Skip to main content

Numerical Study of a Random Gauge XY Model

  • Conference paper
Computer Simulation Studies in Condensed-Matter Physics X

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 83))

  • 125 Accesses

Abstract

An XY model with random gauge as a model for a superconducting glass is studied in two and three dimensions by a zero temperature domain wall renormalization group which allows one to follow the flows of both the coupling constant and the disorder strength with increasing length scale. Weak disorder is found to be marginal in two and probably irrelevant in three dimensions. For strong disorder the flow is towards a non-superconducting gauge glass fixed point in 2d and a superconducting glass in 3d. Our results are in agreement with recent analytic theory and are inconsistent with earlier predictions of a re-entrant transition to a disordered phase at very low temperature and with the loss of superconductivity for any finite amount of disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Ebner and D. Stroud, Phys. Rev. B 31, 165 (1985).

    Article  ADS  Google Scholar 

  2. E. Granato and J.M. Kosterlitz, Phys. Rev. B 33, 6533 (1986);

    Article  ADS  Google Scholar 

  3. E. Granato and J.M. Kosterlitz, Phys. Rev. Lett. 62, 823 (1989).

    Article  ADS  Google Scholar 

  4. M. Rubinstein, B. Shraiman, and D.R. Nelson, Phys. Rev. B 27, 1800 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  5. M.G. Forrester, H.J. Lee, M. Tinkham, and C.J. Lobb, Phys. Rev. B 37, 5966 (1988);

    Article  ADS  Google Scholar 

  6. M.G. Forrester, S.P. Benz, and C.J. Lobb, Phys. Rev. B 41, 8749 (1990);

    Article  ADS  Google Scholar 

  7. A. Chakrabarty and C. Dasgupta, Phys. Rev. B 37, 7557 (1988).

    Article  ADS  Google Scholar 

  8. S.E. Korshunov, Phys. Rev. B 48, 1124 (1993).

    Article  ADS  Google Scholar 

  9. J.M. Kosterlitz and D.J. Thouless, J. Phys. C6, 1181 (1973).

    ADS  Google Scholar 

  10. T. Natterman, S. Scheidl, S.E. Korshunov, and M.S. Li, J. Phys. it I France 5, 555 (1995).

    Article  Google Scholar 

  11. S.E. Korshunov, and T. Natterman, Phys. Rev. B 53, 2746 (1996).

    Article  ADS  Google Scholar 

  12. S. Scheidl. Phys. Rev. B 55, 457 (1997)

    Article  ADS  Google Scholar 

  13. L.-H. Tang. Phys. Rev. B 54. 3350 (1996)

    Article  ADS  Google Scholar 

  14. M.-C. Cha and H.A. Fertig, Phys. Rev. Lett. 74, 4867 (1995)

    Article  ADS  Google Scholar 

  15. M.P.A. Fisher, Phys. Rev. Lett. 62, 1415 (1989)

    Article  ADS  Google Scholar 

  16. D.A. Huse and H.S. Seung, Phys. Rev. B42, 1459 (1990)

    ADS  Google Scholar 

  17. M.J.P. Gingras, Phys. Rev. B 45, 7547 (1992)

    Article  ADS  Google Scholar 

  18. M.P.A. Fisher, T.A. Tokuyasu, and A.P. Young, Phys. Rev. Lett. 66, 2931 (1991);

    Article  ADS  Google Scholar 

  19. J.D. Reger, T.A. Tokuyasu, A.P. Young, and M.P.A. Fisher, Phys. Rev. B 44, 7147 (1991)

    Article  ADS  Google Scholar 

  20. J.R. Banavar and M. Cieplak, Phys. Rev. Lett. 48, 832 (1982);

    Article  ADS  Google Scholar 

  21. W.L. McMillan, Phys. Rev. B 29, 4026 (1983).

    Article  ADS  Google Scholar 

  22. S. Kirkpatrick, C. D. Gellat Jr, and M.P. Vecchi, Science, 220, 671 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. M.V. Simkin, cond-mat/9609213, to appear in Phys. Rev. B.

    Google Scholar 

  24. A.V. Vagov, unpublished.

    Google Scholar 

  25. D. Sherrington and M. Simkin, J. Phys. A 26 (1993), L1201;

    Article  MathSciNet  ADS  Google Scholar 

  26. D. Sherrington and M. Simkin, J. Phys. A 27 (1994) 2237.

    MathSciNet  Google Scholar 

  27. J. Maucort and D.R. Grempel, cond-mat/9703109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kosterlitz, J.M., Simkin, M.V. (1998). Numerical Study of a Random Gauge XY Model. In: Landau, D.P., Mon, K.K., Schüttler, HB. (eds) Computer Simulation Studies in Condensed-Matter Physics X. Springer Proceedings in Physics, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46851-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46851-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46853-7

  • Online ISBN: 978-3-642-46851-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics