Skip to main content

A Chemical Picture of the Dissociation and Thermodynamics of Dense Fluid Hydrogen

  • Conference paper
Computer Simulation Studies in Condensed-Matter Physics X

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 83))

  • 123 Accesses

Abstract

Recent developments in shock-wave experimental techniques have allowed the 100 GPa range to be probed. The results of new experiments on hydrogen have demonstrated that at 141 GPa fluid hydrogen is in a metallic state. Using analytical calculations as well as Monte Carlo simulations, the pair distribution functions in partly dissociated hydrogen are determined. The equation of state is in good agreement with experiment in this high-pressure region. Estimates for the degree of dissociation are given. Furthermore, we demonstrate the influence of dissociation on the proton-proton pair distribution function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.T. Weir, A.C. Mitchell, and W.J. Nellis, Phys. Rev. Lett. 76, 1860 (1996).

    Article  ADS  Google Scholar 

  2. W. Ebeling and W. Richert, Phys. Stat. Sol. B 128, 467 (1985);

    Article  ADS  Google Scholar 

  3. W. Ebeling and W. Richert, Phys. Lett. A 108, 80 (1985);

    Article  ADS  Google Scholar 

  4. W. Ebeling and W. Richert, Contr. Plasma Phys. 25, 1 (1985).

    Google Scholar 

  5. D. Saumon and G. Chabrier, Phys. Rev. Lett. 62, 2397 (1989);

    Article  ADS  Google Scholar 

  6. D. Saumon and G. Chabrier, Phys. Rev. A 44, 5122 (1991);

    Article  ADS  Google Scholar 

  7. ibid. 46, 2084 (1992).

    Article  ADS  Google Scholar 

  8. D. Kremp, W.D. Kraeft, and M. Schlanges, Contrib. Plasma Phys. 33, 567 (1993);

    Article  ADS  Google Scholar 

  9. see also M. Schlanges, M. Bonitz, and A. Tschttschjan, ibid. 35, 109 (1995).

    Article  ADS  Google Scholar 

  10. H. Reinholz, R. Redmer, and S. Nagel, Phys. Rev. E 52, 5368 (1995).

    Article  ADS  Google Scholar 

  11. W. Ebeling, A. Förster, H. Hess, and M.Yu. Romanovsky, Plasma Phys. & Contr. Fusion 38, A31 (1996).

    Article  ADS  Google Scholar 

  12. W.D. Kraeft, D. Kremp, W. Ebeling, and G. Röpke, Quantum Statistics of Charged Particle Systems (Akademie-Verlag, Berlin, 1986).

    Book  Google Scholar 

  13. N.F. Carnahan and K.E. Starling, J. Chem. Phys. 51, 635 (1969);

    Article  ADS  Google Scholar 

  14. G.A. Mansoori, N.F. Carnahan, K.E. Starling, and T.W. Leland, ibid. 54, 1523 (1971).

    Article  ADS  Google Scholar 

  15. J.D. Weeks, D. Chandler, and H.C. Andersen, J. Chem. Phys. 54, 5237 (1971).

    Article  ADS  Google Scholar 

  16. W.J. Nellis, A.C. Mitchell, M. van Thiel, G.J. Devine, R.J. Trainor, and N. Brown, J. Chem. Phys. 79, 1480 (1983).

    Article  ADS  Google Scholar 

  17. W.J. Nellis, A.C. Mitchell, P.C. McCandless, D.J. Erskine, and S.T. Weir, Phys. Rev. Lett. 68, 2937 (1992).

    Article  ADS  Google Scholar 

  18. N.C. Holmes, M. Ross, and W.J. Nellis, Phys. Rev. B 52, 15835 (1995).

    Article  ADS  Google Scholar 

  19. M. Ross, F.H. Ree, and D.A. Young, J. Chem. Phys. 79, 1487 (1983).

    Article  ADS  Google Scholar 

  20. Y. Rosenfeld and N.W. Ashcroft, Phys. Rev. A 20, 1208 (1979). For the numerical code, see A. Malijevsky and S. Labik, Mol. Phys. 60, 663 (1987).

    Article  ADS  Google Scholar 

  21. For a review, see K. Binder (Editor), The Monte Carlo Method in Condensed Matter Physics (Springer, Berlin, 1992).

    Google Scholar 

  22. M. Ross, Phys. Rev. B 54, R9589 (1996).

    Article  ADS  Google Scholar 

  23. C. Pierleoni, D.M. Ceperley, B. Bernu, and W.R. Magro, Phys. Rev. Lett. 73, 2145 (1994);

    Article  ADS  Google Scholar 

  24. W.R. Magro, D.M. Ceperley, C. Pierleoni, and B. Bernu,ibid. 76, 1240 (1996).

    Article  ADS  Google Scholar 

  25. D. Hohl, V. Natoli, D.M. Ceperley, and R.M. Martin, Phys. Rev. Lett. 71, 541 (1993).

    Article  ADS  Google Scholar 

  26. D. Klakow, C. Toepffer, and P.-G. Reinhard, Phys. Lett. A 192, 55 (1994).

    Article  ADS  Google Scholar 

  27. J. Kohanoff and J.-P. Hansen, Phys. Rev. Lett. 74, 626 (1995);

    Article  ADS  Google Scholar 

  28. J. Kohanoff and J.-P. Hansen, Phys. Rev. E 54, 768 (1996).

    Article  ADS  Google Scholar 

  29. L. Collins, I. Kwon, J. Kress, N. Troullier, and D. Lynch, Phys. Rev. E 52, 6202 (1995).

    Article  ADS  Google Scholar 

  30. F.H. Ree, in Shock Waves in Condensed Matter1987, edited by S.C. Schmidt and N.C. Holmes (Elesevier, New York, 1988), p. 125.

    Google Scholar 

  31. A. Bunker, S. Nagel, R. Redmer, G. Röpke, Contrib. Plasma Phys. (submitted)

    Google Scholar 

  32. A. Bunker, S. Nagel, R. Redmer, G. Röpke, Phys. Rev. B (submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bunker, A., Nagel, S., Redmer, R., Röpke, G. (1998). A Chemical Picture of the Dissociation and Thermodynamics of Dense Fluid Hydrogen. In: Landau, D.P., Mon, K.K., Schüttler, HB. (eds) Computer Simulation Studies in Condensed-Matter Physics X. Springer Proceedings in Physics, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46851-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46851-3_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46853-7

  • Online ISBN: 978-3-642-46851-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics