Skip to main content

Ontogeny and Differentiation of Murine Natural Killer Cells and Their Receptors

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 230))

Abstract

Cellular immunology was actively investigated during the 1960s, stimulated in large part by the development of plaque assays for antibody-forming cells (Jerne and Nordin 1963) and the assay for cytotoxic cells (Rosenau and Moon 1964). The discovery that the thymus and bursa of Fabricius are necessary for the development of T and B cells (Miller and Mitchell 1969; Glick and Whatley 1967; Cooper et al. 1965) led to the concept of “central lymphoid organs.” Subsequently it appeared that the effector cell responsible for rejection of bone marrow allografts following large doses of total-body irradiation is not a T or a B cell, but is eliminated by destruction of bone marrow with the bone-seeking isotope 89Sr (Cudkowlcz and Bennett 1971; Bennett 1973). Thus these effector cells were termed “marrow-dependent” or M cells, based on the analogy with the thymus and bursa-dependent T and B cell. Later studies revealed that M cells are identical to natural killer (NK) cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson S, Miller RG, Phillips RA (1977) The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems. J Exp Med 145: 1567–1579

    Article  PubMed  CAS  Google Scholar 

  • Akashi K, Kondo M, Weismann IL (1997) A clonogenic common lymphoid precursor in mouse marrow. Blood 90: 158a (abstr)

    Google Scholar 

  • Antica M, Wu L, Shortman K, Scollay R (1993) Intrathymic lymphoid precursor cells during fetal thymus development. J Immunol 151: 5887

    PubMed  CAS  Google Scholar 

  • Antica M, Wu L, Shortman K, Scollay R (1994) Thymic stem cells in mouse bone marrow. Blood 84: 111–117

    PubMed  CAS  Google Scholar 

  • Baccarini M, Hao L, Decker T, Lohmann-Matthes ML (1988) Macrophage precursors as natural killer cells against tumors and microorganisms. Natl Immun Cell Growth Regul 7: 316–327

    CAS  Google Scholar 

  • Bamford RN, Grant AJ, Burton JD, Peters C, Kurys G, Goldman CK, Brennan J, Roessler E, Waldmann TA (1994) The IL-2 receptor beta chain is shared by IL-2 and a cytokine, provisionally designated IL-T, that stimulates T cell proliferation and induction of lymphokine-activated killer cells. Proc Natl Acad Sci USA 91: 4940–4944

    Article  PubMed  CAS  Google Scholar 

  • Bamford RN, Battiata AP, Burton JD, Sharma H, Waldmann TA (1996) IL-15/1L-T production by adult T cell leukemia cell line HuT-102 is associated with a human T-cell lymphotropic virus type I region/IL-15 fusion message that lacks many upstream AUGs that normally attenuate IL-15 m RNA translation. Proc Natl Acad Sci USA 93: 2897–2902

    Article  PubMed  CAS  Google Scholar 

  • Bennett IM (1996) Natural killer cell differentiation. Thesis, Thomas Jefferson University

    Google Scholar 

  • Bennett IM, Zatsepenia O, Zamai L, Azzoni L, Mikheeva T, Perussia B (1996) Definition of a natural killer NKR-P1A’/CD567CD16- functionally immature human NK cell subset that differentiates in vitro in the presence of IL-12. J Exp Med 184: 1845–1856

    Article  PubMed  CAS  Google Scholar 

  • Bennett M (1973) Prevention of marrow allograft rejection with radioactive strontium: evidence for marrow-dependent effector cells. J Immunol 110: 510

    PubMed  CAS  Google Scholar 

  • Bennett M (1987) Biology and genetics of hybrid resistance. Adv Immunol 41: 333–445

    Article  PubMed  CAS  Google Scholar 

  • Bezouska K, Yuen C-T, O’Brien J, Childs RA, Chai W, Lawson AM, Drbal K, Fiserova A, Pospisil M, Feizi T (1994) Oligosaccharide ligands for NKR-P 1 protein activate NK cells and cytotoxicity. Nature 327: 150–157

    Article  Google Scholar 

  • Biron CA, van den Elsen P, Tutt MM, Medveczky P, Kumar V, Terhorst C (1987) Mutine natural killer cells stimulated in vivo do not express the T cell receptor et, 13, y, T35 or T3e genes. J Immunol 139: 1704–1710

    PubMed  CAS  Google Scholar 

  • Bix M, Locksley RM (1995) Natural T cells: cells that co-express NKR-Pl and TCR. J Immunol 95: 1020–1022

    Google Scholar 

  • Bix M, Liao N-S, Zijstra M, Loring J, Jaenisch R, Raulet D (1991) Rejection of class I MHC-deficient hematopoietic cells by irradiated MHC-mismatched mice. Nature 349: 329–331

    Article  PubMed  CAS  Google Scholar 

  • Brecher G, Bookstein N, Redfeam W, Necas E, Pallavicini MG, Cronkite EP (1993) Self-renewal of the long-term repopulating stem cell. Proc Nati Acad Sci USA 90: 6028–6031

    Article  CAS  Google Scholar 

  • Brennan J, Mager D, Jeffries W, Takei F (1994) Expression of different members of the Ly-49 family defines distinct natural killer cell subsets and cell adhesion properties. J Exp Med 180: 2287–2295

    Article  PubMed  CAS  Google Scholar 

  • Brennan J, Lemieux S, Douglas Freeman J, Mager DL, Takei F (1996a) Heterogeneity among Ly-49C NK cells: characterization of highly related receptors with differing functions and expression patterns. J Exp Med 184: 2085–2090

    Article  PubMed  CAS  Google Scholar 

  • Brennan J, Mahon G, Mager DL, Jeffries WA, Takei F (1996b) Recognition of class I MHC molecules by Ly-49: specificities and domain interactions. J Exp Med 183: 1553–1559

    Article  PubMed  CAS  Google Scholar 

  • Brooks CG, Georgio A, Jordan RK (1993) The majority of immature fetal thymocytes can be induced to proliferate to IL-2 and differentiate into cells indistinguishable from mature natural killer cells. J Immunol 151: 6645–6656

    PubMed  CAS  Google Scholar 

  • Burton JD, Bamford RN, Peters C, Grant AJ, Kurys G, Goldman CK, Brennan J, Roessler E, Waldmann TA (1994) A lymphokine, provisionally designated IL-T and produced by a human T-cell leukemia line, stimulates T cell proliferation and induction of lymphokine-activated killer cells. Proc Natl Acad Sci USA 91: 4935–4939

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Shores EW, Hu-Li J, Anver MR, Kelsall BL, Russell SM, Drago J, Noguchi M, Grinberg A, Bloom ET, Paul WE, Katz SI, Love PE, Leonard WJ (1995) Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 2: 223–238

    Article  PubMed  CAS  Google Scholar 

  • Carlsson L, Candeias S, Staerz U, Keller G (1995) Expression of FcyRIII defines distinct subpopulations of fetal liver B cell and myeloid precursors. Eur J Immunol 25: 2308–2317

    Article  PubMed  CAS  Google Scholar 

  • Carson WE, Giri JG, Lindemann MJ, Linett ML, Ahdieh M, Paxton R, Anderson D, Eisenmann J, Grabstein K, Caligiuri MA (1994) Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J Exp Med 94: 1395–1403

    Article  Google Scholar 

  • Cavazzana-Calvo M, Hacien-Bey S, de Saint Basile G, De Coene C, Selz F, Le Deist F, Fischer A (1996) Role of IL-2, IL-7 and IL-15 in natural killer differentiation from cord blood hematopoietic progenitor cells and from yc transduced severe combined immunodeficiency Xl bone marrow cells. Blood 88: 3901–3909

    PubMed  CAS  Google Scholar 

  • Chambers WH, Vujanovic NL, DeLeo AB, Olszowy MW, Hebermann RB, Hiserodt JC (1989) Monoclonal antibody to a triggering structure expressed on rat natural killer cells and adherant lymphokine-activated killer cells. J Exp Med 89: 1373–1389

    Article  Google Scholar 

  • Cocks BG, Chang C-CJ, Carballido JM, Yssel H, de Vries JE, Aversa G (1995) A novel receptor involved in T cell activation. Nature 376: 260–263

    Article  PubMed  CAS  Google Scholar 

  • Colonna M (1996) Natural killer cell receptors specific for MHC class I molecules. Curr Opin Immunol 8: 101–107

    Article  PubMed  CAS  Google Scholar 

  • Cooper MD, Paterson DA, Good RA (1965) Delineation of the thymic and bursal lymphoid systems in the chicken. Nature 205: 143

    Article  PubMed  CAS  Google Scholar 

  • Cudhowicz G, Bennett M (1971) Peculiar immunobiology of bone marrow allografts. I. Graft rejection by irradiated responder mice. J Exp Med 134: 83

    Article  Google Scholar 

  • Cumano A, Paige CJ, Iscove NN, Brady G (1992) Bipotential precursors of B cells and macrophages in murine fetal liver. Nature 356: 612–615

    Article  PubMed  CAS  Google Scholar 

  • Daniels BF, Nakamura MC, Rosen D, Yokoyama WM, Seaman WE (1994) Ly-49A, a receptor for H2Dd, has a functional carbohydrate recognition domain. Immunity 1: 785–792

    Article  PubMed  CAS  Google Scholar 

  • Delfino DV, Patrene KD, Lu J, DeLeo A, DeLeo R, Herberman RB, Boggs SS (1996) Natural killer cell precursors in the CD34negidlm T-cell receptor“eg population of the mouse bone marrow. Blood 87: 394–2400

    Google Scholar 

  • Dexter TM, Testa NG (1980) In vitro methods of hematopoiesis and lymphopoiesis. J Immunol Methods 38: 177–190

    Article  PubMed  CAS  Google Scholar 

  • Dorfman JR, Raulet DH (1996) Major histocompatibility complex genes determine natural killer cell tolerance. Eur J Immunol 26: 151–155

    Article  PubMed  CAS  Google Scholar 

  • Dorshkind K, Pollack SB, Bosma MJ, Phillips RA (1985) Natural killer ( NK) cells are present in mice with severe combined immunodeficiency (seid ). J Immunol 134: 3798

    PubMed  CAS  Google Scholar 

  • Galy A, Travis M, Cen D, Chen B (1995) Human T, B, natural killer and Dendritic cells arise from a comon bone marrow progenitor cell subset. Immunity 3: 459–473

    Article  PubMed  CAS  Google Scholar 

  • Garni-Wagner BA, Purohit A, Mathew PA, Bennett M, Kumar V (1993) Activation of NK cells and non-MHC restricted T cells by a novel cell surface molecule. J Immunol 151: 60–70

    PubMed  CAS  Google Scholar 

  • Gately MK, Warder RR, Honasoge S, Carvajal DM, Faherty DA, Connaughton SE, Anderson TD, Sarmiento U, Hubbard BR, Murphy M (1994) Administration of recombinant IL-12 to normal mice enhances cytolytic lymphocyte activity and induces production of IFNy in vivo. Int Immunol 6: 157–167

    Article  PubMed  CAS  Google Scholar 

  • George T, Yu YYL, Liu J, Davenport C, Lemieux S, Stoneman E, Mathew PA, Kumar V, Bennett M (1997) Allorecognition by murine natural killer cells: lysis of T lymphoblasts and rejection of bone marrow grafts. Immunol Rev 155: 29–40

    Article  PubMed  CAS  Google Scholar 

  • Georgiopoulos K, Moore DD, Derfler B (1992) Ikaros, an early lymphoid-specific transcription factor and putative mediator for T cell commitment. Science 92: 808–812

    Article  Google Scholar 

  • Georgopoulos K, Bigby M, Wang JH, Molnar A, Wu P, Winandy S, Sharpe A (1994) The Ikaros gene is required for the development of all lymphoid lineages. Cell 94: 143–156

    Article  Google Scholar 

  • Giorda R, Trucco M (1991) Mouse NKR-P1: a family of genes selectively coexpressed in adherant lymphokine-activated killer cells. J Immunol 91: 1701–1708

    Google Scholar 

  • Giorda R, Rudert WA, Vavassori C, Chambers WH, Hiserodt JC, Trucco M (1990) NKR-P1, a signal transduction molecule on natural killer cells. Science 90: 1298–1300

    Article  Google Scholar 

  • Giorda R, Weisberg EP, Ip TK, Trucco M (1992) Genomic structure and strain-specific expression of the natural killer cell receptor NKR-P1. J Immunol 92: 1957–1963

    Google Scholar 

  • Giri JG, Ahdieh M, Eisenmann J, Shanebeck K, Grabstein K, Kumaki S, Namen A, Park LS, Cosman D, Anderson D (1994) Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J 13: 2822–2830

    PubMed  CAS  Google Scholar 

  • Giri JG, Kumaki S, Ahdieh M, Friend DJ, Loomis A, Shanebeck K, DuBose R, Cosmann D, Park LS, Anderson DM (1995) Identification and cloning of a novel IL-15 binding protein that is structurally related to the alpha chain of the IL-2 receptor. EMBO J 14: 3654–3663

    PubMed  CAS  Google Scholar 

  • Glick B, Whatley S (1967) The presence of immunoglobulin in the bursa of fabricius. Poultry Sci 46 (6): 1587–1589

    CAS  Google Scholar 

  • Glimcher L, Shen FW, Cantor H (1977) Identification of a cell surface antigen selectively expressed on the natural killer cell. J Exp Med 77: 1–9

    Article  Google Scholar 

  • Grabstein KH, Eisenmann J, Shanebeck K, Rauch C, Srinivasan S, Fung V, Beers C, Richardson J, Schoenborn MA, Ahdieh M, Johnson L, Alderson MR, Watson JD, Anderson DM, Giri JG (1994) Cloning of a T cell growth factor that interacts with the beta chain of the IL-2 receptor. Science 264: 965–968

    Article  PubMed  CAS  Google Scholar 

  • Hackett J Jr, Bennett M, Kumar V (1985) Origin and differentiation of Natural killer cells. I. Characterization of a transplantable NK cell precursor. J Immunol 134: 3731–3738

    PubMed  Google Scholar 

  • Hackett J Jr, Tutt M, Lipscomb M, Bennett M, Koo G, Kumar V (1986a) Origin and differentiation of natural killer cells. II. Functional and morphologic studies of purified NK1.1+ cells. J Immunol 136: 3124–3131

    PubMed  Google Scholar 

  • Hackett J Jr, Bosma G, Bosma M, Bennett M, Kumar V (1986b) Transplantable progenitors of natural killer cells are distinct from those of T and B lymphocytes. Proc Natl Acad Sci USA 83: 3427–3431

    Article  PubMed  Google Scholar 

  • Haller O, Wigzell H (1977) Suppression of naturla killer cell activity with radioactive strontium: effector cells are bone marrow dependent. J Immunol 118: 1503–1506

    PubMed  CAS  Google Scholar 

  • Haller O, Kiessling R, Om A, Wigzell H (1977) Generation of natural killer cells: an autonomous function of the bone marrow. J Exp Med 145: 1411–1416

    Article  PubMed  CAS  Google Scholar 

  • Hebermann RB, Nunn ME, Holden HT, Lavrin DH (1975) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer 75: 230–239

    Article  Google Scholar 

  • Held W, Dorfman JR, Wu M-F, Raulet DH (1996) Major histocompatibility complex class I-dependent skewing of the natural killer cell Ly-49 receptor repertoire. Eur J Immunol 26: 2286–2292

    Article  PubMed  CAS  Google Scholar 

  • Ikuta K, Uchida N, Friedman J, Weissman IL (1992) Lymphocyte development from stem cells. Annu Rev Immunol 10: 759–783

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen SE, Veiby OP, Smeland EB (1993) Cytotoxic lymphocyte maturation factor IL-12 is a synergistic growth factor for hematopoietic stem cells. J Exp Med 93: 413–418

    Article  Google Scholar 

  • Jacobson SE, Okkenhaug C, Myklebust J, Veiby OP, Lyman SD (1995) The FLT3 ligand potently and directly stimulates the growth and expansion of primitive bone marrow progenitor cells in vitro: synergisyic interactions with IL-11, IL-12 and other hematopoietic growth factors. J Exp Med 95: 1357–1363

    Article  Google Scholar 

  • Jerne, Nordin (1963) Plaque formation in agar by single antibody producing cells. Science 140: 405–408

    Article  Google Scholar 

  • Kane KP (1994) Ly-49 mediates EL-4 lymphoma adhesion to isolated class I major histocompatibility molecules. J Exp Med 179: 1011–1015

    Article  PubMed  CAS  Google Scholar 

  • Kalland T (1986) Generation of natural killer cells from bone marrow precursors in vitro. Immunology 57: 493–498

    PubMed  CAS  Google Scholar 

  • Karlhofer FM, Ribaudo RK, Yokoyama WM (1992) MHC class I allospecificity of Ly-49’ IL-2 activated natural killer cells. Nature 358: 66–69

    Article  PubMed  CAS  Google Scholar 

  • Kdrre K, Ljunggren HG, Piontek G, Kiessling R (1986) Selective rejection of H-2-deficient lyphoma variants suggests alternative immune defence strategy. Nature 319: 675–678

    Article  Google Scholar 

  • Kiessling R, Petranyi G, Klein G, Wigzell H (1975) Genetic variation of in vitro cytolytic activity and in vivo rejection potential of non-immunized semi-syngeneic mice against a mouse lymphoma line. Int J Cancer 15: 933–940

    Article  PubMed  CAS  Google Scholar 

  • Koo GC, Manyak CL (1986) Generation of cytotoxic cells from murine bone marrow by human recombinant IL-2. J Immunol 137: 1751–1756

    PubMed  CAS  Google Scholar 

  • Koo GC, Peppard JR (1984) Establishment of a monoclonal anti-NK1.1 antibody. Hybridoma 3 (3): 301–303

    Article  PubMed  CAS  Google Scholar 

  • Koo GC, Pappard JR, Hatzfeld A (1982) Ontogeny of NK1.1+ natural killer cells. I. Promotion of NK1.1+ cells in fetal, baby and old mice. J Immunol 129: 867–871

    PubMed  CAS  Google Scholar 

  • Koo GC, Dumont FJ, Tutt M, Hackett JJ, Kumar V (1986) The NK1.1- mouse: a model to study differentiation of murine NK cells. J Immunol 137: 3742–3747

    PubMed  CAS  Google Scholar 

  • Kumar V, Ben-Ezra J, Bennett M, Sonnenfeld G (1979) Natural killer cells in mice treated with strontium: normal target-binding cell numbers but inability to kill even after interferon administration. J Immunol 79: 1832–1838

    Google Scholar 

  • Kundig TM, Schorle H, Bachmann MF, Hengartner H, Zinkernagel RM, Moral(I (1993) Immune responses in IL-2 deficient mice. Science 262: 1059

    CAS  Google Scholar 

  • Kung SKP, Miller RG (1994) The NK 1.1 antigen in NK mediated Fl anti-parent killing in vitro. J Immunol 154: 1624–1633

    Google Scholar 

  • Lanier LL, Phillips JH, Hackett J Jr, Tutt M, Kumar V (1986) Natural killer cells: definition of a cell type rather than a function. J Immunol 86: 2735–2739

    Google Scholar 

  • Lanier LL, Chang C, Spits H, Phillips JJ (1992) Expression of cytoplasmic CD3 epsilon proteins in actiavted human adult natural cells and CD3 gamma, epsilon and delta complexes in fetal NK cells. Implications for the relationship of NK and T lymphocytes. J Immunol 92: 1876–1880

    Google Scholar 

  • Lantz CS, Huff TF (1995) Murine c-kit+ Lin bone marrow progenitors express FcyRII but do not express FcERI until mast cell granule formation. J Immunol 154: 355–362

    PubMed  CAS  Google Scholar 

  • Leclercq G, DeBacker V, De Smedt M, Plum J (1996) Differential effects of IL-15 and IL-2 on differentiation of bipotential T/NK progenitor cells. J Exp Med 184: 325–336

    Article  PubMed  CAS  Google Scholar 

  • Li H, Schwinzer R, Baccarini M, Lohmann-Matthes ML (1989) Cooperative effects of colony-stimulating factor I and recombinant interleukin 2 on proliferation and induction of cytotoxicity of macrophage precursors generated from mouse bone marrow cell cultures. J Exp Med 169: 973–986

    Article  PubMed  CAS  Google Scholar 

  • Liao NS, Bix M, Zijlstra M, Jaenisch R, Raulet D (1991) MHC class I deficiency: susceptibility to natural killer ( NK) cells and impaired NK activity. Science 253: 199–202

    Article  PubMed  CAS  Google Scholar 

  • Lipinski M, Virelizier JL, Tursz T, Griscelli C (1980) Natural killer and killer cell activities in patients with primary immunodeficiencies or defects in immune interferon production. Eur J Immunol 10: 246

    Article  PubMed  CAS  Google Scholar 

  • Ljunggren HG, Ksrre K (1990) In search of the “missing self”: MHC molecules and NK cell recognition. Immunol Today 11: 237–244

    Article  PubMed  CAS  Google Scholar 

  • Ljunggren HG, Van Kaer L, Ploegh HL, Tonegawa S (1994) Altered natural killer cell repertoire in Tap-1 mutant mice. Proc Natl Acad Sci USA 91: 6520–6524

    Article  PubMed  CAS  Google Scholar 

  • MacDonald RH (1995) NK1.1+ T cell receptor-a/(3+ cells: new clues to their origin, specificity and function. J Exp Med 182: 633–638

    Article  PubMed  CAS  Google Scholar 

  • Magram J, Connaughton SE, Warder RR, Carvajal DM, Wu C, Ferrante J, Stewart C, Sarmiento U, Faherty DA, Gately MK (1996) IL-12 deficient mice are defective in IFNy production and type 1 cytokine responses. Immunity 4: 471–481

    Article  PubMed  CAS  Google Scholar 

  • Manoussaka M, Georgiou A, Rossiter B, Shrestha S, Toomey JA, Sivakumar PV, Bennett M, Kumar V, Brooks CG (1997) Phenotypic and functional characterization of long-lived NK cell lines of different maturational status obtained from mouse fetal liver. J Immunol 158: 112–119

    PubMed  CAS  Google Scholar 

  • Mason LH, Ortaldo JR, Young HA, Kumar V, Bennett M, Anderson SK (1995) Cloning and functional characteristics of murine large granular lymphocyte-1: a member of the Ly-49 gene family (Ly-49G2). J Exp Med 182: 293–303

    Article  PubMed  CAS  Google Scholar 

  • Mason LH, Anderson SK, Yokoyama WM, Smith HRC, Winkler-Pickett R, Ortaldo JR (1996) The Ly-49D receptor activates murine natural killer cells. J Exp Med 184: 2119–2128

    Article  PubMed  CAS  Google Scholar 

  • Mathew PA, Garni-Wagner BA, Land K, Takashima A, Stoneman E, Bennett M, Kumar V (1993). Cloning and characterization of the 2B4 gene encoding a molecule associated with non-MHC-restricted killing mediated by activated natural killer cells and T cells. J Immunol 151: 5328–5337

    PubMed  CAS  Google Scholar 

  • Migliorati G, Moraca R, Nicoletti I, Riccardi C (1992) IL-2-dependent generation of natural killer cells from bone marrow: role of Mac- F NK1.1- precursors. Cell Immunol 141: 323–331

    Article  PubMed  CAS  Google Scholar 

  • Miller JFAP, Mitchell GF (1969) Thymus and antigen-specific cells. Transplant Rev 1: 3

    PubMed  CAS  Google Scholar 

  • Miller JS, Verfaillie C, McGlave P (1992) The generation of human natural killer cells from CD34+/DRprimitive progenitors in long term bone marrow culture. Blood 80: 2182–2187

    PubMed  CAS  Google Scholar 

  • Miller JS, Alley KA, McGlave P (1994) Differentiation of natural killer (NK) cells from human primitive marrow progenitors in a stroma-based long-term culture system: identification of a CD34+ CD7+ NK progenitor. Blood 83: 2594–2601

    PubMed  CAS  Google Scholar 

  • Moore TA, Bennett M, Kumar V (1995) Transplantable NK progenitors in murine bone marrow. J Immunol 154: 1653–1663

    PubMed  CAS  Google Scholar 

  • Moore TA, Bennett M, Kumar V (1996) Mutine natural killer cell differentiation: past, present and future. Immunol Res 15 (2): 151

    Article  PubMed  CAS  Google Scholar 

  • Moretta L, Ciccone E, Mingari MC, Biassoni R, Moretta A (1994) Human natural killer cells: origin, clonality, specificity and receptors. Adv Immunol 55: 341–380

    Article  PubMed  CAS  Google Scholar 

  • Mrözek E, Anderson P, Caliguiri M (1996) Role of IL-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitors. Blood 87: 2632–2640

    PubMed  Google Scholar 

  • Noguchi M, Yi H, Rosenblatt HM, Filipovich AH, Adelstein S, Modi WS, McBride OW, Leonard WJ (1993) Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 93: 147–157

    Article  Google Scholar 

  • Nunn ME, Heberman RB, Holden HT (1977) Natural cell-mediated cytotoxicity in mice against non-lymphoid tumor cells and normal cells. Int J Cancer 20: 381–387

    Article  PubMed  CAS  Google Scholar 

  • Ohara A, Suda T, Tokuyama N, Suda J, Nakayama ICI, Miura Y, Nishikawa SI, Nakauchi H (1991) Generation of B lymphocytes from a single hematopoietic progenitor cell in vitro. Int Immunol 3: 703–709

    Article  PubMed  CAS  Google Scholar 

  • Ölsson MY, Kärre K, Sentman CL (1995) Altered phenotype and function of natural killer cells expressing the MHC receptor in mice transgenic for its ligand. Proc Natl Acad Sci USA 92: 1649–1653

    Article  PubMed  Google Scholar 

  • Perussia B, Starr S, Abraham S, Fanning V, Trinchieri G (1983) Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking Fc receptor functions. I. Characterization of the lymphocyte subset reactive with B73.1. J Immonol 83: 2133–2141

    Google Scholar 

  • Peter HH, Rieger CR, Gendvilis S, Eckert G, Pichler WJ, Stangel W (1982) Spontaneous cell-mediated cytotoxicity ( SCMC) in patients with myelodisplastic disorders and immunodeficiency syndromes. Dev Immunol 17: 341

    Google Scholar 

  • Phillips JH, Hon T, Nagler A, Bhat N, Spits H, Lanier L (1992) Ontogeny of human natural killer cells: fetal NK cells mediate cytolytic function and express cytoplasmic CD3e,8 proteins. J Exp Med 175: 1055–1066

    Article  PubMed  CAS  Google Scholar 

  • Pietrangeli CE, hayashi SI, Kincade PW (1988) Stromal cell lines which support lymphocyte growth: characterization, sensitivity to radiation and responsiveness to growth factors. Eur J Immunol 18: 863–872

    Article  PubMed  CAS  Google Scholar 

  • Ploemacher RE, van Soest PL, Boudewijn A, Neben S (1993a) IL-12 enhances IL-3-dependent multilineage hematopoietic colony formation stimulated by IL-11 or steel factor. Leukemia 93: 1374–1380

    Google Scholar 

  • Ploemacher RE, van Soest PL, Voorwinden H, Boudewijn A (1993b) IL-12 synergizes with IL-3 and steel factor to enhance recovery of mutine hematopoietic stem cells in liquid culture. Leukemia 93: 1381–1388

    Google Scholar 

  • Pollack SB, Tsuji J, Rosse C (1992) Production and differentiation of NK lineage cells in long-term bone marrow cultures in the absence of exogenous growth factors. Cell Immunol 139: 352–362

    Article  PubMed  CAS  Google Scholar 

  • Puzanov IJ, Bennett M, Kumar V (1996) IL-15 can substitute for the marrow microenvironment in the differentiation of natural killer cells. J Immunol 157: 4282–4285

    PubMed  CAS  Google Scholar 

  • Raulet DH (1996) Recognition events that inhibit and activate natural killer cells. Curr Opin Immunol 8: 372–377

    Article  PubMed  CAS  Google Scholar 

  • Raulet DH, Held W (1995) Natural killer cell receptors: the offs and ons of NK cell recognition. Cell 82: 697–700

    Article  PubMed  CAS  Google Scholar 

  • Raziuddin A, Longo DL, Mason L, Ortaldo JR, Murphy WJ (1996) Ly-49 G2+ NK cells are responsible for the mediating rejection of H2b bone marrow grafts. Int Immunol 8: 1833–1839

    Article  PubMed  CAS  Google Scholar 

  • Rembicki RM, Kumar V, David CS, Bennett M (1988) Bone marrow cell transplants involving intra-H-2 recombinant inbred mouse strains. J Immunol 141: 2253–2260

    Google Scholar 

  • Renard V, Ardouin L, Malissen M, Milon G, Lebastard M, Gillet A, Malissen B, Vivier E (1995). Normal development and function of natural killer cells in CD3e45/95 mutant mice. Proc Natl Acad Sci USA 92: 7545–7549

    Article  PubMed  CAS  Google Scholar 

  • Reya T, Yang-Snyder JA, Rothenberg EV, Carding S (1996) Regulated expression and function of CD 122 (IL-212f3) during lymphoid development. Blood 87: 190–201

    PubMed  CAS  Google Scholar 

  • Rodewald HR, Moingeon P, Lucich JL, Dosiou C, Lopez P, Reinherz EL (1992) A population of early fetal thymocytes expressing FcyRIUIII contains precursors of T lymphocytes and natural killer cells. Cell 69: 139–148

    Article  PubMed  CAS  Google Scholar 

  • Rolink A, ten Boekel E, Melchers F, Fearon DT, Krop I, Andersson J (1996) A subpopulation of B220+ cells in murine bone marrow does not express CD 19 and contains natural killer cell progenitors. J Exp Med 183: 187–194

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg EB, Heberman RB, Levine PH, Halterman R, McCoy JL, Wunderlich JR (1972) Lymphocyte cytotoxicity reactions to leukemia-associated antigens in identical twins. Int J Cancer 9: 648–657

    Article  PubMed  CAS  Google Scholar 

  • Rosenau W, Moon HD (1964) The specificity of the cytolytic effect of sensitized lymphoid cells in vitro. J Inununol 93: 910

    CAS  Google Scholar 

  • Ryan JC, Niemi EC, Goldfien R, Hiserodt JC, Seaman WE (1991) NKR-P1, an activating molecule on natural killer cells, stimualtes phosphoinositide turnover and rise in intracellular calcium J Immunol 147: 3244–3250

    PubMed  CAS  Google Scholar 

  • Ryan JC, Turck J, Niemi EC, Yokoyama WM, Seaman WE (1992) Molecular cloning of the NK1.1 antigen, a member of the NKR-P1 family of natural killer cell activation molecules. J Immunol 149: 1631–1635

    PubMed  CAS  Google Scholar 

  • Ryan JC, Niemi EC, Nakamura MC, Seaman WE (1995) NKR-P1A is a target specific receptor that activates natural killer cell cytotoxicity. J Exp Med 181: 1911–1915

    Article  PubMed  CAS  Google Scholar 

  • Sanchez MJ, Muench MO, Roncarolo MG, Lanier L, Phillips JH (1994) Identification of a common T/natural killer cell progenitor in human fetal thymus. J Exp Med 180: 569–576

    Article  PubMed  CAS  Google Scholar 

  • Schorle H, Holtschke T, Hunig T, Schimpl A, Horak I (1991) Development and function of T cells in mice rendered IL-2 deficient by gene targeting. Nature 352: 621–624

    Article  PubMed  CAS  Google Scholar 

  • Seaman WE, Gindhart TD, Greenspan JS, Blackman MA, Talal N (1979) Natural killer cells, bone and bone marrow: studies in estrogen-treated mice and in congenitally osteopetrotic (mi/mi) mice. J Immunol 79: 2541–2547

    Google Scholar 

  • Sentman CL, Kumar V, Koo GC, Bennett M (1989a) Effector cell expression of NK1.1, a natural killer cell-specific molecule, and ability of mice to reject bone marrow allografts. J Immunol 142: 1847–1853

    PubMed  CAS  Google Scholar 

  • Sentman CL, Hackett J, Kumar V, Bennett M (1989b) Identification of a subset of murine natural killer cells that mediates rejection of Hh-ld but not Hh-1b bone marrow grafts. J Exp Med 170: 191–202

    Article  PubMed  CAS  Google Scholar 

  • Sentman CL,…lsson MY, Salcedo M, Hsglund P, Lendahl U, Kärre K (1994) H-2 allele-specific protection from NK cell lysis in vitro for lymphoblasts but nto tumor targets. J Immunol 153: 5482–5490

    Google Scholar 

  • Sentman CL lsson MY, KSrre K (1995) Missing self recognition by natural killer cells in MHC class I transgenic mice. A `receptor calibration’ model for how effector cells adapt to self. Semin Immunol 7: 109–119

    Google Scholar 

  • Shibuya A, Kojima H, Shibuya K, Nagayoshi K, Nagasawa T, Nakauchi H (1993) Enrichment of IL-2-responsive natural killer cell progenitors in human bone marrow. Blood 81: 1819–1826

    PubMed  CAS  Google Scholar 

  • Shibuya A, Nagayoshi K, Nakamura K, Nakauchi H (1995) Lymphokine requirement for the generation of natural killer cells from CD34+ hematopoietic progenitor cells. Blood 85: 3538–3546

    PubMed  CAS  Google Scholar 

  • Shibuya A, Nagayoshi K, Nakamura K, Nakauchi H (1995) Lymphokine requirement for the generation of natural killer cells from CD34+ hematopoietic progenitor cells. Blood 85: 3538–3546

    PubMed  CAS  Google Scholar 

  • Smith HRC, Karlhofer FM, Yokoyama WM (1994) The Ly-49 multigene family expressed by IL-2-activated natural killer cells. J Inununol 153: 1068–1079

    CAS  Google Scholar 

  • Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241: 58–62

    Article  PubMed  CAS  Google Scholar 

  • Stechschulte DJ, Sharma R, Dileepan KN, Simpson KM, Aggarwal J, Clancey J Jr, Jilka RL (1987) Effect of the mi allele on mast cells, basophils, natural killer cells and osteoclasts in C57BL/6 mice. J Cell Physiol 132: 565–570

    Article  PubMed  CAS  Google Scholar 

  • Stoneman E, Bennett M, An J, Chestnut KA Wakeland EK, Scheerer J, Siciliano MJ, Kumar V, Mathew PA (1995) Cloning and characterization of 5E6 (Ly-49C), a receptor molecule expressed on a subset of murine natural killer cells. J Exp Med 182: 305–313 [erratum, J Exp Med 183:2705]

    Google Scholar 

  • Storkus WJ, Howell DN, Salter RD, Dawson JR, Cresswell P (1987) NK susceptibility varies inversely with target cell class I HLA antigen expression. J Immunol 138: 1657–1659

    PubMed  CAS  Google Scholar 

  • Suwa H, Tanaka T, Kitamura F, Shiohara T, Kuida K, Miyasaka M (1995) Dysregulated expression of the IL-2R13-chain abrogates development of NK cells and Thy1.1+ dendritic epidermal cells in transgenic mice. Int Immunol 7: 1441–1449

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Duncan GS, Takimoto H, Mak TW (1997) Abnormal development of intestitial intraepithelial lymphocytes and perepheral natural killer cells in mice lacking the IL-2R13 chain. J Exp Med 185: 499–505

    Article  PubMed  CAS  Google Scholar 

  • Sykes M, Harty MW, Karlhofer FM, Pearson DA, Szot G, Yokoyama WM (1993) Hematopoietic cells and radioresistent host elements influence natural killer cell differentiation. J Exp Med 178: 223–229

    Article  PubMed  CAS  Google Scholar 

  • Tagaya T, Bamford RN, DeFilippis AP, Waldmann TA (1996) IL-15: a pleiotropic cytpkine with diverse receptor/signaling pathways whose expression is controlled at multiple levels. Immunity 4: 329–336

    Article  PubMed  CAS  Google Scholar 

  • Taguchi K, Shibuya A, Inazawa Y, Abe T (1992) Suppressive effect of GM-CSF on the generation of natural killer cells in vitro. Blood 79: 3227

    PubMed  CAS  Google Scholar 

  • Takasugi M, Mickey MR, Terasaki PI (1973) Reactivity of lymphocytes from normal persons on cultured tumor cells. Cancer Res 33: 2898–2902

    PubMed  CAS  Google Scholar 

  • Takei F, Brennan J, Magar D (1997) The Ly-49 family: genes, proteins and recognition of class I MHC. Immunol Rev 155: 67–77

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Takeuchi Y, Shiohara T, Kitamura F, Nagasaka Y, Hamamura K, Yagita H, Miyasaka M (1992) In utero treatment with monoclonal antibody to the IL-2R13 chain completely abrogates development of Thy 1.1+ dendritic epidermal cells. Int Immunol 4: 487

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Kitamura F, Nagasaka Y, Kuida K, Suwa H, Miyasaka M (1993) Selective long-term elimination of natural killer cells in vivo by an anti-IL-2R13 chain monoclonal antibody in mice. J Exp Med 178: 1103

    Article  PubMed  CAS  Google Scholar 

  • Trinchieri G (1989) Biology of natural killer cells. Adv Immunol 47: 187–375

    Article  PubMed  CAS  Google Scholar 

  • Trinchieri G, Santoli D, Koprowski H (1978) Spontaneous cell-mediated cytotoxicity in humans: role of interferon and immunoglobulins J Immunol 120: 1849–1855

    PubMed  CAS  Google Scholar 

  • Tutt MM (1988) Regulation and differentiation of murine natural killer cells. Thesis, University of Texas Southwestern Medical Center, Dallas

    Google Scholar 

  • van den Brink MR, Boggs SS, Herberman RB, Hiserodt JC (1990) The generation of natural killer ( NK) cells from NK precursors in rat long-term bone marrow cultures. J Exp Med 172: 303–313

    Article  PubMed  Google Scholar 

  • Wang B, Biron CA, She J, Higgins K, Sunshine MJ, Lacy E, Lonberg N, Terhorst C (1994) A block in both early T lymphocyte and natural killer cell development in transgenic mice with high-copy numbers of the human CD3E gene. Proc Natl Acad Sci USA 91: 9402–9406

    Article  PubMed  CAS  Google Scholar 

  • Whitlock CA, Witte ON (1982) Long term culture of B lymphocytes and their precursors from murine bone marrow. Proc Natl Acad Sci USA 79: 3608

    Article  PubMed  CAS  Google Scholar 

  • Williamd NS, Moore TA, Schatzle JD, Puzanov IJ, Sivakumar PV, Zlotnik A, Bennett M, Kumar V (1997) Generation of lytic NK1.1+ Ly-49- cells from multipotent bone marrow progenitors in a stroma-free culture: definition of cytokine requirements and developmental intermediates. J Exp Med 186: 1609–1614

    Article  Google Scholar 

  • Wu L, Antica M, Johnson GR, Scollay R, Shortman K (199la) Developmental potential of the earliest precursor cells from the adult thymus. J Exp Med 174: 1617

    Google Scholar 

  • Wu L, Scollay R, Egerton M, Pearse M, Spangrude GJ, Shortman K (1991b) CD4 expressed on earliest T-lineage precursor cells in the adult murine thymus. Nature 349: 71

    Article  PubMed  CAS  Google Scholar 

  • Yoda Y, Kawakami Z, Shibuya A, Abe T (1988) Characterization of natural killer cells cultured from human bone marrow cells. Exp Hematol 16: 712

    PubMed  CAS  Google Scholar 

  • Yokoyama WM (1995) Natural killer cell receptors specific for MHC class I molecules. Proc Natl Acad Sci USA 92: 3081–3085

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama WM, Seaman WE (1993) The Ly-49 and NKR-Pl gene families encodong lectin-like receptors on natural killer cells: the NK gene complex. Annu Rev Immunol 11: 613–635

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama WM, Jacobs LB, Kanagawa O, Shevach EM, Cohen DI (1989) A murine lymphocyte antigen belongs to a superfamily of type II integral membrane proteins. J Immunol 143: 1379

    PubMed  CAS  Google Scholar 

  • Yokoyama WM, Kehn PJ, Cohen DI, Shevach EM (1990) Chromosomal location of the Ly-49 (A1,YE1/48) multigene family. Genetic association with the NK1.1 antigen. J Immunol 145: 2353–2360

    PubMed  CAS  Google Scholar 

  • Yu YYL, George T, Dorfmann JR, Roland J, Kumar V, Bennett M (1996) The role of Ly-49A and 5E6 (Ly-49C) molecules in hybrid resistence mediated by murine natural killer cells against normal T cell blasts. Immunity 4: 67–76

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sivakumar, P.V., Puzanov, I., Williams, N.S., Bennett, M., Kumar, V. (1998). Ontogeny and Differentiation of Murine Natural Killer Cells and Their Receptors. In: Kärre, K., Colonna, M. (eds) Specificity, Function, and Development of NK Cells. Current Topics in Microbiology and Immunology, vol 230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46859-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46859-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46861-2

  • Online ISBN: 978-3-642-46859-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics