angular Momentum in Quantum Physics, Addison-Wesley, Reading, Mass. 1982.

    Google Scholar 

  24. J. M. Brown and B. J. Howard, Mol. Phys., 1976, 31, 1517.

    Article  CAS  Google Scholar 

  25. R. N. Zare, Angular Momentum, Wiley, New York, 1988 Chap. 3. 4

    Google Scholar 

  26. G. Ezra, Symmetry properties of molecules, Lecture Notes in Chemistry 28, Springer-Verlag, Berlin, 1982.

    Book  Google Scholar 

  27. J. C. Louck, J. Mol. Spec., 1976, 61, 107.

    Article  Google Scholar 

  28. B. Schutz, Geometrical methods of mathematical physics, C. U. P., Cambridge, 1980.

    Google Scholar 

  29. B. T. Sutcliffe in Theoretical models of chemical bonding, Pt. 1 ed. Z Maksic, Springer-Verlag Berlin, 1990, p. 1.

    Google Scholar 

  30. J. Czub and L. Wolniewicz, Mol. Phys., 1978, 36, 1301.

    Article  CAS  Google Scholar 

  31. F. T. Smith, Phys. Rev. Letts., 1980, 45, 1157.

    Article  CAS  Google Scholar 

  32. A. Schmelzer and J. N. Murreil, Int J. Quant. Chem, 1985, 28, 288.

    Article  Google Scholar 

  33. M. A. Collins and D. F. Parsons, J. Chem. Phys., 1993, 99, 6756.

    Article  CAS  Google Scholar 

  34. J. O. Hirschfelder and E. Wigner, Proc. Nat. Acad. Sci., 1935, 21, 113.

    Article  CAS  Google Scholar 

  35. B. Buck, L. C. Biedenharn and R. Y. Cusson, Nucl. Phys, 1979, A 317, 215.

    Google Scholar 

  36. J. D. Louck and H. W. Galbraith, Rev. Mod. Phys., 1976, 48, 69.

    Article  Google Scholar 

  37. R. S. Berry, Rev. Mod. Phys., 1960, 32, 447.

    Article  CAS  Google Scholar 

  38. M. S. Reeves and E. R. Davidson, J. Chem. Phys, 1991, 95, 6651.

    Article  Google Scholar 

  39. H. C. Longuet-Higgins, Molec. Phys., 1963, 6, 445.

    Article  CAS  Google Scholar 

  40. P. R. Bunker, Molecular Symmetry and Spectroscopy, Academic Press, London, 1979.

    Google Scholar 

  41. I. G. Kaplan, Symmetry of Many-Electron Systems, Academic Press, London, 1975.

    Google Scholar 

  42. J. Maruani and J Serre, Eds, Symmetries and Properties of Non-Rigid Molecules, Elsevier, Amsterdam, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sutcliffe, B.T. (1999). The Idea of a Potential Energy Surface. In: Sax, A.F. (eds) Potential Energy Surfaces. Lecture Notes in Chemistry, vol 71. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46879-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46879-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65106-2

  • Online ISBN: 978-3-642-46879-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics