Skip to main content

Computer Simulations of Fracture in Disordered Visco-elastic Systems

  • Conference paper
Computer Simulation Studies in Condensed-Matter Physics X

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 83))

  • 124 Accesses

Abstract

Dynamics of fracture and its instabilities have been studied using two-dimensional visco-elastic models. Two models have been developed to describe disordered systems, in which the disorder appears either as topological disorder or as non-uniform mass distribution at mesoscopic length scale. The first model is based on a network of dissipative Born springs and the second model is based on finite element method with a similar dissipative force relaxation mechanism as in the first model. Results of computer simulations in a topologically disordered system show a very similar crack branching, branch bending and velocity oscillation behaviours as found in recent experiments. Also the conjectured scaling of branch bending has been tested favourably. In systems with non-uniform mass-distribution, crack curving and crack arrest were found to occur especially for strongly correlated disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Sharon, S.P. Gross and J. Fineberg, Phys. Rev. Lett. 74, 5096 (1995).

    Article  ADS  Google Scholar 

  2. J. Fineberg, S.R Gross, M. Marder, and H.L. Swinney, Phys. Rev. B 45, 5146 (1992)

    Article  ADS  Google Scholar 

  3. J. Fineberg, S.R Gross, M. Marder, and H.L. Swinney, Phys. Rev. Lett. 67, 457 (1991).

    Article  ADS  Google Scholar 

  4. S.P. Gross, J. Fineberg, M. Marder, W.D. McCormick and H.L. Swinney, Phys. Rev. Lett. 71, 3162 (1993).

    Article  ADS  Google Scholar 

  5. A. Yuse and M. Sano, Nature (London) 362, 329 (1993).

    Article  ADS  Google Scholar 

  6. Cf. M. Marder, Nature (London) 362, 295 (1993).

    Article  ADS  Google Scholar 

  7. F.F. Abraham, D. Brodbrck, R.A. Rafey, and W.E. Rudge, Phys. Rev. Lett. 73, 272 (1994).

    Article  ADS  Google Scholar 

  8. M. Marder, and X. Liu, Phys. Rev. Lett. 71, 2417 (1993).

    Article  ADS  Google Scholar 

  9. H. Furukawa, Progr. Theor. Phys. 90, 949 (1993)

    Article  ADS  Google Scholar 

  10. K. Runde, Phys. Rev. E 49, 2597 (1994).

    Article  ADS  Google Scholar 

  11. J.S. Langer, Phys. Rev. Lett. 70, 3592 (1993).

    Article  ADS  Google Scholar 

  12. E.H. Yoffe, Philos. Mag. 42, 739 (1951).

    MathSciNet  MATH  Google Scholar 

  13. P. Heino and K. Kaski, Phys. Rev. B 54 6150 (1996)

    Article  ADS  Google Scholar 

  14. P. Heino and K. Kaski, Mesoscopic Maxwell-dissipative Finite Element Model for Crack Propagation, Accepted for publication in Int.J.Mod.Phys.C (1997).

    Google Scholar 

  15. T.T. Rautiainen, M.J. Alava and K. Kaski, Phys. Rev. E 51 R2727 (1995).

    Article  ADS  Google Scholar 

  16. L.D. Landau and E.M. Lifshitz, Theory of Elasticity, 3rd revised english ed., Pergamon Press (1986).

    Google Scholar 

  17. O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method, Fourth Edition, Vol 1 and 2, McGraw-Hill Book Company (1994).

    Google Scholar 

  18. W.T. Ashurst and W.G. Hoover, Phys. Rev. B, 14 1465 (1976).

    Article  ADS  Google Scholar 

  19. M. Korteoja, A. Lukkarinen, K. Niskanen, and K. Kaski, Proc. Int. paper physics conference, Niagara (1995) (cf. also the work by R.R. Farnood and C.T.J. Dodson).

    Google Scholar 

  20. L. Salminen, M. Korteoja, M. Alava and K. Niskanen, Paperin lujuuden vaihtelusta, KCL Paper Science Centre communications 89. (In finnish, to apper in english.)

    Google Scholar 

  21. A.V. Potapov, M.A. Hopkins, and C.S. Campbell, Int. J. Mod. Phys. C 6 3 371–425 (1995).

    Article  ADS  Google Scholar 

  22. M.P. Allen and D.J. Tildesley, Computer simulation of liquids, Oxford university press (1990).

    Google Scholar 

  23. G. Sewell, The Numerical Solution of Ordinary and Partial Differential Equations, Academic Press Inc (1988).

    MATH  Google Scholar 

  24. J. Åstrom, M. Kellomäki and J. Timonen, Crack bifurcations in a Disorderless System, preprint (1996).

    Google Scholar 

  25. E. Sharon and J. Fineberg, The Micro-Branching Instability and the Dynamic Fracture of Brittle Materials, preprint (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaski, K., Heino, P. (1998). Computer Simulations of Fracture in Disordered Visco-elastic Systems. In: Landau, D.P., Mon, K.K., Schüttler, HB. (eds) Computer Simulation Studies in Condensed-Matter Physics X. Springer Proceedings in Physics, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46851-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46851-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46853-7

  • Online ISBN: 978-3-642-46851-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics